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Chapter 5  Coded-Modulation for Band-Limited AWGN Channels 

 
 

We now introduce the bandwidth-efficient coded-modulation techniques for ideal AWGN 
channels. The idea of combined coding and modulation design was first suggested by J. L. 
Massey in 1974, and then realized with stunning results by Ungerboeck and Imai. The 
common core is to optimize the code in Euclidean space. 

On band-limited channels, nonbinary signal alphabets such as M-PAM must be used. The 
M-ary signaling and the potential coding gain in the bandwidth-limited regime have been 
discussed in Chapter 2 from the information-theoretic point of view. 
 
5.1 编码调制的基本原理 

Traditionally, coding and modulation have been considered as two separate parts of a 
digital communication system. At the transmitter, an error-correcting encoder is followed by a 
simple modulator; at the receiver, the received waveform is first demodulated, and then the 
error correction code is decoded. In this scenario, the modulator and demodulator are usually 
devised to convert a waveform channel into a discrete channel, and the error correction 
encoder/decoder are designed, based on maximizing the minimum Hamming distance, to 
correct the errors that occurred in the discrete channel. Higher improvement in performance is 
achieved by lowering the code rate at a cost of bandwidth expansion. 
 最近，随着数据速率的日益提高，要求通信系统具有较高的频谱利用率。为了在提

高系统功率效率的同时，不宽展系统所占用的带宽，人们提出了编码调制技术。With 
coded modulation schemes, significant coding gains (so the BER performance improvement) 
can be achieved without increasing bandwidth (or sacrificing bandwidth efficiency). 
 

编码调制遵循下面两个基本原理： 
 通过扩展信号星座（即增加调制信号集中的信号个数）而不是通过增加系统的带宽

来提供编码所要求的信号冗余。 
Example 5.1：Consider the situation where a stream of data is to be transmitted with 

throughput of 2 bits/s/Hz over an AWGN channel. One possible solution is to use an uncoded 
QPSK system. As a coded solution, we may employ a rate-2/3 convolutional code with an 
8-PSK signal set. Note that this coded 8-PSK scheme yields the same throughput as uncoded 
QPSK, i.e., 2 bits/s/Hz; moreover, both schemes require the same bandwidth. 
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Figure 5.1.1 

 
从第二章中的调制信号星座的容量分析可知，信号星座点个数增加一倍所提供的冗

余已足够实现在不增加系统带宽的条件下，逼近容量限的性能。再进一步扩展星座，所

得到的性能增益将很少。因此，在通常的编码调制系统中采用的是码率为k/(k+1)的信道

码。 
 将编码与调制作为一个整体进行联合优化设计。 

因为 Although the expansion of a signal set (e.g., from QPSK to 8-PSK) provides the 
redundancy required for coding, it shrinks the distance between the signal points if the 
average signal energy is kept constant. This reduction in distance should be compensated by 
coding advantage if the coded scheme is to provide a benefit. 
如果是按照传统方法，简单地在一个纠错编码器后级联一个M元调制器，而纠错编码器

是基于汉明距离准则进行设计，则所得到的结果往往会令人失望。 
另外，The use of hard-decision demodulation prior to the decoding in a coded scheme 

causes a loss of SNR. To avoid such a hard-decision loss, it is necessary to employ soft-output 
detector. TCM integrates demodulation and decoding in a single step and decoder operates 
directly on the soft-output samples of the channel. The decision rule of the optimum decoder 
depend on the Euclidean distance. 
 
Example 5.2：（对于上例中的） 

For the coded 8-PSK scheme above, if we choose the rate-2/3 convolutional code of 
Fig.5.1.2(a) which is designed based on maximizing free Hamming distance, and the mapping 
of 3 output bits of the convolutional encoder to the 8-PSK signal points is done as shown in 
Fig.5.1.2(b), then we can find that the minimum Euclidean distance between a pair of paths 
forming an error event (which is sometimes called free Euclidean distance) is 
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(a) Encoder structure 
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(b) Signal mapping rule and the trellis diagram of the coded scheme 

Fig. 5.1.2 A rate-2/3 convolutional coded 8-PSK scheme 
 

To compare the coded and uncoded schemes it is common to use the coding gain 
parameter, which is defined as the difference in SNR for an objective target bit error rate 
between a coded system and an uncoded system.  

uncoded codedcoding gain | |−SNR SNR  

At high SNR, this gain is termed the asymptotic coding gain (ACG) and is expressed as 

( )
( )
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For the coded scheme above, 10
1.17210log 2.3 dB

2
γ = = − . This result shows the 

performance degradation of the coded scheme (optimized based on the free Hamming 
distance) compared to the uncoded one. 
 

Massey pointed out that it was necessary to integrate the design of encoder and modulator, 
and to treat the code and modulation scheme as an entirety, as shown in Fig. 5.1. Thus, 系统

整体方案就应该基于maximizing the minimum Euclidean distance between coded signal 
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sequences rather than Hamming distance来设计. More recently, it has been recognized that 
the design of coded modulation schemes for the AWGN channel is a problem that is best 
viewed in the geometric signal-space context. 所以编码调制也称为信号空间编码。 
 

In TCM schemes, the code and an expanded signal set are jointly designed as a physical 
unit. The design criterion is to maximize the free Euclidean distance between coded signal 
sequences rather than Hamming distance. The resulting code can provide a significant coding 
gain and the loss from the expansion of the signal set can be overcome. 
 
Example 5.3: 

我们从编码调制的角度，考虑图 5.1.1 中的编码器与调制器的联合设计。 
As an alternative coded scheme, we may use the 8-PSK TCM scheme shown in Fig. 5.1.3, 
which was introduced by Ungerboeck. We will see in Section 5.5 that this TCM scheme can 

provide an asymptotic coding gain of 3γ = (dB).  
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Fig. 5.1.3 The 4-state TCM encoder for 8-PSK 
 

The performances of various TCM schemes are shown in Fig. 5.1.4. It is seen from Fig. 
5.1.4 that the improvement of coding is evident. Note that the coding schemes shown in 
Figure 5.1.4 achieves the coding gains without requiring more bandwidth than the uncoded 
QPSK system. 
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Figure 5.1.4: Bit error probability of Quadrature Phase-Shift Keying (QPSK) and selected 8-PSK 
trellis-coded modulation (TCM), trellis-turbo coded (TTCM), and block turbo coded (BTC) systems as a 
function of the normalized signal-to-noise ratio. 
 
 
5.1.1 两种基本实现方法 

Similar to the case of binary codes, we introduce interdependences between consecutive 
signal points in order to increase the distance between the closest pair of sequences of signal 
points. A perspective from signal-space coding may provide more insight into coded 
modulation schemes. In order to obtain large coding gain, the codes should be designed in a 
subspace of signal space with high dimensionality, where a larger minimum distance in 
relation to signal power can be obtained. The dimensionality 2BT0 can be increased for fixed 
bandwidth B by increasing the time interval T0, making it multiple symbol intervals.  

For moderate coding gain at moderate complexity, Two basic ways to generate 
modulation (or signal-space) codes in conjunction with passband QAM modulation are as 
follows: 

 直接来自于几何考虑：A sequence of N/2 two-dimensional transmitted symbols can be 
considered as a single point in an N-dimensional constellation. Each element of the 

constellation alphabet (called a codeword) is a vector in RN (or CN/2). A set of K input bits 

are used to select one of 2K codewords in the multidimensional constellation. A typical 
example of the multidimensional constellation is the lattice code. 它类似于二进制编码
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中的分组码。 
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Fig. 5.1.5 
 

 Another way is to extend the dimensionality of the transmitted signal by basing it on a 
finite-state machine (FSM). The extra bits produced by the FSM implies an inherent 
increase in the number of points in the constellation. 
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Fig. 5.1.6 
 
5.1.2 Overview of Coded Modulation Techniques 

The existing coded modulation schemes for band-limited AWGN channels can be broadly 
classified into four categories: 
1) Lattice codes 
2) Trellis/TCM codes (trellis-coded modulation) 

TCM was proposed by Ungerboeck in 1982, in which a convolutional code is usually used 
as the underlying FSM. The term trellis-coded modulation originates from the fact that 
these coded sequences consist of modulated symbols rather than binary digits. In other 
words, in TCM schemes, the trellis branches are labeled with redundant nonbinary 
modulated symbols rather than with binary coded symbols. TCM codes can be decoded by 
a maximum-likelihood decoder using Viterbi algorithm. 
Trellis codes are to lattices as binary convolutional codes are to block codes. 

3) Turbo-TCM 
4) Multilevel codes (also known as BCM) 

Multilevel codes was proposed by H. Imai in 1977. The underlying strategy is to protect 
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each label bit of the signal point by an individual binary code, so mutiple encoders (at 
different levels) are employed. At the receiver, the received sequence of signal points are 
usually decoded by a multistage decoder. 
In multilevel coding (MLC) schemes, any code, e.g., block codes, convolutional codes, or 
concantenated codes, can be used as component codes. Since in early MLC schemes the 
FEC codes used were usually block codes, the MLC scheme is also referred to as block 
coded modulation (BCM). 

