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Random Coding

In this note we prove the achievability part of the channel coding theorem for discrete
memoryless channels without feedback. The discussion is largely based on chapter 5 of
R. G. Gallager, Information Theory and Reliable Communication, Wiley, 1968.

1. Discrete Memoryless Channels Without Feedback

Throughout this note we will fix the channel we wish to communicate over. Let X and Y
denote the input and output alphabets of this channel. We will assume that the channel is
discrete, i.e., that X and Y are finite sets. The behavior of the channel will be completely
described by specifying for each k ≥ 1 the function

Pk : X k × Yk → R, (xk
1, y

k
1) 7→ Pk(yk|xk

1, y
k−1
1 ),

which gives the probability of receiving the letter yk at the output at time k, given the past
and current inputs to the channel, and the past outputs of the channel.

We make the two following assumptions: the channel is memoryless and used without
feedback.

We will call a channel memoryless if

Pk(yk|xk
1, y

k−1
1 ) = P (yk|xk),

which in words means that the channel keeps no memory of the past inputs and outputs in
determining the output of time k. Also note that the channel does not behave differently
at different times: the function P on the right hand side is not an explicit function of k.

If a memoryless channel is used without feedback, i.e., if
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(in words: if the channel inputs do not depend on the past channel outputs) then
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where we use the memoryless and without feedback conditions at the fourth equality.
From now on, we will restrict our attention of channels used without feedback. With

some abuse of notation we will let P (y|x) denote the probability of receiving the sequence
y = yn

1 at the output of the channel when the channel input is the sequence x = xn
1 . If the

channel is memoryless, we see from above that

P (y|x) =
n∏

k=1

P (yk|xk).

2. Block Codes

A block code with M messages and block length n is a mapping from a set of M messages
{1, . . . ,M} to channel input sequences of length n. Thus, a block code is specified when
we specify the M channel input sequences c1 = (c1,1, . . . , c1,n), . . . , cM = (cM,1, . . . , cM,n)
the messages are mapped into. We will call cm the codeword for message m.

To send message m with such a block code we simply give the sequence cm to the
channel as input.

A decoder for such a block code is a mapping from channel output sequences Yn to
the set of M messages {1, . . . ,M}. For a given decoder, let Dm ⊂ Yn denote the set of
channel outputs which are mapped to message m. Since an output sequence y is mapped
to exactly one message, Dm’s form a collection of disjoint sets whose union is Yn.

We define the rate of a block code with M messages and block length n as

ln M

n
,

and given such a code and a decoder we define

Pe,m =
∑

y 6∈Dm

P (y|cm),

the probability of a decoding error when message m is sent. Further define

Pe,ave =
1

M

M∑
m=1

Pe,m and Pe,max = max
1≤m≤M

Pe,m

as the average and maximal (both over the possible messages) error probability of such a
code and decoder.

Among many possible decoding methods, the rule that minimizes Pe,ave is the maximum
likelihood rule. Given a channel output sequence y, the maximum likelihood rule decodes
a message m for which

P (y|cm) ≥ P (y|cm′) for every m′ 6= m,

and if there are more than one such m chooses one of them arbitrarily. We will restrict
ourselves in the following to the maximum likelihood rule.

3. Error probability for two codewords

Consider now the case when M = 2, so the block code consists of two codewords, c1 and
c2. We will find a bound on Pe,m for the maximum likelihood decoding rule.

2



Suppose message 1 is to be sent. The channel input is then c1, and the probability of
receiving y at the channel output is P (y|c1). An error will occur if the received sequence
is not in D1. Since for every y not in D1, P (y|c2) ≥ P (y|c1), (but there may be y’s for
which P (y|c2) = P (y|c1) and y ∈ D1) we have

Pe,1 =
∑
y 6∈D1

P (y|c1)

≤
∑

y: P (y|c2)≥P (y|c1)

P (y|c1)

=
∑
y

P (y|c1)11P (y|c2)≥P (y|c1)

≤
∑

y:P (y|c2)≥P (y|c1)

P (y|c1)
P (y|c2)

s

P (y|c1)s

≤
∑
y

P (y|c1)
P (y|c2)

s

P (y|c1)s
for any s ≥ 0

=
∑
y

P (y|c1)
1−sP (y|c2)

s

The choice s = 1/2 gives us

Pe,1 ≤
∑
y

√
P (y|c1)P (y|c2),

and by symmetry, the same quantity also upper bounds Pe,2.
For a memoryless channel P (y|cm) =

∏n
k=1 P (yk|cm,k) and we obtain

Pe,m ≤
∑
y

√
P (y|c1)P (y|c2)

=
∑
y1

· · ·
∑
yn

√
P (y1|c1,1)P (y1|c2,1) . . .

