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MIMO Channel

1. MIMO System Model
Consider a single-user MIMO communication system with N transmit and M receive
antennas. (It will be called a (N, M) system.) The system block diagram is shown in Fig.1.

The transmitted signal at time t is represented by an Nx1 column vector x € C", and the

received signal is represented by an Mx1 column vector yeC" (For simplicity, we
ignore the time index). The discrete-time MIMO channel can be described by

y=Hx+n 1)

where H is an MxN complex matrix describing the channel and the element h; of H

represents the channel gain from the transmit antenna j to the receive antenna i; and
n~CN (0, NoI,, ) is a zero-mean complex Gaussian noise vector whose components are
i.i.d. circularly symmetric complex Gaussian variables. The covariance matrix of the noise
is given by K, =E[nn"]=N,, = 20°1,,, i.e., each of M receive antennas has identical

noise power of No (per complex dimension) (or, o* per real dimension). The total
transmitted power is constrained to P, regardless of the number of transmit antennas N. It
can be represented as

E[lIxIP ]=E[x"x]=E[Tr(x")] =Tr{E[xxH ]} =tr(K,) <P,

where KX:E[XXH ] is the covariance matrix of the transmitted signal x.
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Fig. 1 An MIMO wireless system model

For normalization purposes, we assume that the received power for each of M receive
branches is equal to the total transmitted power. Thus, in the case when H is deterministic,
we have



N
dlh, =N, m=12..,M
=1

When H is random, we will assume that its entries are i.i.d. zero-mean complex
Gaussian variables, each with variance 1/2 per dimension. This case is usually referred to
as a rich scattering environment. The normalization constraint for the elements of H is
given by

iED ho]=N, m=12..M

n=1
With the normalization constraint, the total received signal power per antenna is equal to

the total transmitted power, and the average SNR at any receive antennais SNR=P/N,.

2. Fundamental Capacity Limits of MIMO Channels

Consider the case of deterministic H. The channel matrix H is assumed to be constant
at all time and known to the receiver. The relation of (1) indicates a vector Gaussian
channel. The Shannon capacity is defined as the maximum data rate that can be
transmitted over the channel with arbitrarily small error probability. It is given in terms of

the mutual information between vectors x and y as
CH)= max Z(x;y,H)= m(ag(I(x;H) +Z(x;y |H)
p(x

P(x)E[x|1<P

=maxZ(x;y|H)= rgg;<[H(y |H) - H(y |x,H)] (0.1)

where p(x) is the probability distribution of the vector x, H(y|H) and H(y|x,H) are

the differential entropy and the conditional differential entropy of the vector vy,
respectively. Since the vectors x and n are independent, we have

H(y|x,H) = H(n) = log, (det(zeN,I,,))
which has fixed value and is independent of the channel input. Thus, maximizing the

mutual information Z(x;y|H) is equivalent to maximize H(y|H). From (1), the

covariance matrix of y is
K =E[yy" |=HK H" + NI,
Among all vectors y with a given covariance matrix Ky, the differential entropy H(y) is

maximized when y is a zero-mean circularly symmetric complex Gaussian (ZMCSCG)
random vector [Telatar99]. This implies that the input x must also be ZMCSCG, and

therefore this is the optimal distribution on x. This yields the entropy H(y|H) given by

H(y|H) = log, (det(zeK )



The mutual information then reduces to

Z(x;y |H) ="H(y|H)—"H(n)

=log, (det(IM +NLHKXHH D (0.2)

0

where we have used the fact that det(AB) = det(A)det(B) and det(A‘1)=[det(A)]_l.

And the MIMO capacity is given by maximizing the mutual information (0.2) over all
input covariance matrces K satisfying the power constraint:

C(H)= max Iogz(det(IM +NiHKXHHD bits per channel use  (0.3)

K, Tr(K,)=P 0

= max Iogz(det(IN +NLKXH”HD

K, Tr(K,)=P 0
where the last equality follows from the fact that det(I, + AB)=det(I, +BA) for

matrices A (mxn)and B (nxm).

Clearly, the optimization relative to Ky will depend on whether or not H is known at
the transmitter. We now discuss this maximizing under different assumptions about
transmitter CSI by decomposing the vector channel into a set of parallel, independent
scalar Gaussian sub-channels.

2.3 Channel Unknown to the Transmitter

If the channel is known to the receiver, but not to the transmitter, then the transmitter
cannot optimize its power allocation or input covariance structure across antennas. This
implies that if the distribution of H follows the zero-mean spatially white (ZMSW)
channel gain model, the signals transmitted from N antennas should be independent and
the power should be equally divided among the transmit antennas, resulting an input

covariance matrix K, =EIN . It is shown in [Telatar99] that this K, indeed maximize the
mutual information. Thus, the capacity in such a case is
log, [det(IM +SNR v ﬂ ifM <N

C= bits per channel use 0.4)
log, {det(l,\‘ +ShR HHHH ifM>N

where SNR=P/N,.

