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Introduction to Channel Coding 
 

I．Error control coding (overview) 
 Shannon showed that reliable communications can be achieved by proper coding of 

information to be transmitted provided that the rate of information transmission is 
below the channel capacity. 

 Coding is achieved by adding properly designed redundancy to each message before its 
transmission. The added redundancy is used for error control. The redundancy may 
appear in the form of extra symbols (or bits), or in the form of channel signal-set 
expansion or in the form of combination of both. 

 Coding may be designed and performed separately from modulation, or designed in 
conjunction with modulation as a single entity. In the former case, redundancy appears 
in the form of extra symbols, normally called parity-check symbols. 

 Coding achieved by adding extra redundant digits is known as conventional coding, in 
which error control (or coding gain) is achieved at the expense of bandwidth expansion 
or data rate reduction. Therefore, conventional coding is suitable for error control in 
power limited channels, such as deep space channel. 

 In the case that coding is designed in conjunction with modulation, redundancy comes 
from channel signal-set expansion. This combination of coding and modulation is 
usually known as coded modulation, which allows us to achieve error control (or 
coding gain) without compromising bandwidth efficiency. We refer this technique as 
the bandwidth efficient coding. 

 Historical notes: 
    Hamming codes (1950) 
    Reed-Muller codes (1954) 

   BM 算法（1968） 
 BCH codes  (by Bose, Ray-Chaudhuri and Hocquenghem, 1959)
Reed-Solomon codes (1960)                                                      

⎫
⎬
⎭

    Low-density parity-check codes (by Gallager in 1962, rediscovered in 90’s) 
    Convolutional codes (by Elias, 1955) 
    Viterbi algorithm (1967) 
    Concatenated codes (by Forney, 1966) 

Trellis-coded modulation  (by Ungerboeck, 1982) 
Turbo codes (by Berrou , 1993) 
Space-time codes (by Vahid Tarokh,1998) 

 Applications: 
Deep space, satellite, mobile communications, voice modem, data networks, etc. 

 Two simple examples: 
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Repetition codes:      (n, 1) code 
0 000000
1 111111

→ ⎫
⎬→ ⎭

Single parity-check codes:  
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0

⎫
⎪⎪
⎬
⎪
⎪⎭

(n, n-1) code 

 References: 
[1] Shu Lin and D. J. Costello, Jr. Error Control Coding: Fundamentals and Applications. 

2nd ed. Prentice-Hall, 2004. 
[2] 王新梅，肖国镇．纠错码－原理与方法．西安：西安电子科技大学出版社，1991. 
[3] D. J. Costello, J. Hagenauer, H. Imai, and S. B. Wicker, “Applications of error-control 

coding,” IEEE Trans. Inform. Theory, vol.44, no.6, pp.2531-2560, Oct. 1998. 
[4] D. J. Costello and G. D. Forney, “Channel coding: The road to channel capacity,” 

Proceedings of The IEEE, vol.95, no.6, pp.1150-1177, June 2007. 
 

II. Block coding 
 In block coding, information sequence is divided into messages of k information bits (or 

symbols) each. Each message is mapped into a structured sequence of n bits (with n>k), 
called a codeword. 

              0 1 1 0 1 1

message codeword

( , , , ) ( , , , )k nu u u c c c− −↔

 The mapping operation is called encoding. Each encoding operation is independent of 
past encodings. The collection of all codewords is called an (n, k) block code, where n 
and k are the length and dimension of the code, respectively. 

 In the process of encoding, n-k redundant bits are added to each message for protection 
against transmission errors. 

 For example, consider a (5,2) binary code of size M=2k=4: 

                

1

2
1 2 3 4

3

4

00 10101
01 10010

{ , , , }
10 10010
11 11110

↔ =
↔ =

=
↔ =
↔ =

c
c

c c c c
c
c

C

 An important class of block codes is the class of linear block codes. A block code is said 
to be linear if the vector sum of two codewords is also a codeword: 

         ,  ,0 ,1 , 1( , , )i i i i nc c c −= ∈c C ,0 ,1 , 1( , , )j j j j nc c c −= ∈c C  

          ,0 ,0 ,1 ,1 , 1 , 1( , , , )i j i j i j i n j nc c c c c c− −⊕ = ⊕ ⊕ ⊕ ∈c c C

 More general, a linear code is a subspace of .  (矢量加、标量乘运算封闭) GF( )nq
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 Linear block codes are normally put in systematic form: 

