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4.6  Behavioral Models of Codes and Factor Graph Representation 
 
 

It is well known that turbo codes, LDPC codes, and repeat-accumulate (RA) codes can 
approach Shannon limit very closely. A common feature of these capacity-approaching coding 
schemes is that they all may be understood as codes defined on graphs. 

In this section, we will introduce the subject of codes on graphs. As we will see, (factor) 
graphs provide a means of visualizing the constraints that define the code. Moreover, the 
graphs directly specify iterative decoding algorithms. 
 
4.6.1 Codes and Behavioral Modeling 

Let n
qF  denote the vector space of all n-tuples over a finite field Fq. We know that a 

linear (n, k, d) block code can be represented by several methods: 
 By a set of k generators {gj, 1≤j≤k}. The code { | , }n

q j j j q
j

a a= ∈ = ∈∑x x gF FC . 

 By a set of (n-k) generators {hj, 1≤j≤n-k} for the dual code. The code C is then 

{ | , 0 for all }n
q j j= ∈ < >=x x hFC  

 By a trellis representation. The code C is then the set of all n-tuples corresponding to 

paths through the trellis. 

In the following we will see that these representations are all special cases of a general class 
of representations called behavioral realizations. 

We will use the following notation. A symbol variable Xi takes values i ix ∈X  in a 

symbol alphabet Xi. In coding, Xi is often a vector space over a finite field, e.g., m
qF , and xi 

are the corresponding m-tuples. A symbol configuration space X is a Cartesian product 

i
i I∈

=∏X X  

of a collection {Xi, i∈I} of symbol alphabets, where I is any discrete index set (called symbol 

index set). The elements of X are denoted by { , }i ix i= ∈ ∈ ∈x X I X , and will be called 

symbol configurations. In other words, a configuration is a particular assignment of values to 
all variables. The configuration space is the set of configurations. 
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For example, if all variables in Fig. 4.6.1 are binary, the configuration space X is the set 

{0, 1}5 of all binary 5-tuples; if all variables in Fig. 4.6.1 are real, the configuration space is 

R5. 

 
Figure 4.6.1 Illustration of the functions of several variables. A node fi is connected with the edge 
representing some variable x iff fi is a function of x. 
 

 By a behavior in X, we mean any subset B of X (that is, a set of symbol configurations 

that satisfy a certain set of constraints). The elements of B are called valid symbol 

configurations. Since a system is specified via its behavior B, this approach is known as 

behavioral modeling. 

 Behavioral modeling is natural for codes. A code C is a behavior in X, and the valid 

symbol configurations are called codewords.  

 Whereas in system theory the index set I is usually ordered and regarded as a time axis, 

here I will not necessarily be ordered. We will also assume that I is finite; i.e., that C is a 

block code. 
 
4.6.2 Behavioral Realizations 

From the discussion above, a code C ⊆X may be characterized as the set of configurations 

x∈X that satisfy a certain set of constraints. For example, a linear code C may be 

characterized as the set of x∈X that satisfy a certain set of parity checks. Such a 

representation is now referred to as “behavioral”, since it is specified by local constraints as in 
the behavioral system theory of Willems. 

Formally, a behavioral realization of a code C ⊆X is described by a set {Ck, k∈K} of 

local constraints (“local codes,” “local behaviors”), where K is another discrete index set. 

Each local constraint Ck involves some subset of the symbol variables indexed by a certain 
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subset I(k), and defines a subset 

( )

( )k i
i k

k
∈

⊆ = ∏
I

C X X  

of the corresponding local Cartesian product set X(k).The local constraint thus defines a set of 

valid local configurations (“local codewords”) { }| ( ) , ( )k i kx i k= ∈ ∈x I I C , where the notation 

x|I(k) denotes the projection of a configuration x onto the symbol variables Xi indexed by I(k). 

The code C is then the set of all configurations that satisfy all local constraints 

{ }| ( )|  for all k k k= ∈ ∈ ∈x x IC X C K  

For example, a linear code C ⊆X may be characterized as the set of x∈X that satisfy the 

parity-check equations , 0k< >=x h  for a certain set of check configurations 

{ ,  }k k∈ ∈h X K . The symbol variables Xi that are involved in the kth check are those for 

which hki ≠0. Each local code Ck is then a linear (nk, nk-1, 2) single-parity-check (SPC) code, 

whose length nk is equal to the number of symbols involved in Ck. 

A behavioral realization has a nature graphical model, which in coding theory is called a 
Tanner graph. 

 
4.6.3 Tanner Graph 

The above elementary linear behavioral realizations can be represented conveniently by a 
graphical model called Tanner graph. 
 
Graph Notation 

 A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a relation 

Φ that associate with each edge two vertices called its endpoints. 
If vertex v∈V is an endpoint of edge e∈E, then v and e are incident. The degree of a vertex 

v∈V is the number of incident edges and will be denoted by )(vd . 

 A graph G is called regular when all of its vertices have degree r; i.e., 

:   ( )v V d v r∀ ∈ = . 
 Bipartite Graph: A bipartite graph is a graph whose vertices may be partitioned into 

two sets, and where edges may only connect two vertices not residing in the same set. 
A more precise definition is given below. 

定义: 若图 G 的节点集V 可以划分为两个子集 1V 和 2V ： 1 2 1 2,V V V V V φ∪ = ∩ = ,使得
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Ee∈∀ ，e 的一个端点属于 1V ，另一个端点属于 2V ，则称G 为二部图(bipartite graph)。

若节点集 1V 中所有节点的度数都相同并且节点集 2V 中所有节点的度数也都相同,则称G

为正则二部图(regular bipartite graph)，否则称为非正则二部图(irregular bipartite graph)。 

 A cycle is a subgraph ( ', ') of ( , )C V E G V E= = , whose vertices can be placed 

around a circle. The length of a cycle C is defined as ( ) | ' | | ' |l C V E= = . 