5) Bit-interleaved coded modulation (BICM) (with iterative decoding) 
BICM was first proposed by Zehavi in 1992 for coding for fading channels, in which the 

output stream of a binary encoder is bit-interleaved and then mapped to an M-ary 
constellation. Its basic idea is to increase the code diversity. (For Rayleigh fading channels, 
the code performance depends strongly its minimum Hamming distance rather than the 
minimum Euclidean distance.) The information-theoretic aspects of BICM have been 
analyzed by Caire.  

 Recently, it has been recognized that the BICM based on turbo-like codes and iterative 
decoding provides an effective realization method for Gallager’s coding theorem (proposed in 
1968 for discrete memoryless channels). With this scheme, very good performance can be 
achieved on both AWGN and fading channels. 

Fig. 5.1.7 depicts the performances of some of typical coded modulation schemes. 

 
Figure 5.1.7: Theoretical limits on spectral and power efficiency for different signal constellations and 
spectral efficiencies achieved by various coded and uncoded transmission methods. 
 
5.2 Coding Gain and Shaping Gain 

In coded modulations, we can use the following approaches for improving signal 
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constellation designs. 
 The first idea is to change the relative spacing of points in the constellation. The 

hexagonal constellation leads to the reduced variance with the same minimum distance. 
(Alternatively, we could keep the variance constant, in which case the hexagonal 
constellation would have a larger minimum distance than the squared constellation.) This 
decrease in power for the same minimum distance or increase in minimum distance for 
the same power through changing the relative spacing of the points is called coding gain. 

 The 2nd approach is to change the shape or outline of the constellation without changing 
the relative positioning of points. The circular constellation will have a lower variance 
than the squared constellation. On the same grounds, a circular constellation will have the 
lowest variance of any shaping region for a square grid of points. The resulting reduction 
in power is called shaping gain.  

Significantly, shaping the constellation changes the marginal density of the data 
symbol. This is illustrated in Fig. 5.9. 

Coding and shaping gain can be combined, e.g., by changing the points in the 
circularly shaped constellation to a hexagonal grid while retaining the circular shaping. 
Usually, channel coding deals with the internal arrangement of the points, whereas 
shaping treats regions. 

 The 3rd idea is to employ multidimensional signal constellation. A data symbol drawn 
from an N-dim constellation is transmitted once every N/2 signaling interval. When we 
design a 2D constellation, and choose the N/2 successive symbols to be an arbitrary 
sequence of 2D symbols drawn from that constellation, the resulting N-dim constellation 
is the N/2-fold Cartesian product of 2D constellations. From Chapter 2, we know that the 
performance of this N-dim constellation is the same as the underlying 2D constellation. 
An alternative is to design an N-dim signal constellation that is not constrained to have 
this Cartesian product structure. When N>2, it is called a multidimensional signal 
constellation. 

Greater shaping and coding gains can be achieved with a multidimensional signal 
constellation than with a 2D constellation. However, multidimensional constellations 
suffer from a complexity that increases exponentially with dimensionality. 

 

Square Hexagonal Circular

 
Fig.5.8 Three 2D constellations with the same minimum distance and 256 points. 
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Square Circular

 

Fig. 5.9 The one-dimensional probability distribution for an unshaped and shaped 2D constellation. 
 
5.2.1 Ultimate Shaping Gain 

Here, we just provide a preliminary discussion on the maximum shaping gain; we will 
discuss this in detail in the next section. Without loss of generality, the derivations are done 
for one-dimensional constellations. 

The baseline system is assumed to use a uniform distribution of signal points. The shaped 
system should exhibit a (discrete) Gaussian distribution. In order to transmit at the same rate, 
both distributions have to have the same entropy.  

When considering constellations with a large number of signal points, it is convenient to 
approximate the distribution by a continuous probability density function (pdf). Hence we 
compare a continuous uniform pdf with a Gaussian one. 

Let Eu be the average energy of the reference system. Then the differential entropy of its 
transmitted symbols x is given by 

( ) ( )2
2 2

1 1( ) log 12 log 12
2 2x uh X Eσ= =  

If ( )0, gx E∼ N (Gaussian distributed with average energy Eg), its entropy is equal to 

( )2
1( ) log 2
2 gh X eEπ=  

Since the above entropies should be equal, we have 

, 1.53 dB
6

u
s

g

E e
E

πγ ∞ ≡ = ≈  

The quantity ,sγ ∞  is called the ultimate shaping gain, which is achieved for a continuous 

Gassian pdf. 
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5.3 Lattice Constellations 

It is known from Shannon’s capacity theorem that an optimal block code for a 
bandwidth-limited AWGN channel consists of a dense packing of code points within a sphere 
in a high-dimensional Euclidean space. Most of the densest known packings are lattices. 
 An n-dimensional (n-D) lattice Λ is an infinite discrete set of points (vectors, n-tuples) in 

the real Euclidean n-space Rn that has the group property.  

Example 5.3.1: The set of all integers, {0, 1, 2,...}= ± ±Z , is a one-dimensional lattice, since Z 

is a discrete subgroup of R. The set Z2 of all integer-valued two-tuples (n1, n2) with in ∈Z  is 

a 2-dimensional lattice. More generally, the set Zn of all integer-valued n-tuples is an n-D 

lattice. 

The lattice RZ2, where 
1 1
1 1

R ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, is obtained by rotating Z2 by π/4 and scaling by 

2 . Clearly, R2Z2 = 2Z2. 

Definition 1: Let { ,1 }j j m≤ ≤g  be a set of linearly independent vectors in Rn (so that 

m n≤ ). The set of points 

1

m

j j j
j

a a
=

⎧ ⎫
Λ = = ∈⎨ ⎬

⎩ ⎭
∑x g Z                      (5.1) 

is called an m-dimensional lattice, and { ,1 }j j m≤ ≤g  is called a basis of the lattice. 

That is, Λ是基向量的整数线性组合。The matrix with gj as rows 

1

2

m

G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

g
g

g

 

is called a generator matrix for the lattice. 在后续讨论中，we will deal with full-rank lattices, 

i.e., m=n. So a general n-D lattice that spans Rn may be expressed as 

{ }nGΛ = = ∈x a a Z                         (5.1) 

例如，the lattice Z2 has the generator 
1 0
0 1

G ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
.  

 A coset of a lattice Λ, denoted by Λ+x, is a set of all points obtained by adding a fixed 
point x to all lattice points a∈Λ. Geometrically, the coset Λ+x is a translate of Λ by x. If 
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x∈Λ, by the group property, then Λ + x = Λ. This implies that a lattice is “geometrically 
uniform;” every point of the lattice has the same number of neighbors at each distance, 
and all decision regions of a minimum distance decoder (“Voronoi regions”) are 

congruent and form a tessellation of Rn. 

 A sublattice Λ’ of a given lattice Λ is a subset of the points in Λ that is itself a lattice. The 
set of all cosets of a sublattice is denoted by Λ/Λ’ and is called a partition of Λ. In other 
words, 

[ / ] ( )′ ′ ′ ′Λ = Λ ∪ Λ Λ = Λ ∪ Λ + x                     (5.2) 

where x is chosen such that ( )′Λ + ∈ Λx . (There are q cosets in a q-ary partition.) For 

example, Z2 = RZ2 + {(0,0), (0,1)}. 

Z2
RZ2 2Z2  

Fig. 5.10 Illustration of the binary partition chain Z2 / RZ2 / 2Z2  

 The nearest neighbor quantizer ( )QΛ ⋅  is defined by 

( ) ,    if || || || ||,   QΛ ′ ′= ∈ Λ − ≤ − ∀ ∈ Λy x y x y x x  

The fundamental Voronoi region of Λ is the set of points in Rn closest to the zero 

codeword; i.e.,  

{ }0 | ( )n QΛ= ∈ =y y 0RV  

The Voronoi region associated with ∈ Λx  is the set of points y such that ( )QΛ =y x , and is 

given by a shift of 0 by xV . Note that other fundamental regions exist. 

 A fundamental parallelotope of the lattice is the paralleltope (超平行体) that consists of 

the points { }| [0,1)nG ∈a a . 

A fundamental parallelotope is an example of a fundamental region for the lattice; i.e., a 
building block which when repeated many times fills the whole space with just one lattice 
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point in each copy. Fig. 5.11 shows that around each lattice point is a region known as the 
fundamental parallelotope (用阴影表示). 

 
Fig. 5.11 The fundamental parallelotopes around the lattice points. 