         0 1 1 0 1 0 11 1( , , , ) ( , , , , , , , )n n k k
message partparity check part

c c c c c c u u u− − − −

−

=  

 Each parity-check bit is a linear sum of message bits, i,e, 

          
1

0
, 0,1, ,

k

j ij i
i

p u j n kc
−

=

= =∑ 1.− −

 where =0 or 1. The equations which gives the parity-check bits are called the 

parity-check equations. They specify the encoding rule. 

ijp n k−

 For an (n, k) block code, the ratios 

              kR
n

=          and          n k
n

η −
=  

are called code rate and redundancy, respectively. 
 An example for block code: 

Let n=7 and k=4. Consider the (7, 4) linear systematic block code 

  Message:     0 1 2 3( , , , )u u u u

  Codeword:   0 1 2 3 4 5 6 0 1 2 0 1 2 3( , , , , , , ) ( , , , , , , )c c c c c c c c c c u u u u=  

 Here,        
0 0 1

1 1 2

2 0 1

c u u u
c u u u
c u u u

= + +
= + +
= + +

2

3

3

⋅G

   In matrix form: 

      0 1 2 3

1 0 1 1 0 0 0
1 1 1 0 1 0 0

( , , , )
1 1 0 0 0 1 0
0 1 1 0 0 0 1

u u u u

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

c u

 
  Encoder circuit: 
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⊕ ⊕
⊕

u

To channel

message register

0c 1c
2c

 
 

III. Convolution Coding 
 During each unit of time, the input to convolutional is also a k-bit message block and the 

corresponding is also an n-bit coded with k<n. (为避免混淆，可改为用k0, n0表示) 
 Each coded n-bit output block depends not only on the corresponding k-bit input 

message block at the same time unit but also on the m previous message blocks. 

Encoder
(memory)

u

(1)u
(2)u

( )ku ( )nc

(2)c
(1)c

c

 

Input data stream

shift register

运算逻辑

n n n

encoder codeword frame

data frame

有记忆

n

 
 The code rate is defined as . /R k n=

The parameter m is called the memory order of the code. 
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 In the process of coding, the information sequence u is divided into data frames of 
length k. These subsequences of length k are applied to the k-input terminals of the 
encoder, producing coded sequence of length n. 

 An example: 
 Let n=2, k=1 and m=2. Consider a rate-1/2 (2,1,2) convolutional code which is specified 

by the following two generator sequences: 
(1) (2)(101),   (111)= =g g  

u

(1)c

c

(2)c

 
 

Note: (1) (2),  g g 可看作编码器的两个冲激响应，由 (100...)δ= =u 得到。冲激响应至多

持续 个时间单位，且可写为： 1m +

( ) ( )(1) (1) (1) (1) (2) (2) (2) (2)
0 1 0 1, , , , , , ,m mg g g g g g= =g g… …  

- Let be the input message sequence. Then the two output sequences are  0 1( , , )u u=u

           
(1) (1)

(2) (2)

*
*

= ⎫
⎬

= ⎭

c u g
c u g

编码方程    (与冲激响应的卷积运算)

- At the lth time unit, the input is a single bit . The corresponding output is a block of two 

bits, , which is given by 

lu

(1) (2)( ,l lc c )

j
mg−        ( ) ( ) ( ) ( ) ( )

0 1 1
1

m
j j j j

l l i i l l l m
i

c u g u g u g u− −
=

= = + + +∑

(1)
2

2
1 2

       l l l

l l l l

memory

c u u
c u u u

−

− −

⎧ = +
⎪⇒ ⎨ = + +
⎪⎩

 

- The output codeword is given by ( )(1) (2) (1) (2)
0 0 1 1, ,c c c c=c . 

  For   (1011100 ), (11,01,00,10,01,10,11, )= =u c
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 State Diagram:  Since the encoder is a linear sequential circuit, its behavior can be 
described by a state diagram. The encoder state at time  is represented by the message 
bits stored in the memory units. 

l

 The encoder of the (2, 1, 2) convolutional code given in the example has 4 possible 
states, and its state diagram is shown in the figure below . 

 

00

01 10

11

0/00

1/11

1/00

0/01

1/01

0/10
1/10

0/11

input

output

 
label = input/output 

 
 Trellis diagram:  The state diagram can be expanded in time to display the state 

transition of a convolutional encoder in time. This expansion in time results in a trellis 
diagram. 