 The girth of G is the length of its shortest cycle: { }( ) min ( )
C

g G l C
∈

=
C

, where C is the 

collection of all the cycles of G. 
 
A Tanner graph is a bipartite graph in which a first set of vertices represents the symbol 

variables {Xi, i∈I}, a second set of vertices represents the local constraints {Ck, k∈K}, and an 

edge connects a variable vertex to a constraint vertex if and only if (iff) the corresponding 
symbol variable is involved in the corresponding local constraint. Fig. 4.6.2 shows a Tanner 
graph for the (8, 4, 4) RM code defined by the parity-check matrix 

1 1 1 1 0 0 0 0
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

H                      (4.1) 
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Fig. 4.6.2 Tanner graph of parity-check representation for (8, 4, 4) code. 
 

Here, symbol variables are represented by filled circles, and constraints (checks) by 
squares labeled by a ‘+’ sign. The four check nodes (vertices) represent the binary linear 
equations that each codeword must satisfy. In a valid codeword, the neighbors of every check 
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node (i.e., the variables connected to the check by a single edge) must form a configuration 
with a binary sum of zero. Notice that this Tanner graph contains circles. 

The degree of a vertex is defined as the number of edges incident on it. Thus, the degree 
of a variable node is the number of local constraints (i.e., checks) that it is involved in, and 
the degree of a constraint node is the number of variables that it involves. Clearly, in a Tanner 
graph the sum of the variable degrees is equal to the sum of the constraint degrees since both 
are equal to the number of edges in the graph. 

The degree of a variable or constraint will be defined as the degree of the corresponding 
graph vertex. 
 In Fig. 4.6.2, the local constraints consist of the following 4 parity-check equations 
(linear homogeneous equations). 

0 1 2 3

1 3 4 6

2 3 4 5

4 5 6 7

0
0
0
0

x x x x
x x x x
x x x x
x x x x

+ + + =
+ + + =
+ + + =
+ + + =

 

 
4.6.4 General Linear Behavioral Realizations of Linear Block Codes [1][5] 

The above elementary realizations can be generalized by letting symbol variable to vector 

spaces of dimension m over Fq, or more particularly m-tuples over Fq. The elements of a 

general linear behavioral realization of a linear (n, k, d) block code over Fq are as follows. 

 A set of symbol mi-tuple { , }im
i qx i∈ ∈IF , where I denotes the (clustered) symbol 

variable index set. We define i
i

n m
∈

=∑
I

. 

 A set of state variable μj-tuple { , }j
j qs jμ∈ ∈JF , where J denotes the state index set. 

We define j
j

s μ
∈

= ∑
J

. 

 A set of (locally) linear constraint codes {Ck, k∈K} over Fq, where K denotes the 

constraint index set, and each code Ck involves a certain subset of the symbol and 

state variables, indexed by I(k) and J(k), respectively. 

The symbol configuration space is the Cartesian product i
i∈

=∏
I

X X , where the symbol 

alphabets ,im
i q i= ∈X IF . The state configuration space is the Cartesian product j

j∈

=∏
J

S S , 

where the state alphabets (state spaces) ,j
j q jμ= ∈S JF . A local configuration is a set 
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( ) ( ){ } ( )| ( ) | ( ), ( ) , , ( ) ,i j k kx i k s j k∈ ∈ = x sI JI J  of local variable values. The set of all local 

configurations is a vector space 

( ) ( )
k i j

i k j k∈ ∈

⎛ ⎞ ⎛ ⎞
= ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∏ ∏
I J

V X S  

A linear local constraint code is a subspace Ck ⊆Vk whose codewords are precisely the valid 

local configurations which may actually occur. 

The full behavior B⊆X ×S generated by the realization is the set of all combinations (x, s) 

(called trajectories) of symbol and state configurations that satisfy all local constraints 

{ }| ( ) | ( )( , ) | ( , )  , k k k k= ∈ × ∈ ∈x s x sI JX S C KB  

The code C generated by the realization is the set of all symbol sequences x that appear in 

any trajectory (x, s)∈B. In other words, C = B|X. 

Notice that the constraint imposed by a linear homogeneous equation that involves r =n-k 
variables is equivalent to a constraint that these variables must lie in a certain 

(r-1)-dimensional subspace of r
qF ; i.e., that they form a codeword in a (r, r-1) linear block 

code over Fq.  

 

Example: Consider a conventional state-space realization of C on the time axis I = [0, n). 

A trellis diagram is a detailed graphical model of a conventional state-space realization. 

We define state space j
j q

μ= FS  of dimension μj for the state time axis J=[0, n], where μ0 = 

μn = 0; i.e., the starting and ending state space have size |S0|=|Sn|=1. We then define each 

trellis section by a linear subspace (called branch space) Ci ⊆Si×Si+1×Fq, i∈I, which defines 

the set of state transitions 1 1( , )i i i is s + +∈ ×S S  that can possibly occur and the code symbol 

xi∈Xi=Fq associated with each such transition. In other words, the behavioral constraint at 

time i is that the tripe (si, si+1, xi) must lie in a certain small linear block code Ci of length ni=μi 

+μi+1 +1 over Fq. Thus, each state variable Si is involved in two constraints, Ci and Ci-1, while 

each symbol variable Xi is involved in the single constraint Ci-1. Each valid local configuration 
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1( , , )i i i is s x+ ∈C  is a set of variables that satisfy the constraints at time i and corresponds to a 

distinct valid trellis branch labeled by the corresponding (si, si+1, xi), so the branch complexity 

at time i is the size |Ci| of the local constraint code Ci.  