 
The key geometrical parameters of a lattice Λ are: 

(a) the minimum squared Euclidean distance 2
min ( )d Λ  between lattice points; 

(b) the kissing number min ( )K Λ , which is the number of nearest neighbors to any lattice 

point; 
(c) the fundamental volume V(Λ), which is the volume of the n-space corresponding to each 

lattice point. As indicated in Fig. 5.11, this volume is the volume of the fundamental 

region. Let TA GG= . It can be shown that 1/ 2( ) det( ) det( )V A GΛ ≡ =  for any generator 

matrix G of Λ. 
These parameters will directly affect the performance of a lattice constellation (lattice code). 
A normalized density parameter 

2
min

2 /

( )( )
( )c n

d
V

γ Λ
Λ =

Λ
 

will be identified as the nomial coding gain. 
 
Definition 2: A lattice constellation  

( , ) ( )C Λ = Λ + ∩tR R  

is the finite set of points in a lattice translate Λ+t that lie within a compact bounding region R 

of n-space. 
(Note: A lattice is constrained to have a point at zero. The translate vector t make the resulting 

constellation has no point at zero. The intersection of Λ with the region R results in a finite 
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number of points in the constellation.) 
 
Example 5.3.2: An M-PAM constellation {±1, ±3,…, ±(M-1)} is a one-dimensional lattice 

constellation C(2Z, R) with Λ+t =2Z+1 and R=[-M, M]. 

Some 2D lattice constellations are shown in Fig. 12. 

16-QAM

64-QAM

32-QAM

256-QAM

128-QAM

 

Fig.12 Two-dimensional constellations based on the integer lattice Z2 . 

 

The key geometric properties of the region R are 

(a) its volume ( )V d= ∫ x
R

R ; 

(b) the average energy P(R) per dimension of a uniform probability density function over R: 

2|| ||( )
( )
dP

n V
= ∫

x x
R

R
R

                        (5.3) 

For performance analysis of large lattice constellations, we use the following approximations 
(Forney call this the continuous approximation). 

 The continuous approximation:  

(a) The size of the constellation C(Λ, R) (i.e., the number of signal points in C(Λ, R)) is 

well approximated by ( ) / ( )V V ΛR .  

(b) When the number of points in C(Λ, R) is large, a uniform discrete distribution of the 

points over C(Λ, R) is well approximated by a uniform continuous distribution over 
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the region R. Thus, the average energy per dimension of a signal constellation is 

( ( , )) ( )P C PΛ ≈R R  

(c) The average number of nearest neighbors to any point in C(Λ, R) is ≈ min ( )K Λ . 

 

Example 5.3.3: For R=[-M, M], the parameters are V(R) = 2M, P(R) = M2/3.  

When n=2, and the shaping gain is an 2r×2r square, we have V(R)=(2r)2, and 

2
2 2
1 2 1 22

1 1 ( )
2 4 3

r r

r r

rx x dx dx
r − −

= × + =∫ ∫ . When the shaping region R is a circle with radius r, 

V(R) =πr2. If X=(X1, X2) is uniformly distributed over the circle, then P(R) = E[||X||2]/2 

= 2
1[ ]E X , where 

2 2
1

2 2
1

2
2 2
1 1 2 12

1[ ]
4

r r x

r r x

rE X x dx dx
rπ

−

− − −
= =∫ ∫ . 

 
5.3.1 Shaping and Coding Gain 

Under the continuous approximation, the coding gain for a lattice code is separable into 
two parts: 
1) The fundamental coding gain γc(Λ), which depends on the relative spacing of points in Λ, 

but is independent of R. 

2) The shaping gain γs(R), which is determined by the choice of the signal constellation 

bounding region R. 

 
Consider the probability of decoding error for a lattice constellation Λ used over an 

AWGN channel. The union bound estimate (UBE) is 
2
min

min 2

( )( ) ( )
4

dP e K Q
σ

⎛ ⎞Λ
≈ Λ ⎜ ⎟⎜ ⎟

⎝ ⎠
 

where σ2 is the noise power per dimension. 

Since 
2 2
min min

norm2 2

( ) ( )(2 1) ( ( , ))
4 4 ( ( , )) (2 1)

d d P C SNR
P C

ρ

ρ γ
σ σ

Λ Λ − Λ
= ⋅ = ⋅

Λ −
R

R
, where 

2
min ( )(2 1)
4 ( ( , ))

d
P C

ρ

γ Λ −
=

Λ R
 

is a parameter of the constellation, the UBE can be written as 

( )min norm( ) ( )P e K Q SNRγ≈ Λ ⋅  

Using the continuous approximation, we have 
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2 2
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where  
2
min

2 /

( )( )
( )c n

d
V

γ Λ
Λ =

Λ
                           (5.4) 

is defined as the nominal (or asymptotic) coding gain of Λ, and 
2 /( )( )

12 ( )

n

s
V

P
γ =

RR
R

                           (5.5) 

is defined as the shaping gain of R. 

The nominal coding gain γc(Λ) measures the increase in density of Λ over the baseline 

integer lattice Zn. The shaping gain γs(R) measures the decrease in average energy of R 

relative to an n-cube [-b, b]n. It can be shown that, given any lattice constellation C, the 
nominal coding and shaping gains of any K-fold Cartesian product constellation CK is the 
same as those of C. 
 

Example 5.3.4: For the square constellation, n=2, shaping region R is a 2r×2r square. Then 

2

2

( ) 4( ) 1
12 ( ) 12 / 3s
V r

P r
γ = = =

×
RR
R

. Since 2
min( ) ( )V dΛ = Λ , we have γc(Λ)=1, and so γ=3. 

 
From the discussion above, the probability of block decoding error per two dimensions is 

( )norm( ) ( ) ( ) ( ) 3s s c sP e K Q SNRγ γ≈ Λ Λ ⋅R                  (5.6) 

where min( ) 2 ( ) /sK K nΛ = Λ  is the normalized error coefficient per two dimensions. 

Note that the nominal coding gain is based solely on the argument of the Q(.) function in 
the UBE, which becomes infinite for dense n-dimensional lattices as n→∞. On the other hand, 
as before, the effective coding gain is limited by the number of nearest neighbors; i.e., the 
error coefficient Kmin(Λ), which becomes very large for high-dimensional dense lattices. In 
fact, the Shannon limit shows that no lattice can have a combined effective coding gain and 
shaping gain greater than 9dB at P(e)=10e-6. This limits the maximum possible effective 
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coding gain to 7.5dB, because shaping gain can contribute up to 1.53dB (which will be 
discussed in the next subsection).  
 
5.3.2 Maximum Shaping Gain 

The maximum shaping gain is achieved by a spherical multidimensional constellation. 

Let Sn(r) be an n-sphere of radius r, and let x be an n-vector with real-valued components. 

Then 

2 2

1

( ) { :|| || }
n

n i
i

S r r x r
=

⎧ ⎫
= ≤ = ≤⎨ ⎬

⎩ ⎭
∑x x x  

and the volume is  

( )
[ ( )]

n
n S r

V S r d= ∫ x . 

Changing the variable of integration to r’=x/r, this volume can be expressed as 

 [ ( )] [ (1)] n
n nV S r V S r= . 

Suppose that X is a random vector uniformly distributed over Sn(r). The pdf of X is 

( ) 1/ [ ( )]np V S r=X x , for x∈ Sn(r) and zero elsewhere. The marginal density of one component 

of X, say X1, is 

( )
1

2 2 ( 1) / 221 1
1 1

1
[ (1)] 1( ) 1

[ ( )] [ (1)]

n
n

n
X

n n

V S r x V S xp x
V S r V S r r

−
−

−

⎡ ⎤− ⎡ ⎤⎢ ⎥ ⎛ ⎞⎣ ⎦= = ⋅ ⋅ −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

Since 
1 1 1( ) 1Xp x dx =∫ , it follows that 

11 21 2
1

[ (1)] (1 )
[ (1)]

n
n

n

V S d
V S

β β
−

−

−
= −∫  

where β=x1/r. For even n, we have 
/ 2

2
2

[ (1)] 2[ (1)] ,   ,    [ (1)]
[ (1)] ( / 2)!

n
n

n
n

V SV S V S
V S n n

π ππ
−

= = =  

The average energy per dimension can be determined by 

2 2
1[ ( )] [|| || ] / [ ]nP S r E n E X= =X

12 1 2 21 2
1

[ (1)] (1 )
[ (1)]

n
n

n

r V S d
V S

β β β
−

−

−
= −∫  

For integer n,  
2

[ ( )]
2n

rP S r
n

=
+

. 

Thus the shaping gain of an n-sphere is 
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( ) 2 /

( 2)
12[( / 2)!]nS r n

n
n

πγ +
=                          (5.7) 

By Stirling’s approximation, ! ( / )  as mm m e m≈ → ∞ , we obtain that 

( ) (1.53dB)
6nS r
eπγ →  as n→∞ 

which is called the ultimate shaping gain. 
Fig. 13 shows the shaping gain of an n-sphere for dimensions n≤512. Note that the 

shaping gain of a 16-sphere is about 1dB. 
 