11

10

01

  00

state

0/00 0/00 0/00 0/00

1/11

1/10

1/01

0/10
1/10

0/01
0/01

1/11
0/11

1/11

1/00

 
 

 The encoding of a message sequence u is equivalent to tracing a path through the trellis. 
 The trellis structure is very useful in decoding a convolutional code. 
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IV. Conventional Coding 
1. Types of codes 

block codes - linear codes, cyclic codes
classfication based on structure

convolutional codes                               
⎧ ⎫
⎨ ⎬
⎩ ⎭

 

random-error-correcting codes
burst-error-correcting codes    

⎧
⎨
⎩

 

Binary codes      
Nonbinary codes

⎧
⎨
⎩

 

error-correction codes
error-detection codes 

⎧
⎨
⎩

 

2. Error correcting capacity/ability 

 The error correcting capacity of a code C depends on its distance structure. 

 The Hamming distance between two codewords, x and y, in a code, denoted by 

H ( , )d x y , is defined as the number of places in which they differ. 

     H H
1

H

1,    if 
( , ) ( , ),    ( , )

0,    if 
or ( , ) |{ : } |

n
i i

H i i i i
i i i

i i

x y
d d x y d x y

x y
d i x y

=

≠⎧
= = ⎨ =⎩

= ≠

∑x y

x y
  

For example,  (010,111) 2, (30102, 21103) 3H Hd d= =

 Hamming distance satisfies the axioms for a distance metric: 

1) ( , ) 0, with equality iff Hd ≥ =x y x y  

2)  ( , ) ( , )   ( )H Hd d=x y y x 对称性

3) ( , ) ( , ) ( , )H H Hd d d≤ +x y x z z y  

 The minimum Hamming distance of a code C is defined as 

{ }min min ( , ) | , ,Hd d ∈ ≠x y x y x yC  

 For a convolutional code, this minimum Hamming distance is usually called the 

minimum free distance, denoted by freed . 

 An (n, k) block code with minimum Hamming distance  is capable of correcting mind
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min 1
2

dt −⎢= ⎢⎣ ⎦
⎥
⎥  or fewer random errors over a block of digits (using minimum distance 

decoding rule). This parameter  is called the error correcting capacity of the code. 

n

t

t t
mind

decoding sphere min 2 1d t≥ +
 

 Error detection ability:  min 1e d= −

 Erasure correction ability: min 1dρ = −  

 Up to ρ  erasures and t random errors can be corrected if min 2 1d t ρ≥ + + . 

 The minimum Hamming distance of a linear block code depends on the choice of 
parity-check equations and the number of parity bits, n k− . 

 
3. Important codes 
 1) Algebraic block codes 

- Hamming codes 
- BCH codes: A large class of powerful multiple random error-correcting codes, rich in 

algebraic structure, algebraic decoding algorithms available. 
- Golay (23, 12) code:  A perfect triple-error-correcting code, widely used and 

generated by  

                   2 4 5 6 10 11( ) 1g x x x x x x x= + + + + + +

- Reed-Muller codes 
- Reed-Solomon codes: nonbinary, correcting symbol errors or burst errors ,most widely 

used for error control in data communications and data storages.  
 2) Convolutional codes: (2, 1, 6) code generated by  

        (1) (2)(1101101),   (1001111)= =g g

   This code has . free 10d =

3) Codes (defined) on graphs: 

Low-density parity-check codes
capacity-approching codes

Turbo codes                              
⎫
⎬
⎭

 

4. Types of error control schemes 
- Forward-error-correction (FEC):  An error-correction code is used. 
- Automatic-repeat-request (ARQ):  An error-detection code is used. 
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 If the presence of error is detected in a received word, a retransmission is requested. The 
request signal is sent to the transmitter through a feedback channel. Retransmission 
continues until no errors being detected. 

- Hybrid ARQ: A proper combination of FEC and ARQ. 
 
5. Decoding 

 Based on the received sequence, the encoding rules and the noise characteristics of the 
channel, the receiver makes a decision which message was actually transmitted. This 
decision making operation is called decoding. 