The full behavior B of this realization is then the set of all state/symbol sequences (s, x) 

such that (si, si+1, xi) ∈ Ci, 1≤i≤n, which is a set of linear homogeneous constraints. For each 

valid configuration (s, x) in B, the state sequence s represents a valid path through the code 

trellis, and the symbol sequence x represents the corresponding codeword. The code 
generated by the trellis diagram is the set of all path label sequences, namely, the projection 

C=B|X. 

As an example, Fig. 4.6.3 shows the trellis diagram for the (8, 4, 4) RM code. It is known 
that, for the (8,4,4) code, the minimal state complexity profile of any trellis diagram is given 

by (|S0|,|S1|,|S2|,|S3|,|S4|,|S5|,|S6|,|S7|,|S8|) = (1,2,4,8,4,8,4,2,1). The state spaces at time i=1,2,… 

may be defined by their F2 components as follows: s1=(s11), s2=(s21, s22), s3=(s31, s32, s33),…. 

 
Figure 4.6.3 The trellis diagram for the (8, 4, 4) code. 

 
The main difficulty with trellises and other cycle-free graph representations of codes is 

that as codes become more powerful, the alphabets (state space) of the state variables must 
necessarily become exponentially large, which eventually makes trellis-type decoding 
algorithms impractical. 
 
4.6.5 Graphs of General Linear Behavioral Representations – Factor Graph 

There are various styles for drawing graphs of general linear behavioral representations. 
We start with generalized Tanner graphs (now called factor graphs). A factor graph is a 
Tanner graph that may contain auxiliary (state) variables. In a factor graph, two types of 
vertices represent variable m-tuples and constraint codes, respectively. Again, an edge 
connects a variable vertex to a constraint vertex if and only if the corresponding variable is 
involved in the corresponding constraint code. 



 8

A generic factor graph is shown in Fig. 4.6.4, where symbol m-tuples are represented by 
filled circles, state μ-tuples by open circles, and constraints by squares. However, the squares 
may now be labeled to denote various types of constraint codes. 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 4.6.4 A factor graph 
 

Fig.4.6.5 is a factor graph of the trellis realization of (8,4,4) code. Each state variable is 

labeled by the dimension of its alphabet. Each constraint code Ci is labeled by its length and 

dimension (n, k), where 1| | | | 1i in += + +S S  and 2log | |ik = C . Since the symbol variables 

have degree 1, we use the special “dongle” symbol for them. 
 

 
Figure 4.6.5 Factor graph for the trellis realization of (8, 4, 4) code 

 
4.6.6 The Forney-Style Factor Graphs –- Normal Graphs 

Normal graphs were proposed by Forney in 1998, in which constraint codes are 
represented by vertices, but variables are represented by edges (if the variable has degree 2) or 
by hyper edges (if the variable has degree other than 2). 

Normal graphs are particularly nice when the realizations are normal realizations. We 
define a realization to be normal if the degree of every symbol variable is 1, and the degree of 
every state variable is 2. We then represent symbol variables as before by “half-edges” using 
the special “dongle” symbols, and state variables by ordinary edges. Fig.4.6.6 shows a normal 
graph for trellis representation of (8, 4, 4) code. It is seen that normal graph may be simpler. 
 

...

...

...
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Figure 4.6.6 Normal graph for trellis representation of (8, 4, 4) code 

 
Any realization may be transformed into a normal realization by simple conversion 

shown in Fig. 4.6.7. The conversion from a factor graph to a normal graph involves symbol 
replications and state replications, as shown in Fig. 4.6.8. In the normal graph, all graph 
vertices represent constraints, and the repetition constraints (or, equality constraints) are 
represented by vertices labeled by the symbol “=”. 
 

 
Figure 4.6.7 Normal graph with observed variables (represented by “dongles”), equality 
constraints and zero-sum constraints (represented by squares with “+”). 

 
Figure 4.6.8 

 
As an example, Fig. 4.6.9 shows the normal graph of the (8, 4, 4) code defined in (4.1). 
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Figure 4.6.9 Normal graph for parity-check realization of (8, 4, 4) code 
 
Normal graphs have some conceptual advantages over Tanner graphs. 
1) Clean functional separation: 

- symbol variables (half edges) are for I/O; 
- state variables (edges) are for communication (message-passing); 
- constraints (vertices) are for computation. 

2) Block diagrams as directed normal graphs (i.e., compatible with standard block diagrams). 
3) Whereas a factor graph is bipartite, a normal graph has only one kind of vertices, and 

there are no restrictions on graph topology. 
4) Simplest formulation of the sum-product message update rule. 
5) Suited for hierarchical modeling (“boxes within boxes”).  
6) Natural setting for Forney’s results on Fourier transforms and duality. 
 
Therefore, normal graph provides an attractive notation for modeling a wide variety of 
information transmission and signal processing problems.  
 
Fig. 4.6.10 depicts a normal graph of a binary (7, 4, 3) Hamming code that is defined by the 
parity-check matrix 
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1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

H                         (4.2) 

 
Figure 4.6.10 Normal graph for parity-check realization of (7, 4, 3) Hamming code.  

 
Fig. 4.6.11 shows a normal graph of a turbo code. 