2.1 Parallel Decomposition of the MIMO Channel



By the singular value decomposition (SVD) theorem, any MxN matrix H e C"*"
can be written as

H=UAV" (0.5)

where A is an MxN non-negative real and diagonal matrix, U and V are MxM and NxN

unitary matrices, respectively. That is, UU" =1,, and VV" =1, where the superscript

“H» stands for the Hermitian transpose (or complex conjugate transpose). In fact, the

diagonal entries of A are the non-negative square roots of the eigenvalues of matrix HH",
the columns of U are the eigenvectors of HH™ and the columns of V are the eigenvectors
of H"H.

Denote by A the eigenvalues of HH", which are defined by

HH"z=1z, 720 (0.6)

where z is an Mx1 eigenvector corresponding to A. The number of non-zero eigenvalues
of matrix HH" is equal to the rank r of H. Since the rank of H cannot exceed the number

of columns or rows of H, r<m=min(M,N). If H is full rank, which is sometimes
referred to as a rich scattering environment, then r = m. Equation (0.6) can be rewritten as

(A1,,-W)z=0, z#0 0.7)
where W is the Wishart matrix defined to be

_|HH", ifM <N
H"H, ifM>N

This implies that
det(AI, —W)=0 (0.8)

The m nonzero eigenvalues of W, A4, A2, ..., Am, can be calculated by finding the roots of
(0.8). The non-negative square roots of the eigenvalues of W are also referred to as
singular values of H.

Substituting (0.5) into (1), we have

y=UAV"x+n

Let y=U"y, x=V"x, i=U"n. Note that U and V are invertible, i and n have the
same distribution (i.e., zero-mean Gaussian with i.i.d. real and imaginary parts), and

E[x"X] = E[x"x]. Thus the original channel defined in (1) is equivalent to the channel

y=AX+n 0.9)

where A:diag(\/z,\/z,..., /Im,O,...,O) with /4,i=12,...,m denoting the non-zero



singular values of H. The equivalence is summarized in Fig. 2. From (0.9), we obtain for
the received signal components

Vi =JAKX +f, 1<i<m (0.10)

¥ =1, m+1<i<M
It is seen that received components ¥, i >m, do not depend on the transmitted signal. On

the other hand, received components ¥, i=12,..,m depend only the transmitted

component X . Thus the equivalent MIMO channel in (0.9) can be considered as

consisting of m uncoupled parallel Gaussian sub-channels. Specifically,
® If N>M, (0.10) indicates that there will be at most M non-zero attenuation
subchannels in the equivalent MIMO channel. See Fig. 3.
B If M>N, there will be at most N non-zero attenuation subchannels in the
equivalent MIMO channel.
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Figure 2 Converting the MIMO channel into a parallel channel through the SVD.
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Fig. 3 Block diagram of an equivalent MIMO channel for N>M



With the above model (parallel orthogonal channels), the fundamental capacity of an
MIMO channel can be calculated in terms of the positive eigenvalues of the matrix HH"
as follows.

2.2 Channel Known to the Transmitter

When the perfect channel knowledge is available at both the transmitter and the
receiver, the transmitter can optimize its power allocation or input covariance matrix
across antennas according to the “water-filling” rule (in space) to maximize the capacity
formula (0.3). Substituting the matrix SVD (0.5) into (0.3) and using properties of unitary
matrices, we get the MIMO capacity with CSIT and CSIR as

C= max Iogz[det(IN +NLAKXAH J]

K :Tr(K,)=P 0

m
= max Y log, 1454
R) R<P 3 N,
where P; is the transmit power in the ith sub-channel. Solving the optimization leads to a
water-filling power allocation over the parallel channels. The power allocated to channel i,

1<i<m, is given parametrically by

N, )
pi:[ _TJ (0.11)

where a* denotes max(0, a), and x is chosen to satisfy
Y P=P (0.12)
i=1

The resulting capacity is then

m 1 o R N
Cop = le log, {HN_('M' -N,) } = lelogz [N—,u/l,] bits/channel use  (0.13)
1=. 1= 0

0

which is achieved by choosing each component X according to an independent Gaussian

distribution with power P;. The covariance matrix of the capacity-achieving transmitted
signal is given by

K,=VPV"

where P =diag(P,,P,,...,P,,0,...,0) isan NxN matrix.

TR~ .

m  Water-filling algorithm:

The power allocation in (0.11) can be determined iteratively using the water-filling
algorithm. We now describe it.

We first set the iteration count p to 1 and assume that fi5 (m-p+1) /NI4T 518 L




i F. With this assumption, the constant . is calculated (by substituting (0.11) into

(0.12)) as
m-p+1
NO
0 |=P
2 [” J
Then we have
1 m—p+11
=————| P+N —
2 m—p+1[ 021 i.j

Using this value of x, the power allocated to the ith subchannel is given by

P :[ﬂ_%} iI=12,...m-p+1

If the power allocated to the channel with the lowest gain is negative (i.e., P,

then we discard this channel by setting P

m-p+1

(0.15a)

(0.15b)

<0),

-p+l

=0 and return the algorithm with the

iteration count p = p+1. Bli&AX#4T(0.15a)F11(0.15b), KM IHZE P ER A& 1 (m-p+1) 4

TAREZ BT 2. BT EERFTAERITE P 208 p=m A1k,