 Hard-decision 
   When binary coding is used, the modulator has only binary inputs (M=2). If binary 
demodulator output quantization is used (Q=2), the decoder has only binary inputs. In this 
case, the demodulator is said to make hard decision. Decoding based on hard decisions made 
by the demodulator is called hard-decision decoding. 

 Soft-decision 
   If the output of demodulator consists of more than two quantization levels (Q>2) or is 
left unquantized, the demodulator is said to make soft decisions. Decoding based on this is 
called soft-decision decoding. 

解调器
Q 电平

量化器 译

码

器

硬判决(Q=2)

软判决

 
 Hard-decision decoding is much easier to implement than soft-decision decoding. 

However, soft-decision decoding offers significant performance improvement over 
hard-decision decoding. See figure 2. 
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Figure 2 软判决与硬判决译码的信道容量 

 Optimal decoding  
   Given that y is received, the conditional error probability of decoding is defined as  

ˆ( ) (P E P ≠y c c )y  

   Then the error probability of  
( ) ( ) ( )P E P E P= ∑

y
y y  

   A decoding rule that minimizes P(E) is referred to as an optimal decoding rule. 

   Since minimize ˆ(P ≠c c y)  is equivalent to maximize ˆ(P =c c y) , we have 

MAP rule:   ˆ arg max ( )P=  
c

c c y  

 Maximum-likelihood decoding (MLD): 

Note that   
( ) ( )

( )
( )

P P
P

P
=

c y c
c y

y
, we have 

ML rule:   (Suppose all the messages are equally likely) ˆ arg max ( | )P=  
c

c y c

6. MLD for a BSC 
In coding for a BSC, every codeword and every received word are binary sequences. 

 Suppose some codeword is transmitted and the received word is 1 2( , )ny y y= ,…,y . 
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For a codeword , the conditional probability ic ( | )iP y c  is 

H H( , ) ( , )( | ) (1 )i id n d
iP p p −= −y c y cy c  

For p<1/2, ( | )iP y c  is a monotonially decreasing function of H ( , )id y c . Then 

( | ) ( | )i jP P>y c y c  iff H H( , ) ( , )i jd d<y c y c  

 MLD: 

  1) Compute H ( , )id y c  for all i ∈c C . 

2)  is taken as the transmitted codeword if ic H H( , ) ( , )i jd d<y c y c  for . j i∀ ≠

3) Decoding  into message . ic iu

This is called the minimum distance (nearest neighbor) decoding. 
 
7. Performance measure and coding gain 

 Block-error probability: It is the probability that a decoded word is in error. 
 Bit-error probability: It is the probability that a decoded bit is in error. 
 The usual figure of merit for a communication system is the ratio of energy per 

information bit to noise power spectral density, , that is required to achieve a 

given error probability. 

0/bE N

 Coding gain of a coded communication system over an uncoded system with the same 
modulation is defined the reduction, expressed in dB, in the required Eb/N0 to achieve a 
target error probability. 

Coding gain = 
0 0

b b

uncoded coded

E E
N N

⎡ ⎤ ⎡ ⎤
−⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
  (in dB) 

 Shannon limit: A theoretical limit on the minimum SNR required for coded system with 
code rate Rc to achieve error-free information transmission. See figures 3 and 4. 
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Figure 3  Milestones in the drive towards channel capacity achieved over the past 50 years. 

 
Figure 4  Performance of various coded modulation schemes. 
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V. Finite Fields (分组码的代数结构) 
1. Binary arithmetic and field 

 Consider the binary set {0,1}, Define two binary operations, called addition ‘+’ and 
multiplication ‘·’, on {0,1} as follows 

+ 0 1 
0 0 1 
1 1 0 

· 0 1 
0 0 0 
1 0 1 

 

 These two operations are commonly called module-2 addition and multiplication 
respectively. They can be implemented with an XOR and an AND gate, respectively. 

 The set {0, 1} together with module-2 addition and multiplication is called a binary field, 

denoted by GF(2) or F2 . 

2. Vector space over GF(2) 

 A binary n-tuple is an ordered sequence, (a1,a2,…,an), with GF(2)ia ∈ . 