 
Fig. 4.6.11 Normal graph of a classical turbo code 

 
 A More General Description from a Factorization Perspective 

Normal graph is also called the Forney-style factor graph (FFG). The term “factor graph” 
results from the fact that an FFG is a diagram that represents the factorization of a function of 
several variables. Assume, for example, that some function f (u, w, x, y , z ) can be factored as 

1 2 3( , , , , ) ( , , ) ( , , ) ( )f u w x y z f u w x f x y z f z=                  (4.3) 

This factorization is expressed by the FFG shown in Fig. 4.6.12. The factors are also called 
local functions, and their product is called the global function. In (4.3), the global function is f, 
and f1, f2, f3 are the local functions. In general, an FFG is defined by the following rules: 
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- There is a (unique) node for every factor. 
- There is a (unique) edge or half edge for every variable. 
- The node representing some factor g is connected with the edge (or half edge) 
representing some variable x if and only if g is a function of x. 

Implicit in this definition is the assumption that no variable appears in more than two factors. 
This restriction can be easily circumvented by using the repetition constraint that corresponds 

to, e.g., the factor ( , , ) ( ) ( )f x x x x x x xδ δ′ ′′ ′ ′′≡ − − , where δ(X) is the Kronecker delta 

function if X is a discrete variable or the Dirac delta if X is a continuous variable. (The 
distinction between these two cases is usually obvious in concrete examples.). For example, 
the factorization f(x) = f1(x)f2(x)f3(x) can be expand into f(x) = f1(x) f2(x’)f3(x’’)δ(x-x’)δ(x-x’’). 
See Fig. 4.6.12b. 
 

 
Figure 4.6.12 An FFG 

 
 
 
 
 
 
 
 
 

Figure 4.6.12b 

We will primarily consider the case where f is a function from the configuration space, X, 

to the set of nonnegative real numbers, R+. In this case, a configuration x∈X will be called 

valid if f(x) ≠ 0. 

In every fixed configuration x∈X, every variable has some definite value. We may 

therefore consider also the variables in a factor graph as functions with domain (定义域)X. 

Using the standard notation for random variables, we will denote such functions by capital 

letters. Therefore, if y takes values in some set Y, we will write 

: : ( )Y Y→ =x y xX Y   

= 
x x’’ 

x’ 

f1 

f2 

f3 
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 Graphs of Codes 

By a factor graph for some code C, we mean a factor graph for (some factorization of) 

the membership indicator function of C. Denote the Iverson function by 

1,     if  is true
[ ]

0,    otherwise  C

P
I P ⎧

= ⎨
⎩

 

The membership indicator function : {0,1}n
C qI →F  that expresses the membership of an 

n-tuple x in C is given by 

[ ] [ ]T
C CI I∈ = =x xH 0C  

Consider, for example, the binary (7, 4, 3) Hamming code shown in Fig. 4.5.10. The 
membership indicator function of this code may be written as 

[ ]1 7 1 2 3 5 2 3 4 6 3 4 5 7( ,..., ) [ 0] [( 0 [ 0]C C C CI x x I x x x x I x x x x I x x x x∈ = ⊕ ⊕ ⊕ = ⋅ ⊕ ⊕ ⊕ = ⋅ ⊕ ⊕ ⊕ =C

or 1 7 1 2 3 5 2 3 4 6 3 4 5 7( ,..., ) ( ) ( ) ( )CI x x x x x x x x x x x x x xδ δ δ= ⊕ ⊕ ⊕ ⋅ ⊕ ⊕ ⊕ ⋅ ⊕ ⊕ ⊕      (4.4) 

where ⊕ denotes modulo-2 addition. Note that each factor in (4.4) corresponds to one row 

of the parity check matrix in (4.2). From (4.4), we obtain the FFG of Fig. 4.6.10. 

Example 2 [Trellis code]: [ ] [ ]
1

n

C C k k
k

I I x
=

∈ = ∈∏x C C  

 
FFG for Dual code 

The dual code of a linear code C is { }| ,  for all n T
q

⊥ = ∈ = ∈y y x 0 xFC C . The FFG for the 

code ⊥C  can be easily obtained via the following theorem [?] (which is a special case of a 

sweepingly general result on the Fourier transform of an FFG). 
 

Duality Theorem for Binary Linear Codes: Consider an FFG for some binary linear code C. 

Assume that the FFG contains only parity-check nodes and equality constraint nodes, and 
assume that all code symbols x1, . . . , xn are external variables (i.e., represented by half edges). 

Then an FFG for the dual code ⊥C  is obtained from the original FFG by replacing all 

parity-check nodes with equality constraint nodes and vice versa. 
For example, Fig. 4.6.15 shows an FFG for the dual code of the (7, 4, 3) Hamming code. 
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Figure 4.6.15 Dualizing Figure 4.6.10 yields an FFG for the dual code 

 
4.6.7 Graph-Theoretic Properties of Realizations 
 A realization has certain graph-theoretic properties, such as connectedness or 
cycle-freedom. 

 Connectedness and Independence 

A code C has a realization whose graph is disconnected if and only if C is the Cartesian 

product of shorter codes. In this case, the realization of C may be constructed from 

independent realizations of shorter (component) codes. Thus disconnectedness is a 
graph-theoretic expression of independence. 

For example, if a code C = C1 × C2 is the Cartesian product of two codes; that is, 

{ }1 2 1 1 2 2( , ) | ,= ∈ ∈c c c cC C C . Then a realization of C may be constructed from independent 

realizations of C1 and C2. A graph of such a realization is a disconnected graph, with two 

component subgraphs representing C1 and C2, respectively.  