 
Fig. 13 Shaping gain of n-spheres 

 
5.3.3 Marginal Density for Spherical Shaping 

We now show that the projection of a uniform probability distribution over an n-sphere 
onto one or two dimensions is a nonuniform probability distribution that approaches a 
Gaussian distribution as n→∞. 

By defining a normalized unit-variance random variable 1 1 2 /Y X n r= + , we can see 

that the density of Y1 is given by 

1

( 1) / 22
1

1( ) 1
2

n

Y
yp y A

n

−
⎡ ⎤⎛ ⎞= ⋅ −⎢ ⎥⎜ ⎟+⎝ ⎠⎢ ⎥⎣ ⎦

 

where A is a constant. As n→∞, 
2
1

1

/ 22
1 2

1( ) 1
n y

Y
yp y A Ae
n

−⎡ ⎤
→ ⋅ − →⎢ ⎥

⎣ ⎦
 

which implies that X1 approaches Gaussian. Furthermore, it can be shown that a 
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K-dimensional marginal density of an n-dimensional spherically uniform random vector 
approaches a joint Gaussian density with independent components for fixed K as n→∞. 
Fig.14 depicts the 1D marginal density for some even values of n. 
 
5.3.4 Shaping Techniques 

In principle, with spherical shaping, the lower-dimensional constellation will become 
arbitrarily large, even with fixed average power. However, in practice, the lower-dimensional 

constellation is constrained by design to a certain region R to limit “shaping constellation 

expansion.” Thus, the resulting lower-dimensional probability distribution approaches a 

truncated Gaussian distribution within the region R. 

With large constellations, shaping can be implemented almost independently of coding by 
operations on the MSB of M-PAM or (M×M)-QAM constellation labels, which affect the 
gross shape of the n-D constellation. In contrast, coding affects the LSB and determines fine 
structure. 
 Two commonly used schemes are trellis shaping and shell mapping, both of which can 
easily obtain shaping gains of 1dB or more while limiting 2D shaping constellation expansion 
to a factor 1.5 or less. For details, refer to [Forney92] and [Khandani93]. 
 The V.34 modem uses 16D shell mapping and obtains shaping gains of the order of 0.8dB 
with 2D shaping constellation expansion limited to 25% [Forney96]. 
 
5.3.5 Important Lattices 
Table 5.1 identifies some interesting higher dimensional lattices and their parameters. All of 
these are sublattices of NZ  and can thus be based on a processor designed for ordinary 
rectangular N-D QAM 
 
Table 5.1 Important coding lattices and their parameters [3] 
Lattice Common name Kissing number Fundamental 

volume 
Lattice coding 
gain 

NZ  Cubic 2N 1 1 

ND  Checkerboard 2N(N-1) 1 / 22 N−  1 2/2 N−  

2A  2D Sphere packing 
(hexagonal) 

6 
3 / 2  

1.155 

8E  Gosset 240 1/16 2 

16Λ  Barnes-Wall 4320 42.33 10−×  
2.829 

24Λ  Leetch 196560 85.96 10−×  
4 

32D  Barnes-Wall 208320  4 
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Note: 1) 2
2 =D RZ , where 

1 1
1 1

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
R  is a 2-D rotation operation. A lattice with generator 

RG is a rotation CW by / 4π  of the lattice with G, combined with an expansion by 2 . 

2) The checkerboard lattice ND  in N dimensions can be defined as those points in NZ  for 

which 
1

N

j
j

i
=

∑  is even. 

 

5.4 Trellis-Coded Modulation (TCM) 
 Lattice codes are useful for a modest number of dimensions. For large dimensionality, 
their implementation complexity becomes excessive. The approach using an FSM at the 
transmitter (as illustrated in Fig. 5.1.6) provides an alternative one with lower complexity. 
Significant coding gains can also be achieved by using this method (possibly in conjunction 
with a multidimensional constellation). TCM codes (which also are simply called trellis codes) 
are a class of Euclidean space codes based on an FSM. Its encoder structure is similar to Fig. 
5.1.6 with a binary convolutional encoder as the FSM. 

TCM was proposed by Ungerboeck in 1982 []. The essential new concept of TCM was to 
use signal-set expansion to provide redundancy for coding, and to design coding and 
signal-mapping functions jointly so as to maximize directly the “free distance” between coded 
signal sequences. The term trellis-coded modulation originates from the fact that these coded 
sequences consist of modulated symbols rather than binary digits. In other words, in TCM 
schemes, the trellis branches are labeled with redundant nonbinary modulated symbols rather 
than with binary coded symbols. 
 
5.4.1 Notation and Definitions 

For a trellis code C (of length n), the minimum squared Euclidean distance between two 

different sequences of signal points is referred to as its free squared Euclidean distance; i.e., 
22

free ' ''
( ) min ,    ,  (or )n n

m m m mm m
d

≠
= − ∈ ⊆x x x xC C R C  

The asymptotic coding gain (including shaping gain) is defined to be 
2
free

10 2( ) ( )
,min

( ) /10 log
/

s
u u

E s

d E
d E

γ
⎛ ⎞

≡ ⎜ ⎟⎜ ⎟
⎝ ⎠

C  dB                    (5.1) 

where 2( )
,min
u

Ed  denote the minimum squared Euclidean distance between signal points in the 

uncoded scheme, and Es and ( )u
sE  denote the average signal energies of the coded and 

uncoded schemes, respectively. 
Eq. (5.1) can be rewritten as 
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( )
( ) 2

1free
10 102( )

,min

( )10log 10log
u

s
c du

s E

E d
E d

γ γ γ−⎛ ⎞
= ⋅ = ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

C  

where ( )/ u
c s sE Eγ =  is the constellation expansion factor, and γd is the distance gain factor. 

Ungerboeck introduced “mapping by set partitioning” to break down a signal 
constellation into a suitable number of subsets such that in each subset the signal points are 

farther apart. Assume that we partition the original constellation A into L subsets, 

0 1 1{ , ,..., }L−A A A , of signal points. Then the intra-subset minimum squared Euclidean distance 

is given by 

{ }2 2
min , '

( ) min ( , ')
l

l Es s
d d s s

∈
≡

A
A , 0 1l L≤ ≤ −  

where 2 ( , ')Ed s s  is the squared Euclidean distance between the signal points s and s’ within 

the subset Al. The smallest squared Euclidean distance between two different sequences of 

signal points for which the subset label sequences (i.e., FSM outpus) are the same is equal to 

the minimum one of all 2
min ( )ld A ’s. Let 2

min ( )d S  denote this squared Euclidean distance; that 

is  

{ }2 2
min min0 1

( ) min ( )ll L
d d

≤ ≤ −
≡S A . 

Let  

{ }2 2
min

' '

( , ') min ( , ')Es
s

d d s s
∈
∈

≡
S
S

S S  

denote the smallest squared Euclidean distance between a signal point in subset S and a signal 

point in subset S’, where 0 1 1, ' { , ,..., }L−∈S S A A A . Denote by 2
free ( )d S  the minimum 

squared Euclidean distance between any two different sequences of subsets (i.e., sequences 
whose elements are the subsets); then 

2 2
free min' 1

( ) min ( , )i i
i

d d
∞

≠
=

⎧ ⎫′≡ ⎨ ⎬
⎩ ⎭
∑ S S

S S
S  

where 0 1 0 1( , ,...) and ' ( , ,...)′ ′= =S S S SS S  are two infinite code sequence stemming from the 

same state and whose elements are the subsets 0 1 1{ , ,..., }L−A A A . 

Thus, we have 

{ }2 2 2
free free min( ) min ( ), ( )d d d=C SS                    (5.2)  
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If a lattice constellation is used in TCM codes, we will refer to the resulting code C as the 

lattice-type trellis code. Also, we will use the notation 2 2
free min( ) and ( )d d′ ′Λ Λ  instead of 

2 2
free min( ) and ( )d d SS , respectively. 

 
5.4.2 Design of TCM Schemes 
 From (5.2), we can see that maximizing the minimum Euclidean distance between 
sequences of signal points requires to maximize both intra-subset and 
inter-sequence-of-subsets Euclidean distances. Usually, this is done by following 
Ungerboeck’s principle of mapping by set partitioning.  
 