- There are 2n distinct binary n-tuples. 
- Define an addition operation for any two binary n-tuples as follows: 

1 2 1 2 1 1 2 2( , ,..., ) ( , ,..., ) ( , ,..., )n na a a b b b a b a b a b+ = + + n n+

⋅

 

where ai+bi  is carried out in module-2 addition. 
- Define a scalar multiplication between and element c in GF(2) and a binary n-tuple 

(a1,a2,…,an) as follows: 

1 2 1 2( , ,..., ) ( , ,..., )n nc a a a c a c a c a⋅ = ⋅ ⋅  

where c⋅ai is carried out in module-2 multiplication. 
 Let Vn denote the set of all 2n binary n-tuples. The set Vn together with the addition 

defined for any two binary n-tuples in Vn and the scalar multiplication is called a vector 
space over GF(2). The elements in Vn are called vectors. 
- Note that Vn contains the all-zero n-tuple (0,0,…,0) and  

1 2 1 2( , ,..., ) ( , ,..., ) (0,0,...,0)n na a a a a a+ =  

 
 Example: Let n=4. Then 

4 (0000), (0001), (0010), (0011), (0100), (0101), (0110), (0111)
(1000), (1001), (1010), (1011), (1100), (1101), (1110), (1110)

V ⎧ ⎫
= ⎨ ⎬       ⎩ ⎭

 

 A subset S of Vn is called a subspace of Vn if 

1) the all-zero vector is in S; 
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2) the sum of two vectors in S is also a vector in S； 

For example: S={(0000),(0101),(1010),(1111)} forms a subspace of V4. 

 A linear combination of k vectors, in V1 2, ,..., kV V V n is a vector of the form 

1 1 2 2 k kc c c= + + +V V V V  

where  and is called the coefficient of VGF(2)ic ∈ i. 

 The subspace formed by the 2k linear combinations of k linearly independent vectors 

 in V1 2, ,..., kV V V n is called a k-dimensional subspace of Vn. 

 A binary polynomial is a polynomial with coefficients from the binary field. 
For example, 1+x2, 1+x+x3. 
- A binary polynomial p(x) of degree m is said to be irreducible if it is not divisible by 

any binary polynomial of degree less than m and greater than zero. For example, 1+x+x2, 
1+x+x3. 

- An irreducible polynomial p(x) of degree m is said to be primitive if the smallest 
positive integer n for which p(x) divides xn+1 is n=2m-1. For example, p(x)=1+x+x4. (it 
divides x15+1) 

- For any positive integer m, there exists a primitive polynomial of degree m. (可查表) 

4. Galois fields 
 Groups: A group is an algebraic structure (G, *) consisting of a set G and an operation * 

satisfying the following axioms: 
1) Closure: For any a, b∈G, the element a*b is in G; 
2) Associative law: For any a, b, c∈G, a*(b*c)=(a*b)*c; 
3) Identity element: There is an element e∈G for which e*a=a*e=a for all a∈G; 
4) Inverse: For every a∈G, there exists a unique element a-1∈G, such that a*a-1 = 

a-1*a = e. 
 A group is called a commutative group or Abelian group if a*b = b*a for all a, b∈G. 

Examples: - 整数，有理数，实数，with addition; 
- Integers with module-m addition. 

 Fields: A field F is a set that has two operations defined on it : Addition and 

multiplication, such that the following axioms are satisfied: 
1) The set is an Abelian group under addition; (单位元称为‘0’) 

2) The set is closed under multiplication, and the set {a∈F, a≠0} forms an Abelian 

group (whose identity is called ‘1’) under the multiplication (*); 

3) Distributive law: For all a, b, c∈F, (a+b)*c=(a*c)+(b*c). 

我们经常用‘0’表示加法运算下的单位元，‘-a’表示a的加法逆。经常用‘1’表示乘法
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运算下的单位元，‘a-1’表示a的乘法逆。这样，减法a-b means a+(-b), 除法a/b means b-1a. 
 A field with q elements, if it exists, is called a finite field, or a Galois field, and is 

denoted by GF(q). 

For example, ——the smallest field (2)GF

 Let F be a field. A subset of F is called a subfield if it is a field under the inherited 

addition and multiplication. 原来的域F称为 an extension field of the subfield. 

 In any field, if ab=ac and a≠0, then b=c. 
 For any positive integer m≥1,there exists a Galois field of  elements, denoted by 

. 

2m

)2( mGF

 The construction of  is very much the same as the construction of the 

complex-number field from the real-number field. 

)2( mGF

   We begin with a primitive polynomial  of degree m with coefficients from the 

binary field . 