√
P (yn|c1,nP (yn|c2,n)

=
[∑

y1

√
P (y1|c1,1)P (y1|c2,1)

]
. . .

[∑
yn

√
P (yn|c1,n)P (yn|c2,n)

]
=

n∏
k=1

[∑
y

√
P (y|c1,k)P (y|c2,k)

]
.

For example, for a binary symmetric channel with crossover probability ε, we see that∑
y

√
P (y|c1,k)P (y|c2,k) =

{
1 if c1,k = c2,k

2
√

ε(1− ε) else,

and we obtain
Pe,m ≤ [4ε(1− ε)]d/2

where d is the number of places c1 and c2 are different (i.e., d = |{k : c1,k 6= c2,k}|).

4. Error Probability for two randomly chosen codewords

Suppose now that the codewords c1 and c2 are chosen randomly and independently each
from a distribution Q on X n. Observe that the codewords are random variables C1 and
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C2 and the probability that the block code is the particular block code with codewords c1

and c2 is given by Q(c1)Q(c2). The error probabilities Pe,m are now random variables Pe,m

since they are functions of C1 and C2. Let P̄e,m denote the expectation of Pe,m.
We will now give an upper bound on P̄e,m in two different ways. The first is the more

straightforward, but the second way will turn out to be conceptually more useful. We will
take m = 1, but is is clear by symmetry that P̄e,1 = P̄e,2.

Method 1: Write

P̄e,1 = E[Pe,1]

=
∑
c1

∑
c2

Q(c1)Q(c2)E[Pe,1|C1 = c1,C2 = c2].

But when we are given c1 and c2, Pe,1 is no longer random, and we can use the bound of
the last section on the probability of error to get

P̄e,1 ≤
∑
c1

∑
c2

Q(c1)Q(c2)
∑
y

√
P (y|c1)

√
P (y|c2)

=
∑
y

[∑
c1

Q(c1)
√

P (y|c1)
][∑

c2

Q(c2)
√

P (y|c2)
]

=
∑
y

[∑
c

Q(c)
√

P (y|c)
]2

where the last equality follows by noting that the sums in the brackets in the next to last
line are identical since they differ only by the index of summation.

Method 2: Write

P̄e,1 = E[Pe,1]

=
∑
c1

∑
y

Q(c1)P (y|c1)E[Pe,1|C1 = c1,Y = y].

Note that here we are computing the expectation by first conditioning on the transmitted
and received sequences. Now, observe that given C1 = c1 and the received sequence y, an
error is sure not to occur if C2 is chosen such that P (y|C2) < P (y|c1), and otherwise we
can upper bound Pe,1 by 1. Thus, given C1 = c1 and y, we have

Pe,1 ≤

{
1 if P (y|C2) ≥ P (y|c1)

0 if P (y|C2) < P (y|c1)

= 11P (y|C2)≥P (y|c1).

Taking expectations we see that

E[Pe,1|C1 = c1,Y = y] ≤ Pr(B2)

where B2 is the event that C2 is chosen such that P (y|C2) ≥ P (y|c1). We can bound
Pr(B2) by

Pr(B2) =
∑
c2

Q(c2)11P (y|c2)≥P (y|c1)

≤
∑
c2

Q(c2)
P (y|c2)

s

P (y|c1)s
for any s ≥ 0.
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Taking s = 1/2 and substituting back we obtain the same bound as before,

P̄e,1 ≤
∑
y

[∑
c

Q(c)
√

P (y|c)
]2

.

For memoryless channels the bound simplifies if Q(c) is chosen to be Q(c) =
∏n

k=1 Q(ck).
In this case we obtain

P̄e,1 ≤
[∑

y

[∑
x

Q(x)
√

P (y|x)
]2

]n

.

5. Average error probability of a randomly chosen code

Consider now a code with M codewords, each codeword cm chosen independently according
to the probability distribution Q. Just as in the above section, the probability that the
block code constructed is a particular block code with codewords c1, . . . , cM is

∏M
m=1 Q(cm).