5.4.2.1 Mapping by Set Partitioning 

The mapping by set partitioning rule is based on successive partitioning of the original 
constellation into subsets with increased intrasubset minimum squared distances. Usually, set 

partitioning of an N-D constellation A into 2n subsets (of equal size) is performed by n 

partitioning steps, with each two-way selection being identified by a label bit 
( ) {0,1},1jc j n∈ ≤ ≤ ; i.e.,  

(1) ( 2 ) (3) ( )(1) (2) (1) ( ) (1)( ) ( ) ( ... )
nc c c c nA B c C c c S c c⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→  

with 2 2 2 2
0 1 2 ... nΔ ≤ Δ ≤ Δ ≤ ≤ Δ  

where 2 , 0,1,...j j nΔ =  denote the intrasubset minimum squared distances of the jth level 

subsets A, B, …, of the partitioning chain. The above set partitioning is continued until the 

minimum squared distances between signal points at the final level of partitioning, 2
nΔ , is at 

least as large as the desired minimum squared Euclidean distance 2
free ( )d C  of the TCM code 

to be designed. The binary n-tuples ( ) (1)[ ... ]nc c=c  are called the subset labels of the final 

subsets S. 
As an example, Fig. 5.4.2 shows the set partition for 8-PSK. 
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A: 8-PSK

(1) 0ic =

(2) 0ic =

(3) 0ic =

1

1

1 1 1 1

10

0 00

(1)( )iB c

(2) (1)( )i iC c c

(000) (100) (010) (110) (001) (101) (011) (111)

(3) (2) (1)( )i i ic c c

0Δ

1Δ

2Δ

sE

 
Figure 5.4.2 Set partitioning of an 8-PSK constellation 

 
5.4.2.2 Structure of a TCM Encoder 

With the above set partitioning, the intrasubset minimum Euclidean distance is 
maximized. In the following we will discuss the assignment of signal subsets to trellis 
branches such that the minimum Euclidean distance between any two different sequences of 
subsets is maximized. Before this, we first describe the principle of a TCM encoder in more 
detail.  

A general encoder for a trellis code C is depicted in Fig.5.4.3. At each time instant i, an 

input symbol consisting of m information bits enters the TCM encoder. Based on the 
sufficient intrasubset Euclidean distance at a certain level of the set-partitioning chain, we 
encode k out of m input bits and leave (m-k) bits uncoded. The k input bits are encoded by a 
rate-k/(k+r) binary convolutional encoder with 2v states into a subset label ci consisting of k+r 
coded bits. The label ci is then used to select signal subset S(ci). The remaining m-k input bits 
are used to select one signal xi from 2m-k signals in the subset S(ci). (If there is any shaping, it 

is done at this level.) The size of constellation A is therefore 2m+r. 

In practice, the rate of the convolutional code is always chosen to be k/(k+1), i.e., only 
one redundancy bit per N-D symbol (assuming that an N-D constellation is used). So the 
coding constellation expansion factor is 2 per N-dimension. The least significant label bit c(1) 
is then the sole parity-check bit.  
(Note: Suppose that a constellation of size M is used for an uncoded system. From the 
analysis of constrained-capacity for AWGN channels with discrete-input, we can seen that 
most of coding gain can be achieved by using a constellation of size 2M plus a channel coding 
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algorithm. It is not greatly advantageous to employ a constellation of size greater than 2M. 
This implies one redundancy bit is sufficient.) 
 

Rate k/(k+r)
Convolutional

encoder

Select one of
2k+r subsets

Select one of
2m-k signals in
subset S(ci)

m+r bits
Signal mapper

m bits per
symbol

Subset label
sequence {ci}

(1)
ia

( )k
ia

( 1)k
ia +

( )m
ia

(1)
ic

( )k
ic
( )k r
ic +

( 1)k r
ic + +

S(ci)

( )m r
ic +

( ) (1)( ... )m r
i i ix f c c+=

Signal
sequence

{xi}

 
Figure 5.4.3 General structure of a TCM encoder (记号 ai改为 ui) 

 
 In this way, all branches (state transitions) in the trellis diagram for a TCM code may be 
labeled with modulated symbols. The number of transitions between two consecutive states 
depends on the number of uncoded bits. For a TCM encoder with m > k, there are 2m-k parallel 
transitions between states, which are associated with the 2m-k signals of the subsets at the final 
level of partitioning. The minimum squared Euclidean distance between parallel transitions is 

2 2
min ( ) nd = ΔS . 

Fig. 5.4.4 depicts the encoder of a rate-2/3 8-PSK TCM code. 
 

T T

8-PSK
Signal

Set(1)
ic

(2)
ic

(3)
ic

(1)
ia

(2)
ia

xi

(3) (2) (1)[ ]i i ic c c=c
 

Figure 5.4.4 The 4-state TCM encoder for 8-PSK 
 

 关于采用 N-D constellation 的进一步讨论 
如果使用 N 维信号星座，则每星座点是一个 N 维实向量（称为 N 维调制符号）。传
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输时，我们将其作为包含 L=N/2 个 QAM 符号的复符号序列进行信号调制及在信道上传

输，如图 5.4.5 所示。这样，对于 TCM 编码器来说，每一个时钟节拍产生 L 个已调（QAM）

符号。令 Ts为发送一个 QAM 符号的时间间隔，则卷积编码器的工作时钟周期是 T= sL T⋅ ；

在每一个工作节拍，m 个信息比特输入 TCM 编码器，产生 L 个发送符号。因此，系统

的谱效率是
2m m

L N
ρ = =  bits per channel use. 图 5.4.5 给出了一个 N 维 TCM 编码器的示

意图。 

 
 

Figure 5.4.5 
 
5.4.2.3 Ungerboeck TCM Design Rules 

We now proceed to consider the assignment of signal subsets to trellis transitions. The 
design criterion for TCM codes is based on optimizing the Euclidean distance spectrum. 
Specifically, the convolutional code and the labeling of the subsets are chosen primarily to 

maximize the minimum squared Euclidean distance 2
free ( )d S  between sequences of signal 

points in any possible encoded subset sequence, and secondly to minimize the maximum 

possible number Kmin(C) of nearest-neighbor sequences.  

The following heuristic design rules were introduced by Ungerboeck to maximize the 

free squared Euclidean distance 2
free ( )d C  of the TCM code C. 

 Rule 1: Parallel transitions, if present, are associated with signals of the subsets at the 
final level of partitioning chain; i.e., signals within S(ci). These signals have 

minimum squared Euclidean distance 2 2
min ( ) nd = ΔS . 

 Rule 2: The transitions originating from or merging into one state are associated with 
signals of subsets at the first level of set partitioning chain; i.e., B(c(1)). 

 Rule 3: All signals are used with equal frequency in the trellis diagram. 
 

As an example, consider the 4-state 8-PSK TCM in Fig. 5.4.4, and the set partitioning in 
Fig. 5.4.2. The corresponding trellis diagram is shown in Fig. 5.4.6, where the signal points 
are represented by the decimal expressions of their binary labels; i.e., the signals with the 

labels (3) (2) (1)[ ]i i ic c c  are denoted by 
3

1 ( )

1

2 j j
i

j

b c−

=

= ∑ . The parallel transitions are associated with 

signals from one of the four subsets, C(00), C(01), C(10), C(11), with minimum squared 

Euclidean distance 2
2 4 sEΔ = . The signals associated with transitions diverging from or 
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merging into one state are from B(0) and B(1), with minimum squared Euclidean distance 
2
1 2 sEΔ = . 

4

00
6

2 6
2

5
1

0
4

3
7 1

5

7
3

1

0

2

C(00)={0, 4}
C(10)={2, 6}

C(01)={1, 5}
C(11)={3, 7}

S0

S1

S2

S3

 
Fig. 5.4.6 Trellis diagram of the TCM scheme shown in Fig. 5.4.4. 

 

The error event corresponding to 2
free ( )d S  is also shown in Fig. 5.4.6 by bold lines. We 

can see that  
2 2 2 2
free ( ) (0,2) (0,1) (0,2) 4.586E E E sd d d d E= + + =S  

Thus, the free squared Euclidean distance of this TCM code is 
2 2 2
free free 2( ) min{ ( ), }d d= ΔC S = 4Es. 

Compared with an uncoded QPSK scheme with the minimum squared Euclidean distance 2Es 
between signal points, this TCM scheme can provide an asymptotic coding gain of 

410log 3
2

γ = = (dB) 

 
5.4.2.4 Design Examples 
Example 1 (8-state 8-PSK code): From the above example, we can see that the free distance 

of the designed TCM code is limited to 2
2Δ  by the parallel transitions. As an alternative 

example, we consider the design of an 8-state TCM scheme for 8-PSK with throughput of 2 
bits/symbol. For obvious reasons, the parallel transitions should be avoided in the trellis 
diagram of this code. A suitable trellis diagram is shown in Fig. 5.4.7. The trellis branches are 
associated with a partitioned 8-PSK signal set (see Fig. 5.10) according to Ungerboeck’s 
design rules. Observe that the signals from subset B(0) and B(1) , at the first level of set 
partitioning, are assigned to the transitions originating from the states with even and odd 
subscripts, respectively, in Fig. 5.4.7. This assignment guarantees that the signals merging into 
one state are selected from either B(0) or B(1). 