( )p x

(2)GF

- Let α  be the root of ; i.e., ( )p x ( )p α =0. Then the field elements can be represented 

by , where q=22{0,1, , ,..., }qα α α −2 m. 

      =0 α −∞ , , , , …, =1 0α 1α 2α 2qα − , 

1=  (since α is a root of and1−qα ( )p x 2 1( ) | 1
m

p x x − + ,α must be a root of 2 1 1
m

x − + ) 

- For example: Construct  from  using(4)GF (2)GF 2( ) 1p x x x= + + . 

Polynomial notation     Binary notation        Integer         Exponential 
0                      00               0                0 

  1                      01               1                1 
  x                      10               2                α 

  x+1                    11               3                
2

3 01
α

α α= =
 

 The element α  whose powers generate all the nonzero elements of  is called 

a primitive element of . 

)2( mGF

)2( mGF

VI. Binary Linear Block codes 

 An (n, k) linear block code over  is simply a k-dim subspace of the vector )2(GF
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space Vn of all the binary n-tuples. 
 In any linear code, the all-zero word, as the vector-space origion, is always a codeword 

(∵if c is a codeword, then (-c) is also a codeword，so dose c+(-c)). 
 The Hamming weight w(c) of a vector c is the number of nonzero components of c. 

Obviously, H( ) ( , )w d=c c 0 . 

 The minimum Hamming weight of a code C is the smallest Hamming weight of any 

nonzero codeword of C. 

m in , 0
m in ( )Hw w
∈ ≠

=
c c

c
C

 

  For a linear code,  1 2 2 1( , ) ( , ) ( , ) ( )H H Hd d d= − = =c c 0 c c 0 c cw

                    ( ){ }min min0
min , , , min ( )H i j i jd d i j w

≠
= − ∈ ≠ =

c
0 c c c c cC w=  

1. Generator matrix 

 A generator matrix for a linear block code C of length n and dimension k is any k×n 

matrix G whose rows form a basis for C. 

Every codeword is a linear combination of the rows of G. 

00 01 0, 10

10 11 1, 11

1 1,0 1,1 1, 1

n

n

k k k k n k n

g g g
g g g

g g g

−

−

− − − − − ×

        ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥        ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

 ⎢ ⎥⎣ ⎦ ⎣ ⎦

g
g

G

g

…
…

…

 

 Encoding procedure: [ ]

0

1
1

0 1 1
0

1

, ,
k

k l
l

k

u u u u
−

−
=

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⋅ = =
⎢ ⎥
⎢ ⎥
⎣ ⎦

l∑

g
g

c u G g

g

 

Example: For a (6, 3) linear block code, 

0

1

2

0 1 1 1 0 0⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = 1 0 1 0 1 0⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥1 1 0 0 0 1⎣ ⎦⎣ ⎦

g
G g

g
 

The codeword for the message (1 )=  0 1u is 

        ( ) ( ) ( ) ( )1 0 0 1 1 1 1= ⋅ = ⋅  1 1 1 0 0 + ⋅  0 1 01 0 + ⋅  1 0 0 0 1 =  0 1 1 0 1c u G  

 An (n, k) linear systematic code is completely specified by an k×n generator matrix of 
the following form: 
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[ ]

00 01 0, 10

10 11 1, 11

1 1,0 1,1 1, 1

0 1

1

ij

n k

n k
k

k k k k n k

k k identity matrixP matrix with p or

p p p
p p p

p p p

− −

− −

− − − − − −

×        =

        ⎡  0  0⎡ ⎤ ⎤
⎢⎢ ⎥ ⎥       0 1 0⎢⎢ ⎥ ⎥= = =   ⎢⎢ ⎥ ⎥ 
⎢⎢ ⎥ ⎥0 0 1  ⎢ ⎦⎣ ⎦ ⎣

g
g

G P

g

I

 
For example, the (6, 3) code above is a systematic code: 

5 2

4

3 0

c u
c u
c u

=
=
=

1

)

   

2 0 1

1 0 2

0 1 2

      
       parity-check equations

      

c u u
c u u
c u u

= + ⎫
⎪= + ⎬
⎪= + ⎭

 

2. Parity-check matrix 
 An (n, k) linear code can also be specified by an (n-k)×n matrix H. 

Let  be an n-tuple. Then c is a codeword iff ( 0 1 1nc c c −=    c

( )0 0 0T

n k−

⋅ = =    c H 0
个

 