 
 Cut Sets and Conditional Independence 

A cut set of a connected graph is a minimal set of edges such that removal of the set 
partitions the graph into two disconnected subgraphs. Notice that a connected graph is 
cycle-free if and only if every edge is by itself a cut set. 

In a normal graph, a cut set consists of a set of ordinary (state) edges, and may be 

specified by the corresponding subset X ⊆J of the state index set J. The cut-set alphabet is 

then the Cartesian product jj∈
=∏S SX X

 with values { , }js j= ∈sX X  and size 

| | | |jj∈
=∏S SX X

. Clearly, a superstate variable can be defined over this cut-set alphabet. Fig. 

4.6.16 gives a high-level view of a realization with a cut set X. 
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Figure 4.6.16 A realization with a cut set X 

 
Since removal of a cut set partitions a graph into two disconnected subgraphs, it follows 

that the symbol variables, the constraint codes, and the states not in χ are partitioned by the 

cut set into two disjoint subsets connected only by the states in χ. We label these two 

components arbitrarily as the “past” P and the “future” F relative to the cut set χ.  

The constraints and internal variables in the past and future components are agglomerated 

into aggregate constraints CP and CF, respectively. Let | ( )X sP X  and | ( )X sF X  denote the sets 

of possible past and future symbol values that are consistent with a given superstate value sX. 

Then the code has the following decomposition: 

| |( ) ( )X X
∈

= ×
s

s s∪ P F
S

C
X X

X X  

 
Cut-Set Independence Theorem [Markov property]: Assume that an FFG represents the joint 
probability distribution (or the joint probability density) of several random variables. Assume 
further that the edges corresponding to some variables Y1, . . . ,Yn form a cut-set of the graph. 
In this case, conditioned on Y1 = y1, . . . ,Yn = yn (for any fixed y1, . . . , yn), every random 
variable (or every set of random variables) in one component of the graph is independent of 
every random variable (or every set of random variables) in the other component. 
 
4.7 The Sum-Product Algorithm 

Graphical models are often associated with particular algorithms. For example, the 
Viterbi decoding algorithm is naturally described by means of a trellis diagram.  

The sum-product algorithm (SPA) is the basic decoding algorithm for codes defined on 
factor graphs. For cycle-free graphs, it is finite and exact. Furthermore, because all its 
operations are local, it can also applied to graphs with cycles; then it becomes iterative and 
approximate, but it often works very well. 

There are many variations and applications of the sum-product algorithm: 
 BCJR/APP decoding algorithm (applied to a trellis) 
 Statistical inference (Bayes network): belief propagation (BP) algorithm 
 Gaussian state-space models: Kalman filter 

 
4.7.1 The Distributive Law 
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Let F be a field and let a, b, c∈F. The distributive law then states that 

( )ab ac a b c+ = +  

This simple axiom, properly applied, can lead to significant reductions in computational 
complexity. An obvious instance is 

,
i j i j

i j i j

a b a b
⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑  

Let A(x) and B(y) be two functions with x and y taking values in (some Cartesian product of ) 

F. Then the above equation implies that 

,

( ) ( ) ( ) ( )
x y x y

A x B y A x B y
⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑  

It is at the heart of many fast algorithms including the sum-product algorithm. 
 
4.7.2 The Sum-Product Algorithm on Forney-Style Factor Graphs (SPA 的描述) 

The factor graph approach represents the appropriate framework in order to 
systematically take advantage of instances where the distributive law can be applied. 

 The Basic Decoding Problem:  

Assume that we are transmitting over a memoryless channel using a (n, k) linear code C 

defined by its parity-check matrix [ ]ijh=H . The basic symbol-APP decoding problem can be 

stated as follows. 

|{ 1}
ˆ arg max ( | )

i
i X Y ix

x P x
∈ ±

= y
1 1 1

|{ 1}
arg max ... ... ( | )

i
i i n

X Yx x x x x

P
− +

∈ ±
= ∑ ∑∑ ∑ x y  

|{ 1}
arg max ( | )

i
i

X Yx x

P
∈ ±

= ∑ x y
∼

 

{ 1}
arg max ( | ) ( )

i
i

x x

p P
∈ ±

= ∑ y x x
∼

 

[ ]
{ 1} 1

1arg max ( | )
| |i

i

n

j j Cx x j

p y x I
∈ ±

=

⎛ ⎞
= ∈⎜ ⎟

⎝ ⎠
∑ ∏ x
∼

C
C

 

{ 1} 11 1

arg max ( | ) 0
i

i

n n k n

j j C lj jx x jj l

p y x I h x
−

∈ ±
== =

⎛ ⎞⎛ ⎞ ⎡ ⎤
= =⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

∑ ∑∏ ∏
∼

 

where IC(P) is the code-membership indicator function defined by 

1,     if  evaluates to true
[ ]

0,    otherwise                 C

P
I P ⎧

= ⎨
⎩

 

The notation 
x
∑
∼

denote a summation over all variables contained in the expression except 
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the one listed (e.g., x). Clearly, the general decoding problem is equivalent to calculating the 

marginal of a factorized function. For example, if the code C is a binary linear code with 

parity-check matrix 

1 1 0 0 1 0
0 1 1 0 0 1
1 0 1 1 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

H  

then we have 

|{ 1}
arg max ( | )

i
X Y ix

P x
∈ ±

y
 

6

1 2 5 2 3 6 1 3 4{ 1} 1

arg max ( | ) [ 0] [ 0] [ 0]
i

i

j j C C Cx x j

p y x I x x x I x x x I x x x
∈ ±

=

⎛ ⎞
= ⊕ ⊕ = ⊕ ⊕ = ⊕ ⊕ =⎜ ⎟

⎝ ⎠
∑ ∏
∼

 

The corresponding factor graph is shown in Fig. 4.7.1. 