The squared free Eucldean distance of this scheme is given by 
2 2 2 2 2
free free 1 0 1( ) ( ) 4.586 sd d E= = Δ + Δ + Δ =C S  

which, when compared with an uncoded QPSK with the minimum squared Euclidean distance 
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2Es between signal points, provides 
4.58610log 3.6

2
γ = = (dB) 

asymptotic coding gain. Thus, the 8-state 8-PSK TCM code can provide 0.6dB more 
asymptotic coding gain than 4-state 8-PSK code at the cost of increased complexity. 

Two equivalent realizations of the encoder of this TCM scheme are shown in Fig. 5.4.8. 
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Fig. 5.4.7 Trellis diagram of the 8-state TCM scheme for 8-PSK with throughput of 2 
bits/signal. 
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(b) 

Fig. 5.4.8 Two equivalent realizations of the 8-state TCM scheme for 8-PSK. (a) Feedforward 
encoder. b) Sytematic encoder with feedback. 
 
Example 2 (8-state TCM code for 16-QAM): A 16-QAM signal constellation is shown in Fig. 

5.4.9, with the squared Euclidean distance 2
0Δ  between adjacent signal points. For the 8-state 

16-QAM trellis code with throughput of 3 bits/symbol, we choose k=2 and use a 
convolutional code of rate 2/3. The encoder structure is shown in Fig.5.4.10, and the set 
partitioning is illustrated in Fig.5.4.11. The corresponding trellis diagram is shown in Fig. 
5.4.12. The squared free Euclidean distance of this code is given by 

2 2 2 2 2 2 2
free 1 0 1 3 0 0( ) min{ , } min{5 ,8 } 2 sd E= Δ + Δ + Δ Δ = Δ Δ =C  

Clearly, it is limited by the minimum squared Euclidean distance between sequences of 
subsets (rather than the parallel paths). The asymptotic coding gain (compared to an uncoded 
8-PSK) is equal to 

210log 5.3
2 2

γ = =
−

 (dB) 
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Fig. 5.4.9 A 16-QAM constellation 
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(a) Feedforward encoder (in controller form) 

 

T T

16-QAM
Signal

Set
(1)
ic

(2)
ic

(3)
ic

(1)
ia

(2)
ia

xi

T

(3)
ia

(4) (3) (2) (1)[ ]i i i ic c c c=c

(4)
ic

 
(b) Systematic encoder with feedback in observer form 

Fig. 5.4.10 Two equivalent realizations of the encoder of the 8-state 16-QAM TCM code. 
 
 



 5-29

A: 16-QAM
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Fig. 5.4.11 Set partitioning of a 16-QAM constellation 
 

In [Unger87], Ungerboeck provided some TCM codes with the number of states less than 
256, which are results of a code-search program. 
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Fig. 5.4.12 Trellis diagram of the 8-state TCM scheme for 16-QAM 
 

 TCM Codes for Higher-Order Constellations 

The above discussed method can be directly extended to higher-order constellations, such 
as 64-QAM. We now consider a low-complexity alternative. 

如前所述，对于高阶调制（如16-QAM以上），由于工作信噪比较高，在子集划分链

的某一层上，信号子集内欧氏距离已足够大，使得子集内信号点在没有编码保护的条件

下，它们之间的错误概率已足够小（或满足目标错误概率），这样，我们就不需要再往

下进行子集划分，从而对剩余的输入信息比特就不进行编码。那么如何确定子集划分到

何时为止呢？前面给出了依据 2 2
min free( ) ( )d d≥S C 来确定划分层数的方法，下面介绍一种更

为简单的近似判断方法，它是一种启发式规则[Robert98]。 
该规则基于这样的经验：在AWGN信道中，TCM方案的错误概率要达到BER<=10-5，

至少需要Eb/N0比相应谱效率的Shannon容量限高4dB左右，即 

0 0

4dBb b

operating capacity

E E
N N

≥ +  

假定原始信号星座为A，其信号平均能量为Es。现在对星座A进行子集划分。对每一层
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子集划分，我们依据下面的公式近似计算一个子集内比特错误概率 
2 22

,min

0 0 0 operating

( )
2 2 2

j jE s b
b j

s s

d E EP Q Q Q
N E N E N

ρ⎛ ⎞⎛ ⎞⎛ ⎞ Δ Δ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟Δ ≈ = ⋅ = ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
          (5.3) 

其中 2
jΔ 是信号星座A的子集内最小欧氏距离，ρ是频谱效率。这里，我们没有计入上一

层子集对下一层子集的判决错误传播。 
由式(5.3)即可决定 m 个输入比特中需要编码保护的比特数。假定在第 k 层子集划分

中， ,target( )b k bP PΔ < ， 则我们只需要对 k 个比特进行卷积编码，留下 m-k 个 leave ( nn ~− ) 

bits uncoded for each information symbol. The coded bits are used to define the signal subsets 
and the uncoded bits are used to select signal points from a subset. 
 
Example: Consider a CT-TCM code for 64-QAM with 5 bits/symbol. In this case, the channel 

capacity is dB2.16/ 0 =NEs . According to [Robert98], the intra-subset error probability 

is 610−≤bP  after three levels of Ungerboeck-type set-partition. As a result, we adopt n~ =3 

and employ the previous design for 16-QAM. The constellation used is illustrated in Fig. 
5.4.14. The performance of this code is shown in Fig. 5.4.15.  
 
 
 
 
 
 
 

Fig. 5.4.13    Structure of the component encoder for 64-QAM 

 

 

 

 

 

 

Fig. 5.4.14. A 64-QAM constellation. Each subset shown is a shifted version of the 16-QAM 
constellation (see Fig. 5.4.9). For each input symbol of 5 bits, the first n~ =3 bits are used to 
select a point within a subset and the remaining n- n~ =2 bits to select an appropriate subset. 
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5.4.2.5 Best TCM Schemes and the Realizations of TCM Encoders 

TCM schemes with a small number of states can be constructed using the heuristic 
design rules aforementioned. To construct a larger TCM scheme, however, a computer 
code-search program is necessary. Table 5.2 provides the results of such a computer search 
[Unger82], where the TCM schemes are denoted by the coefficients of the parity-check 
polynomials in octal form. For example, for the 8-state 8-PSK TCM scheme, 

1 2 3( ) [ ( ) ( ) ( )]D H D H D H D=H  and 

2
1 1 2 8

2 2 2 8

3
3 3 2 8

( )     (000 100) (04)
( )       (000 010) (02)

( ) 1 (001 001) (11)

H D D h
H D D h

H D D h

= ⇒ = =

= ⇒ = =

= + ⇒ = =

 

The sets {g1, g2, g3} are coefficients of the generator polynomials, which are related to {h1, h2, 
h3} by 

( ) ( )TD D⋅ =G H 0  

where 1 2 3( ) [ ( ) ( ) ( )]D G D G D G D=G . The above relation yields that the sets g1, g2, g3 are 

the respective hl taken in forward order; i.e., if ( )( ) ( 1) (1) (0), ,..., ,m m
l l l l lh h h h h−= , then 

( )(0) (1) ( 1) ( ), ,..., ,m m
l l l l lg h h h h−= . For example, 

1 2 1 2 8

2 2 2 2 8

3 2 3 2 8

(000 100) (001 000) (10)
(000 010) (010 000) (20)
(001 001) (100 100) (44)

h g
h g
h g

= ⇒ = =
= ⇒ = =
= ⇒ = =

 

Traditionally, there are two realizations for the encoder of TCM codes: in either observer 
canonical form with {hl} denoting a tap set, or controller canonical form with {gl} denoting 
such a tap set. In Table 5.2, 5.3 and 5.4, we give both these tap sets, and the coefficients h1, h2, 
h3 are listed (in reverse order,即连接多项式系数的低位在右，高位在左) as right-justified 
octals; but the sets g1, g2, g3 are listed (in forward order) as left-justified octals. 
 