The matrix H is called a parity-check matrix. By definition, 
T =GH 0  

 For an (n, k) linear systematic code with generator matrix [ ]k=     G P I , the 

parity-check matrix is 

0

1 T
n k

n k

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤= = −⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

h
h

H I

h

P

3

3

 

 Example: For (7, 4) Hamming code 

0 0 2

3 7 1 0 1 2

2 1 2

P

1101000
100 10110110100
010 11101110010
001 01111010001

T

c u u u
c u u u
c u u u

×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ = + +⎧⎢ ⎥
⎢ ⎥ ⎪⎢ ⎥= ⇒ = ⇒ = +⎨⎢ ⎥ ⎢ ⎥ ⎪⎢ ⎥

+
= + +⎢ ⎥ ⎩⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ P

G H  

Thus, block code { }( )n TGF q= ∈ =c cHC 0 . 
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3. Syndrome decoding 
 Error vector (or error pattern): Let c be the transmitted codeword, and r be the received 

word. Then the difference between r and c gives the pattern of errors:  (for 

binary codes, ) 

e = r -c

= ⊕e r c
ej =1 indicates that the j-th position of r has an error. 

 Obviously, . r = c + e
 There are in total 2n possible error patterns. Among them, only 2n-k patterns are 

correctable by an (n, k) linear code. 
 To test whether a received vector r contains errors, we compute the following (n-k)- 

tuple: 

              ( )0 1 1, , , T
n ks s s − −= ⋅s r H

                                 ( ) T= + ⋅c e H  

                                                   T T= + =cH eH eHT

问题：  ?⇒ =s e
      If  ≠ ⇒ ≠s 0 e 0

       If ； 或错误不可检：= ⇒ =s 0 e 0无错， ∈e C . 

 The (n-k)-tuple, s is called the syndrome of r. 
Any method solving these n-k equations is a decoding method. 

 最小距离译码就是找重量最轻的 e such that T T= =eH rH s  

 Syndrome decoding consists of these steps: 

1) Calculate syndrome  of received n-tuple. T=s rH

2) Find 最可能的错误图样 e with T =eH s     ---> 非线性运算 

3) 估计发送码字 . ĉ = r - e
4) Determine message  from the encoding equation û ˆ ˆ=c uG . 

 Example: (7, 4) Hamming code. Suppose c = (1001011) is transmitted and r=(1001001) 

is received. Then  0 1 2( , , ) (111)Ts s s= = =s rH

  Let  be the error pattern. Since , we have the following 3 

equations : 

0 1 6( , ,..., )e e e=e T=s eH

                             1=e0+e3+e5+e6

                             1=e1+e3+e4+e5

                             1=e2+e4+e5+e6

 There are 16 possible solutions, 其中 e=(0000010)是重量最小，是最可能发生的错误图

样，故 =(10010010)⊕(0000010)=(1001011). ˆ ⊕c = r e
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 Standard array 
      

c1=0 c2 c3 … cM

e2 e2+c2 e2+c3 … e2+cM

e3 e3+c2 e3+c3 … e3+cM

… … … … … 

2re  
22r +e c 32r +e c …

2r M+e c

 
2kM = , r = n-k 

- Each row is called a coset. 
 

4. Hamming codes 
 First class of codes devised for error correction. 
 For any positive integer , there exists a Hamming code with the following 

parameters: 
3m ≥

   code length:  2 1mn = −

   dimension:  2 1mk m= − −

   Number of parity-check symbols: n-k=m 
   Error correcting capability: t=1 
   Minimum distance: dmin=3 

 
5. Hamming bound (sphere packing) 
 For a (n, k) linear block code over GF(q) with error correction ability t, 

( )
0

log ( , ) log 1
t

i
q q q

i

n
n k V n t q

i=

⎛ ⎞⎛ ⎞
− ≥ = −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑  

其中 是半径为 t 的 Hamming 球的 volume. (
0

( , ) 1
t

i
q

i

n
V n t q

i=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ )−

证明：在 GF(q)上的 n 维空间中，总共有 个 n 维向量，有nq kM q= 个码字（Hamming

球），因此有 

( , )k n
qq V n t q⋅ ≤  

从而 

( , )
n

qk

q V n t
q

≥  

log ( , )q qn k V n t− ≥  

 Note: Hamming codes are one of few perfect codes – achieving Hamming bound. 

 19