 
Figure 4.7.1 

 
The sum-product algorithm is a procedure that can be used to organize the simultaneous 

computation of marginals. The sum-product algorithm operating in an FFG can be described 
as follows. Refer to Fig. 4.7.2. 
 

g

h1

h2

f

h5

h6

h4

x

x1

x2

x3

x4

y1

y2
g Xμ → f Xμ →

h3

N(f) \ {g}N(g) \ {f}  
Figure 4.7.2 Update rules of the sum-product algorithm in an FFG 
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1) Regardless of the message direction, the message passed over an edge incident on a vertex 

representing local constraint is always a function over the alphabet on which the symbol 
or state variable X (associated with that edge) is defined. For example, suppose that X is a 
binary variable. Then messages passed on the edge corresponding to X will be functions of 
the form μ(x); such functions can be specified by vector [μ(0), μ(1)], or, by the ratio 
log(μ(0)/μ(1)). We will denote the message arriving at a node f along the edge X by 

( )X f xμ → , and the message sent from a factor node f (to a factor node g) along the edge x 

by ( )f X xμ → . Let N(v) denote the set of neighbors of a given vertex v in a factor graph, 

and the set N(v)\{w} denote the neighbors of v other than w. Besides, we use E(v) to 
denote the set of edges that connect v to nodes in N(v). 

2) Sum-Product Update rule: The message ( )f X xμ →  sent by a factor node f to a neighbor 

node g∈N(f) along the edge X is the function 

( )1

1

1 1( ) ( , ,..., ) ( ) ( )
n

m

f X m Y f Y f n
y y

x f x y y y yμ μ μ→ → →= ⋅∑ ∑  

1
( )\{ }

( , ,..., ) ( )m Y f
x Y E f X

f x y y yμ →
∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∏
∼

                 (4.5) 

This rule is at the heart of the whole sum-product algorithm, which can be stated as a more 
general rule as follows.  
Summary-Product Rule: The message out of a factor node f(x, . . . ) along the edge x is the 
product of f(x, . . . ) and all messages towards f along all edges except x, summarized 
over all variables except x. 
 
3) In the special case where the local constraint is a equality constraint, (4.5) becomes 

( )

( ) ( )f X f
X E f

x xμ μ →
∈

= ∏  

which is sometimes called the product update rule. It gives the marginal function for x. 
 
With the sum-product rule, the evaluation of some probability distribution function in a factor 
graph may be greatly simplified. As a simple example, consider the FFG shown in Fig.4.6.19. 
Let f (x1, . . . , x8) be some discrete probability mass function, which can be written as 

( )
( )( )

1 8 1 1 2 2 3 1 2 3 4

4 4 5 6 5 5 6 6 7 8 7 7

( ,..., ) ( ) ( ) ( , , , )

                      ( , , ) ( ) ( , , ) ( )

f x x f x f x f x x x x

f x x x f x f x x x f x

=

⋅ ⋅
          (4.6) 

Note that the brackets in (4.6) correspond to the dashed boxes in Figure 4.7.3. 
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Figure 4.7.3 “Summarized” factors as messages in the FFG 
 

Suppose that we now are interested in the marginal probability 

4

4 1 8( ) ( ,..., )
x

p x f x x=∑
∼

                        (4.7) 

Inserting (4.6) into (4.7) and applying the distributive law yields  
 
 
 

1 2 3

4 3 1 2 3 4 1 1 2 2( ) ( , , , ) ( ) ( )
x x x

p x f x x x x f x f x
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∑∑∑  

5 6 7 8

4 4 5 6 5 5 6 6 7 8 7 7( , , ) ( ) ( , , ) ( )
x x x x

f x x x f x f x x x f x
⎛ ⎞⎛ ⎞
⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑∑ ∑∑  

 
 
 
 

 
This expression can be interpreted as “closing” the dashed boxes in Figure 4.7.3 by 
summarizing over their internal variables. The resulting expression 

3 4 4 44 4 4( ) ( ) ( )f x f xp x x xμ μ→ →= ⋅                       (4.8) 

corresponds to the FFG of Figure 4.7.3 with the dashed boxes closed.  
 

Table 1 shows the sum-product update rule for two typical local constraints that are the 
building blocks of low-density parity-check codes. It is quite popular to write these messages 
in terms of the single parameters 

(0)log
(1)

X
X

X

L μ
μ

≡  

3 4f xμ →  

6 6f xμ →

4 4f xμ →
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or (0) (1)
(0) (1)

μ μ
μ μ

−
Δ ≡

+
 

and the corresponding versions of the update rules are also given in Table 1.  
For the decoding of LDPC codes, the typical update schedule alternates between updating 

the messages out of equality constraint nodes and updating the messages out of parity-check 
nodes. 

Please refer to [2] for a detailed example. And a simple numerical example is provided in 
[4]. See the Box on pp.21. 

 

 
 
 
A Summary: In its general form, the sum-product algorithm computes two messages for each 
edge in the graph, one in each direction. Each message is computed according to the 
sum-product rule (4.5). 