Table 5.2 Trellis-coded 8-PSK schemes []. Observer form taps h shown as right-justified 
octals; controller form taps g shown as left-justified octals. # indicates that free Euclidean 
distance is determined by parallel paths. 
No. of 
states 

No. of 
coded 

h0 h1 h2 g1 g2 g3 Normalized 
free 

Asy. 
Coding 
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bits, k distance 

2 /f sd E  

gain γ 
(dB) 

4 1 5 2 - 5 2 - 4.000# 3.01 
8 2 11 02 04 44 20 10 4.586 3.60 
16 2 23 04 16 62 10 34 5.172 4.13 
32 2 45 16 34    5.758 4.59 
64 2 103 030 066    6.343 5.01 
128 2 277 054 122    6.586 5.17 
256 2 435 072 130    7.515 5.75 

 
Table 5.3 Trellis-coded 16-PSK schemes []. 
No. of 
states 

No. of 
coded 
bits, k 

h1 h2 h3 g1 g2 g3 Normalized 
free distance 

2 /f sd E  

Asy. 
Coding 
gain γ 
(dB) 

4 1 5 2 - 5 2 - 1.324 3.54 
8 1 13 04 - 64 10 - 1.476 4.01 
16 1 23 04 - 62 10 - 1.628 4.44 
32 1 45 10 - 51 04 - 1.910 5.13 
64 1 103 024 - 604 120 - 2.000# 5.33 
128 1 024 203 - 120 604 - 2.000# 5.33 
256 2 427 176 374 721 374 176 2.085 5.51 

 
Table 5.4 Trellis-coded M-QAM schemes 

Asy. coding gain [γ]  (dB) 
states 

 
coded 
bits, k 

 
h1 

 
h2 

 
h3 

 
g1 

 
g2 

 
g3 16Q 32CR

 
64Q 

 
128CR 256Q

4 1 5 2 - 5 2 - [4.4] [3.0] [2.8] [3.1] [2.9] 
8 2 11 02 04 44 20 10 [5.3] [4.0] [3.8] [4.1] [3.8] 
16 2 23 04 16 62 10 34 [6.1] [4.8] [4.6] [4.9] [4.6] 
32 2 41 06 10 41 30 04 [6.1] [4.8] [4.6] [4.9] [4.6] 
64 2 101 016 064 404 340 130 [6.8 [5.4] [5.2] [5.5] [5.3] 
128# 2 203 014 042 606 140 210 [7.4] [6.0] [5.8] [6.1] [5.9] 
256# 2 401 056 304 401 350 106 [7.4] [6.0] [5.8] [6.1] [5.9] 
512# 2 1001 0346 0510 4004 3160 0450 [7.4] [6.0] [5.8] [6.1] [5.9] 

 
In Tables 5.2, 5.3 and 5.4, only the convolutional codes (i.e., subset selector) of rates of 

1/2 and 2/3 are listed. For the rectangular-grid QAM family, the square free distances of the 
codes for 16-QAM, …, 256-QAM are shown against the same subset selector. This is due to 
the fact that all these constellations are the subsets of the same rectangular point pattern; they 
all have the same worst-case local neighbor structure after 1 or 2 splits. The generic encoder 
structure is shown in Fig. 5.4.16. 
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Figure 5.4.16 Generic encoder for QAM signal constellations. 

 
 Realizations of TCM encoders 

The encoder of Ungerboeck codes may be realized in either observer canonical form or 
controller canonical form. In ordinary convolutional error correction, a (nonsystematic) 
feedforward convolutional encoder always exists that creates the same codeword set as a 
systematic feedback encoder. In TCM, these words map to subset sequences, resulting in the 
same subset sequences set, with the same inter-subset minimum distance. However, note that 
the mapping between information sequences and codewords is different in the two cases. In 
the following we show how to obtain an encoder realization if the coefficients of the 
parity-check polynomials are given. 

The observer-form encoder may be obtained from the coefficients {h1, h2, h3} of the 
parity-check polynomials, as shown in Fig.5.4.17. It is straightforward to obtain the 
controller-form encoder from the generator polynomial matrix.  
 

T T
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(b) 

Fig.5.4.17 Realizations of a rate-2/3 systematic feedback convolutional encoder. (a) Observer 
canonical form. (b) Controller canonical form, the sets g0, g1, g2 are the respective hl in 
forward order. 
 

For observer canonical form encoder realizations, the lowest-degree (constant) terms in 
the generator (parity-check) polynomials represent the connections at the right ends of the 
shift registers, whereas the highest-degree terms represent the connections at the left ends of 
the shift registers. It is important to note that this is exactly the opposite of the correspondence 
between polynomial coefficients and delay elements in the case of a controller canonical form 
realizations. For this reason, when an encoder is realized in observer canonical form, it is 
common to write the generator (parity-check) polynomials in the opposite of the usual order; 
i.e., from highest degree to lowest degree. (See H(D) on last page) 
 

下表给出了采用 rate-3/4 的卷积码、16-QAM 调制的 TCM 码的有关参数[Schlegel04]，
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其中 Afree is the average number of paths at distance 2
freed , Bfree is the average number of bit 

errors on those paths. 跟表 5.4 中的码相比（在下表中用”Ung”指示原来表 5.4 中的码），

新的 TCM 码改进了错误系数（即减小了 Afree 和 Bfree）。 

 
Nonstandard mapping used for the improved 16-QAM codes above: 

 
 
5.4.3 Decoding of TCM codes 

A TCM code is described by using a trellis diagram, so it may be maximum-likelihood 
decoded using Viterbi algorithm. The metric is defined as the Euclidean distance between the 
coded sequence of signal points and the received sequence.  

Specifically, given a received symbol yi∈Rn, the receiver first finds the closest signal 

point ˆ ( )ix c  in the subset S(c), and stores its metrics as the representative of parallel branches. 

This is called subset decoding. A VA decoder then finds the code sequence {ci} for which the 
signals chosen in the subsets are closest to the entire received sequence {yi}. The decoding 
complexity is dominated by the complexity of the VA decoder. 
 
5.5 Performance Evaluation of TCM 

The performance evaluation of TCM schemes over AWGN channels involves the 
computation of several important parameters: 

Minimum Euclidean distance dfree, 
Number of nearest neighbors, 
Distance spectrum, 
Error event probability, and 
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Bit error probability 
The complexity of the algorithms for computing these parameters depends on the degree of 
symmetry of a code. 
 
5.5.1 Symmetry Properties of TCM Schemes 

Definition: An isometry T of RN is a transform :  ( ( ))N NT x T x→ →R R  that preserves 

Euclidean distances, 
2 2|| ( ) ( ) || || || ,   , NT x T y x y x y− = − ∈R  

Translations, rotations and reflections are typical examples of isometries. In fact every 

isometry in RN can be decomposed into a sequence of translations, rotations, and reflections. 

Definition: Two signal sets S and S’ are said to be (geometrically) congruent if there exists an 

isometry T such that T(S) = S’. Furthermore, an isometry T with the property that T(S) = S is 

called a symmetry of S.  

For example, for a QPSK signal set, the symmetries are the rotations of 0, / 2, ,3 / 2π π π , 
the two reflections by the main axes, etc. 

Definition: A signal set S is geometrically uniform if, for any two points ,i jx x ∈S , there 

exits an isometry i jT →  that transforms xi to xj while S invariant; i.e., 

( )

( )
i j i j

i j

T x x

T
→

→

=

=S S
 

Hence, a signal set is geometrically uniform if we can take an arbitrary signal point and, 

through application of isometries i jT → , generate the entire signal constellation S. Roughly 

speaking, a geometrically uniform signal set looks identical from every signal point, which 
includes M-PSK constellations and all the lattice-based constellations (if we disregard the 
restriction to a finite number of points) as typical examples. 
 

If the squared Euclidean distance between two signal points depends only on the 
difference between their labels; i.e., 

2 2 2 2|| ( ) ( ) || || ( ) ( ) || || ( ) ( ) ||E i j i j id f f f f f f= − = ⊕ − = −c c c c 0 e 0  

then the signal f(0) can always be used as a reference signal. Signal mappings with this 
property are called regular. 
 

 Geometrically Uniform Codes 
Denote by B0 the set of 2m vectors c corresponding to the all-zero state of the 
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convolutional encoder. Every state in the trellis diagram has either B0 or the coset 

1 0 'B B= + c  associated with it. A sufficient condition for uniformity is that the following 

one-to-one correspondence 

( ) ( ')f f→ ⊕c c c ,  c∈B0                     (5.4) 

be an isometry. Thus 
2 2|| ( ) ( ) || || ( ') ( ' ) ||f f f f− ⊕ = ⊕ − ⊕ ⊕c c e c c c c e ,  for any c∈B0 and e 

Eq. (5.4) defines a correspondence between the two subsets of signals that are obtained in the 
first set-partition level. Thus, the condition for uniformity implies that these two subsets must 
be related by an isometry (e.g., a rotation or a reflection). 
 

Next we generalize the above discussion by considering a signal set which is partitioned 

at the first level of the partitioning chain by the value of kth component, ( )k
ic , into two 

subsets ( ) ( )
0 1 and k kB B . 

Definition: A TCM scheme is called k-isometric if 

a) the subsets ( ) ( )
0 1 and k kB B  are related by an isometry, and 

b) the labels of two corresponding signals ( ) and ( )f fc c  in the isometry, i.e.,  and c c , 

differ only in their kth component.  
 
A k-isometric TCM code having the following properties is called uniform: 
a) The coded m-tuples formed from the label ci by deleting the kth component, i.e., 

* ( 1) ( ) ( 1) ( 1) (1)( , ,..., , ,..., )m m k k
i i i i i ic c c c c+ + −=c , are independent sequences. 

b) The sequence of (m+1)-tuples ci are uniquely determined from the sequence of m-tuples 
*
ic . 

 
In [Forney91], Forney defined geometrically uniform trellis codes. It follows that a 

geometrically uniform trellis code is regular. That is, the distance between any two sequences 

( ) ( )2 2( ), ( ') ( '), ( )E Ed f f d f f= ⊕c c c c 0 , where c and c’ are label sequences. 