The error probabilities Pe,m are also random variables, and again let P̄e,m denote the
expectation of Pe,m. By the symmetry with respect to the permutation of the codewords
in the construction, we see that P̄e,m does not depend on m, and it will suffice to analyze
P̄e,1. We will take the extension of ‘method 2’ in the previous section as our analysis
method, and write

P̄e,1 =
∑
c1

∑
y

Q(c1)P (y|c1)E[Pe,1|C1 = c1,Y = y].

Now, for a given c1 and y define for each m ≥ 2, Bm as the event that codeword Cm

is chosen such that P (y|Cm) ≥ P (y|c1), i.e., that codeword m is at least as likely as the
transmitted codeword. Then just as in the previous section,

E[Pe,1|C1 = c1,Y = y] ≤ Pr
( M⋃

m=2

Bm

)
≤ min

{
1,

M∑
m=2

Pr(Bm)
}

≤
[ M∑

m=2

Pr(Bm)
]ρ

for all ρ ∈ [0, 1].

The second inequality above is just the union bound, the third inequality is because for
ρ ∈ [0, 1], x ≤ xρ when x ∈ [0, 1], and 1 ≤ xρ when x ≥ 1.

Observe now that

Pr(Bm) =
∑
cm

Q(cm)11P (y|cm)≥P (y|c1)

≤
∑
cm

Q(cm)
P (y|cm)s

P (y|c1)s
for any s ≥ 0

=
∑
c

Q(c)
P (y|c)s

P (y|c1)s

and thus

E[Pe,1|C1 = c1,Y = y] ≤
[
(M − 1)

∑
c

Q(c)
P (y|c)s

P (y|c1)s

]ρ

.
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Substituting back we get

P̄e,1 ≤ (M − 1)ρ
∑
y

[∑
c1

Q(c1)P (y|c1)
1−sρ

][∑
c

Q(c)P (y|c)s
]ρ

.

Choosing now s = 1/(1 + ρ) (this choice in fact minimizes the bound) and observing
that for this choice 1− sρ = s, and that[∑

c1

Q(c1)P (y|c1)
1−sρ

]
=

[∑
c

Q(c)P (y|c)s
]

since the two summations differ only by the summation index, we get

P̄e,1 ≤ (M − 1)ρ
∑
y

[∑
c

Q(c)P (y|c)1/(1+ρ)
]1+ρ

.

If we now specialize this theorem to discrete memoryless channels and if we choose
Q(c) =

∏n
i=1 Q(ci), we get that for every ρ ∈ [0, 1],

P̄e,1 ≤ (M − 1)ρ

[∑
y

[∑
x

Q(x)P (y|x)1/(1+ρ)
]1+ρ

]n

If M = denRe, then (M − 1) ≤ enR, and we can summarize the above as

Theorem 1. Given a discrete memoryless channel described by P (y|x), for any blocklength
n, and any R ≥ 0 consider constructing a random block code with M = denRe codewords
by choosing each letter of each codeword independently according to a distribution Q on
X . Then, the expected average error probability of this random code satisfies

P̄e,ave ≤ exp
{
−n max

ρ∈[0,1]
[E0(ρ, Q)− ρR]

}
where

E0(ρ, Q) = − ln
∑

y

[∑
x

Q(x)P (y|x)1/(1+ρ)
]1+ρ

.

Since the expected error probability cannot be better than the error probability of the
best code we also get

Corollary 1. Given a discrete memoryless channel described by P (y|x), for any distri-
bution Q on X , any blocklength n and any R > 0, there exists a code of block length n
and rate at least R with

Pe,ave ≤ exp
{
−nEr(R, Q)

}
.

where
Er(R, Q) = max

ρ∈[0,1]
[E0(ρ, Q)− ρR].

Note that the above corollary establishes the existence of codes of a certain rate with
a guarantee on their Pe,ave, but suggests no mechanism to find them. However, if one
does carry out the experiment of constructing a code by randomly choosing its codewords,
the probability that the code obtained will be much worse than the average is small, in
particular, Markov inequality tells us that the probability that a code constructed as such
has Pe,ave larger than αP̄e,ave is small:

Pr[Pe,ave ≥ αP̄e,ave] ≤ 1/α for α > 1.
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Figure 1: E0(ρ, Q)

Thus, the difficulty in finding good practical codes is not that the good codes are rare, but
the difficulty is in find good codes for which there are practical methods to encode and
decode.

The corollary above makes guarantees on Pe,ave, but for a code constructed by random
coding the value of Pe,max may be much higher than Pe,ave. Can we ensure the existence of
codes with small Pe,max?