A sharp distinction divides graphs with cycles from graphs without cycles. If the graph 
has no cycles, then it is efficient to begin the message computation from the leaves and to 
successively compute messages as their required “input’’ messages become available. In this 
way, each message is computed exactly once. It is then obvious from the previous section that 
summaries/marginals as in (4.7) can be computed as the product of messages as in (4.8) 
simultaneously for all variables. 
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4.7.3 Principles of the Sum-Product Algorithm on Cycle-Free Normal Graphs （SPA 原理

分析）[5] 

We now develop the sum-product algorithm as an APP decoding algorithm for a code C 

that has a cycle-free normal graph realization. Assume that the code C is described by a 

realization involving a certain set of symbol variables {Xi, i∈I} of degree 1, a certain set of 

state variables {Sj, j∈J} of degree 2, and a certain set of constraint codes {Ck, k∈K} such 

that the graph of the realization is cycle-free. 
Assume that a set of independent observations are made on all symbol variables {Xi, 

i∈ I}, resulting in a set of observations y={yi, i∈ I} and likelihood vectors 

{ }{ ( | ), },i i i i iw p y x x i= ∈ ∈X I , where Xi is the alphabet of Xi. The likelihood of a codeword 

{ , }ix i= ∈ ∈x I C  is then defined as the component-wise product 

( | ) ( | )i i
i

p p y x
∈

=∏y x
I

 

Assuming equiprobable codewords, the a posteriori probabilities { ( | ), }P ∈x y x C  can be 

expressed as 

( | ) ( )( | ) ( | )
( )

p PP p
p

= ∝
y x xx y y x

y
,     ∈x C              (4.9) 

Let Ci(xi) denote the subset of codewords that are consistent with xi; i.e., whose the ith symbol 

variable Xi has the value xi∈Xi. Then the symbol APP is given up to a scale factor by 

' '
( ) ( ) ( ) '

( | ) ( | ) ( | ) ( | )
i i i i i i

i i i i
x x x i

P X x P p p y x
∈ ∈ ∈ ∈

= = ∝ =∑ ∑ ∑ ∏
x x x

y x y y x
C C C I

,    i ix ∈X      (4.10) 

Similarly, if Cj(sj) denotes the subset of codewords that are consistent with the state variable Sj 

having the value sj in the state alphabet Sj, then the state APP vector { ( | ), }j j j jP S s s= ∈y S  

is given up to a scale factor by 

( )
( | ) ( | )

j j

j j i i
s i

P S s p y x
∈ ∈

= ∝ ∑ ∏
x

y
C I

,    j js ∈S               (4.11) 

We see that the components of APP vectors are naturally expressed as sums of products. 
The sum-product algorithm is based on two fundamental principles: 

1) Past / future decomposition rule; 
2) Sum-product update rule. 
The first principle is based on the Cartesian product decomposition in Section 4.7.1. In 
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this case, every state Sj (i.e., the jth edge in the normal graph) is a cut set whose removal 

partitions the graph into two disconnected sub-graphs, which we label arbitrarily as P and F. 

So C may be decomposed as a union of Cartesian product 

( )j
s

s
∈

= ∪
S

C C
j j

j  

| |( ) ( ) ( )j js X s X s= ×P FC j j                           (4.12) 

where | |( ) and ( )X s X sP Fj j  are sets of symbol values in each sub-graph that are consistent 

with Sj taking the value sj. 
We now apply an elementary Cartesian-product lemma. 

Lemma1 (Cartesian-product distributive law): If X and Y are disjoint discrete sets and f(x) 

and g(y) are any two functions defined on X and Y, then 

( , )
( ) ( ) ( ) ( )

x y x y
f x g y f x g y

∈ × ∈ ∈

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑ ∑
X Y X Y

                 (4.13) 

This lemma says that rather than computing the sum of |X||Y| products, we can just compute a 

single product of independent sums over X and Y. It lies at the heart of many fast algorithms. 

 
Using (4.12) and applying the lemma in (4.13), we obtain 

( )
( | ) ( | ) ( | )

j j

j j i i i i
s i i

P S s p y x p y x
∈ ∈ ∈

⎛ ⎞⎛ ⎞
= ∝ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∏ ∏

x

y
P FC I I

 

  
| | | |( ) ( )

( | ) ( | )
j j

i i i i
X s X si i

p y x p y x
∈ ∈∈ ∈

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑∏ ∏

x xP P F FP FI I

 

| |( | ) ( | )j j j jP S s P S s∝ = =y yP F                          (4.14) 

where | { , }ix i= ∈x P PI  and | { , }ix i= ∈x F FI . The sum-product algorithm therefore 

computes the likelihood vectors { }|( | )j jP S s= y P  and { }|( | )j jP S s= y F  separately, and 

then multiplies them component-wise to obtain { }( | )j jP S s= y . This is the past/future 

decomposition rule for state variables. 
Likelihood values for symbol variables are computed similarly. In this case, since symbol 

variables have degree 1, one of the two components (i.e., subgraphs) of graph induced by a 
cut is just the symbol variable itself. The past/future decomposition rule thus reduces to 
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' '
( ) '

( | ) ( | ) ( | )
i i

i i i i i i
x i i

P X x p y x p y x
∈ ≠

⎛ ⎞
= ∝ ⎜ ⎟

⎝ ⎠
∑ ∏

x

y
C

 

| '( | ) ( | )i i i i iP x y P x ≠∝ y                        (4.15) 

where { }| ' ' , ' \{ }i i iy i i≠ = ∈y I . In the turbo code literature, the first term ( | )i iP x y  is called 

the intrinsic likelihood of xi, and the 2nd term | '( | )i i iP x ≠y  is called the extrinsic likelihood of 

xi. To compute likelihoods, the algorithm proceeds recursively according to the following 
sum-product update rule. 