 

Theorem: The set of codewords of a geometrically uniform trellis code C is geometrically 

uniform; that is, for any two sequences ,i j ∈x x C , there exists an isometry i jT →  that 

transforms xi to xj while C invariant. 



 5-39

Thus, all code sequences in a geometrically uniform trellis code have the same error 
performance over AWGN channels. Some examples of geometrically uniform trellis codes 
include: 

1) All convolutional codes are geometrically uniform. 
2) Trellis codes using rate-1/2 convolutional codes and QPSK signal set with Gray 

mapping are geometrically uniform. 
 
5.5.2 Error Probability of TCM Schemes 

TCM 码的性能分析方法类似于卷积码，我们用 union bound 来表示有关错误概率。

但是，由于 TCM 码一般不是线性的，the problem is complicated. 
Consider the Ungerboeck model for rate-m/(m+1) TCM schemes. The m input bits 

( ) (2) (1)( ,..., , )m
i i i ia a a=a  are first encoded convolutionally into a sequence of signal labels 

( 1) (2) (1)( ,..., , )m
i i i ic c c+=c , which may be linear operation. The label ci is them mapped to a 

2(m+1)-ary constellation, yielding the transmitted signal ( )i ix f= c , where f() denotes the 

mapping function. This operation is generally nonlinear, thus making the overall TCM code 
nonlinear. In the following we will derive the upper bound on error probability of a TCM 
code. 
 

 Error event probability 
Refer to Fig. 5.4.20. Denote by x the correct path through the trellis. Suppose that 

decoding is correct up to a trellis node at time j. Let ,i jx  be the ith incorrect path that 

diverges from x at time j, then remerges later. Let ije  be the event that ,i jx  is chosen by the 

decoder. Then the event-error probability when x is the correct path is 

( | ) ij
j i

P e P e
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

x x∪∪  

The average probability of error is then given by 

( ) ( ) ( | ) ( ) ij
j i

P e P P e P P e
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

∑ ∑
x x

x x x x∪∪  

where P(x) is the probability of transmitting x. Applying the union bound, we have 

( ) ( ) ij
j i

P e P P e⎛ ⎞≤ ⎜ ⎟
⎝ ⎠

∑ ∑
x

x x∪  

 
 
 
 

jx  

Sj Sj+L x 
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Fig. 5.4.20. An error event of length L 

 
Let n denote the trellis length. Then the rate at which error events occur is given by 

1lim ( )e n
P P e

n→∞
=  

Averaged over an infinite trellis, every node has the same characteristics, so the dependence 
on an individual node j can be removed to write 

( )e i
i

P P P e⎛ ⎞≤ ⎜ ⎟
⎝ ⎠

∑
x

x x∪                         (5.5) 

where ei is the event that an error starts at an arbitrary but fixed time unit, say j. Equation (5.5)
can also be interpreted as the first event error probability. Applying the union bound again 
yields 

( )( )
i

e i
e

P P P e≤ ∑ ∑
x

x x                          (5.6) 

The probability ( )iP e x  is the pairwise error probability, which we denote by ( )2 iP e→x . 

For the AWGN channel, we have 

( )
2

2
0

( , )
2

E i
i

d eP e Q
N

⎛ ⎞
→ = ⎜ ⎟⎜ ⎟

⎝ ⎠

xx  

where 2 ( , )E id ex  is the squared Euclidean distance between the signals on the error path ei 

and the signals on the correct path x. Thus the upper bound becomes 
2

| 0

( , )( )
2

i

E i
e

e

d eP P Q
N

⎛ ⎞
≤ ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

x x

xx                      (5.7) 

By rearrange the sum in (5.7), we have 
2

02i

i

i s
e d

d

d EP A Q
N

⎛ ⎞
≤ ⎜ ⎟⎜ ⎟

⎝ ⎠
∑                          (5.8) 

where 
idA  is the average number of paths ′x  that are at distance di from x, and the sum is 

over all the distances; 并且 di 是在单位平均能量信号集的假设下计算的。The set of pairs 

( ),
ii dd A  is known as the (平均) distance spectrum of the code. The smallest distance di is the 

free distance of the code. 

Using / 2( ) ( ) yQ x y Q x e−+ ≤ , we obtain 

2 2 2

0

( )
2

free E freed d d
Q

N

⎛ ⎞+ −
⎜ ⎟
⎜ ⎟
⎝ ⎠

2 2 2

0 0

exp
2 4

free free Ed d d
Q

N N

⎛ ⎞ ⎛ ⎞−
⎜ ⎟≤ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
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2 2 2

0 0 0

exp exp
2 4 4

free free Ed d dQ
N N N

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

 

Substituting into (5.8), we have the upper bound on event-error probability 
2 2 2
free free

0 0 0

( ) exp exp
2 4 4i

i

s s i s
d

d

d E d E d EP e Q A
N N N

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
≤ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑  

where di and dfree是在单位平均能量信号集的假设下计算的。( ),
ii dd A 可以通过 TCM 编码

器的平均重量枚举函数来获得[Rouanne-Costello89]. 
 

 Bit Error Probability 
Each event-error causes a certain number of bit errors in the decoded information bits. 

Let 
idB  denote the average number of bit errors on error paths with distance di. Since the 

trellis code encodes m bits per symbol, the average BER is upper-bounded by 
2

0

1
2i

i

i s
b d

d

d EP B Q
m N

⎛ ⎞
≤ ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

 
Note: If a trellis code is regular (or geometrically uniform), the averaging over x in (5.7) is 
not necessary and any code sequence may be taken as reference sequence. 
 
图 5.4.21 是使用 8-PSK 信号集的 TCM 码的性能比较。 

 
图 5.4.21 

 
5.6 Lattice-Type Trellis Codes 

Consider a chain of K binary lattice partition, 
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Λ1/Λ2/…ΛK 
There are 2K cosets of ΛK whose union makes up the original lattice Λ1. Each such coset can 

be identified by a binary K-tuple (1) ( )( ,..., )Kc c c= ; i.e., each coset is given by (ΛK + t(c)), 

where 

( ) ( )

1

( )
K

i i

i

c c
=

= ∑t t  

Here, t(i) is an element of Λi but not of Λi+1. The K-tuples c will be called the coset labels of 

the final cosets (ΛK + t(c)). As an example, Fig.5.4.22 shows the partition Z2 / 2Z2, where t(0) 

= (0, 1) and t(2) = (1, 1). 
 

2Z2 + (0,1) 2Z2 + (1,1) 2Z2 + (1,0)

Fig.5.4.22 The four cosets of 2Z2 in the partition Z2 / 2Z2. 

 
With the above lattice partitions, we can perform partitioning of lattice constellations as 

follows. The n-D lattice constellation C(Λ, R) is partitioned into 2K subsets of equal size that 

are consistent with the lattice partition Λ/Λ’ with |Λ/Λ’|=2K. The 2K subsets of points of C(Λ, 

R) are then form sublattice constellations of the form C(Λ’, R). The region R must be chosen 

so that there are an equal number of points in each subset. The sublattice Λ’ is usually chosen 
to be as dense as possible. 

With the lattice formulation, we can describe trellis encoders in the general form of Fig. 
5.4.23.  
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Fig. 5.4.23 Generic trellis encoder block diagram using lattice notation. The signal point 

selector will use some shaping region R. 

 

Definition 1: A coset code C(Λ/Λ’, C) is the set of all signal points that lie within a sequence 

of cosets of Λ’ that could be specified by a sequence of coded bits from C. 
 

Coset codes allow us to separate the coding gain due to the lattice, the shaping gain, and 
additional coding gain due to C. Due to the code C, only particular sequences of cosets are to 
be delivered to the signal point selector. The encoder for the code C should be designed to 
maximize the minimum distance between sequences of cosets.  

If C is a block code, then we call the coset code C(Λ/Λ’, C) a lattice code. 

Definition 2: A lattice-type trellis code is a coset code C(Λ/Λ’, C), where C is a rate-k/(k+r)  

convolutional code. 
 

With this description, we can see that Ungerbock’s original one- and two-dimensional 

PAM codes are based on the four-way partition Z /4Z and the eight-way partition Z2 /2RZ2, 

respectively.  
 

Define the redundancy r(C) of the convolutional code C to be the number of redundant 
bits generated by convolutional encoder per N dimensions. The normalized redundancy per 
two dimensions is 

( )( )
/ 2

r Cv C
N

=  

The coding constellation expansion causes that the transmitted power is increased by 
approximately 2v(C). Note that with the typical r(C)=1, the transmitted power is increased by 
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22/N. On the other hand, the convolutional encoder has increased the minimum distance by a 

factor of 2 2
free min( ) / ( )d d ΛC . Therefore, the coding gain due to the convolutional code C is 

2
free

2 ( )
min

( )
( )2c v C

d
d

γ =
Λ
C  
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