Theorem 2. Given a discrete memoryless channel described by P (y|x), for any distribution
Q on X , any blocklength n and any R > 0, there exists a block code of length n and rate
at least R with

Pe,max ≤ 4 exp
{
−nEr(R,Q)

}
.

Proof. Let M ′ = d2enRe. We know that there is a code with M ′ codewords and satisfies

Pe,ave =
1

M ′

M ′∑
m=1

Pe,m ≤ (M ′ − 1)ρ exp
{
−nE0(ρ, Q)

}
for every ρ ∈ [0, 1]. Since

(M ′ − 1)ρ ≤ 2ρenρR ≤ 2enρR,

we see that for this code

Pe,ave =
1

M ′

M ′∑
m=1

Pe,m ≤ 2 exp
{
−nEr(R,Q)

}
.

Now, among the M ′ numbers Pe,1, . . . , Pe,M ′ there cannot be more than M ′/2 which exceed
twice the average value Pe,ave. Thus, among these M ′ numbers there exist at least denRe of
them which satisfy

Pe,m ≤ 2Pe,ave ≤ 4 exp
{
−nEr(R,Q)

}
.

Keeping only these codewords, and noticing that in the maximum likelihood decoder that
corresponds to this code the decoding sets can only be enlarged, we see that we have
constructed a code with the desired properties.

5.1. Properties of E0 and Er

The value of the existence theorems we just proved depend on whether the bound we have
on the probability of error can be made arbitrarily small for a set of rates of interest. Define

I(Q) =
∑

x

∑
y

Q(x)P (y|x) ln
P (y|x)∑

x′ Q(x′)P (y|x′)
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as the value of mutual information between the input and output when the input distri-
bution is Q. We will now show that for every rate R < I(Q), the exponent Er(R,Q) > 0,
and thus for every rate R < I(Q) we can find codes with arbitrarily small probability of
error (by taking n large enough). Since this statement holds for every input distribution
Q, it also follows that for every rate R < maxQ I(Q) = maxpX

I(X; Y ) there exist codes
of arbitrarily small probability of error. This proves that any rate R below capacity is
achievable (achievability part of the coding theorem).

A tedious but straightforward calculation also yields that

∂E0(ρ, Q)

∂ρ

∣∣∣∣
ρ=0

= I(Q).

Using the fact that whenever Q and A are nonnegative, the function t ∈ [0,∞) 7→[∑
x Q(x)A(x)1/t

]t
is nonincreasing, it is easy to show that E0(ρ, Q) is nondecreasing in ρ.

We do not need it here, but it is also possible to show that E0(ρ, Q) is a concave function
of ρ. Thus, Figure 1 shows the typical behavior of E0 as a function of ρ.

Observe now that since the function R 7→ Er(R,Q) is a maximum of the linear functions
R 7→ E0(ρ, Q)− ρR, (see Figure 2), we see that Er(R,Q) > 0 whenever for some ρ ∈ [0, 1],
E0(ρ, Q)− ρR > 0 is satisfied.

E0(1, Q)

E0( 1
2
, Q)

E0( 1
4
, Q)

I(Q)

Er(R, Q)

R

Figure 2: Er(R) as a maximum of linear functions.

It now follows that if R < E0(ρ, Q)/ρ for some ρ ∈ (0, 1] and Q, then E0(ρ, Q)−ρR > 0
and thus Er(R,Q) > 0. But,

I(Q) =
∂E0(ρ, Q)

∂ρ

∣∣∣∣
ρ=0

= lim
ρ→0

E0(ρ, Q)− E0(0, Q)

ρ
= lim

ρ→0

E0(ρ, Q)

ρ
.

where the last equality follows from fact that E0(0, Q) = − ln
∑

x,y Q(x)P (y|x) = − ln 1 =
0. Thus, by the definition of the limit above, for every R < I(Q), we can find a ρ such
that E0(ρ, Q)/ρ > R. Hence for every R < I(Q) we have Er(R,Q) > 0. Since the above
argument holds for any input distribution Q, it holds in particular for the Q that maximizes
I(Q). This proves the existence of codes with arbitrarily small probability of error for every
rate less than the capacity maxQ I(Q).

The approach we used here yields to the function Er(R,Q) called random coding error
exponent. To prove the achievability part of the coding theorem it would suffice to show
that for any rate R below capacity there exists a sequence of rate R codes of length n
with corresponding error probability that tends to zero as n tends to infinity. The random
coding error exponent argument in addition to prove it, also characterizes the decay of the
probability of error as n tends to infinity.
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