 The sum-product update rule is a local rule for the calculation of a likelihood vector such 

as |{ ( | ), }j j j jP S s s= ∈y P S  from likelihood vectors that are one step further upstream. 

The local configuration with respect to the edge corresponding to the Sj is illustrated in 

Fig. 4.7.4. Let Ck be the constraint code corresponding to past vertex. If the degree of Ck is 

δk, then there are δk-1 edges further upstream of Ck corresponding to further past state or 

symbol variables. For simplicity, suppose that these are all state variables '{ , ' }j jkS j ∈K , 

where Kjk ⊆ K|P denotes the set of indexes of all other edges incident on the kth vertex 

(corresponding to a constraint code Ck). Since the graph is cycle-free, each of these past 

edges has its own independent past 'jP . The corresponding set 
'| j

X P of input symbols 

must be disjoint, and their union must be |X P . Thus if Ck(sj) is the set of codewords in 

the local constraint code Ck that are consistent with Sj = sj, and 
'| ( )

j
X sP j'  is the set of 

' '| |j j
X∈x P P that are consistent with Sj’ = sj' , then we have 

'| |'( )

( ) ( )
j

jk
k j

js

X s X s
∈

= ⊗∪P PK
C

j j'                      (4.16) 

That is, for each codeword in Ck for which Sj = sj, the set of possible pasts is the Cartesian 

product of possible pasts of the other state values '{ , ' }j jks j ∈K , and the total set of possible 

pasts is the disjoint union of these Cartesian products. 
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Figure 4.7.4 Local configuration for sum-product update rule 

 
Using the Cartesian-product distributive law, it follows from (4.16) that 

'| ' ' |
( ) '

( | ) ( | )
j

k j jk

j j j j
s j

P S s P S s
∈

= = =∑ ∏y yP P
C K

                 (4.17) 

This is the sum-product update rule. We can see that for each sj∈Sj, it involves a sum of |Ck| 

products of δk-1 terms. Its complexity is thus proportional to |Ck|. Note that for a conventional 

state realization, |Ck| is the branch complexity of the kth trellis section. In the special case 

where Ck is a repetition code, (4.17) reduces to the product update rule: 

'| ' ' |
'

( | ) ( | )
j

jk

j j j j
j

P S s P S s
∈

= = =∏y yP P
K

                (4.18) 

In many descriptions of the sum-product algorithm for factor graphs, the product update rule 
is often stated as a separate rule for variable nodes. 
 

 Message-Passing: For each edge in a normal graph, we wish to compute two likelihood 
vectors, corresponding to past and future. These two vectors can be thought of as two 
messages going in opposite directions. Using the sum-product update rule, each message 
may be computed after all upstream messages have been received at the upstream vertex. 
Therefore we can think of each vertex as a processor that computes an outgoing message 
on each edge after it has received incoming messages on all other edges. 

 There are many possible schedules for this iteration. Two typical message-passing 
schedules are listed below: 
- Sequential schedule 
- Parallel schedule (or Flood schedule) 

 The BCJR algorithm: The sum-product algorithm may be used for exact APP decoding on 
any trellis graph, the resulting algorithm is known as the BCJR algorithm. Fig. 4.7.5 
shows the flow of messages and computations when the sum-product algorithm is applied 
to a trellis. 

 
Figure 4.7.5 The sum-product algorithm on a trellis 
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The input messages are the intrinsic likelihood vectors { ( | ), }i i i i iw p y x x= ∈X , and the 

output messages are the extrinsic APP vectors | '{ ( | ), }i i i i i iP x xε ≠= ∈y X . The intermediate 

messages are forward state APP vectors |{ ( | ), }
jj j j jP s sα = ∈y P S  and the backward state 

APP vectors |{ ( | ), }
jj j j jP s sβ = ∈y F S .  

The algorithm proceeds independently in the forward and backward directions. In the 
forward direction (i.e., from left to right), the messages αi are computed by the sum-product 
rule from the previous message αi-1 and the most recent input message wi-1. In the backward 
direction, the messages βj are computed by the sum-product rule from βj+1 and wj. Finally, 
each output message wi may be computed by the sum-product rule from the messages αi and 
βj+1. And the APP vector of an input symbol is given by the component-wise product of wi and 
εi according to (4.15). 
 
4.7.4 The Min-Sum Algorithm and ML decoding 

As mentioned earlier, the standard trellis-based decoding algorithms are instances of the 
sum product algorithm, which works on any factor graph. In particular, when applied to a 
trellis, the sum-product algorithm becomes the BCJR algorithm [?] and the max-product 
algorithm (or the min-sum algorithm applied in the logarithmic domain) becomes a 
soft-output version of the Viterbi algorithm [?]. 

 Sum-product algorithm  Perform APP decoding  trellisOn⎯⎯⎯⎯→BCJR algorithm 

    Min-Sum algorithm Perform ML decoding on a trellis⎯⎯⎯⎯⎯⎯⎯⎯⎯→Viterbi algorithm 

Again, let Ci(xi) denote the subset of codewords in which the symbol variable Xi has the 

value xi∈Xi. Then the metric mi(xi) of xi is defined as 

' '( ) ( ) '

( ) max ( | ) max ( | )
i i i i

i i i ix x i

m x p p y x
∈ ∈

∈

= = ∏x x
y x

C C
I

,      i ix ∈X         (4.19) 

Clearly, the symbol value xi with the maximum metric mi(xi) will be the value of Xi in the 

codeword x ∈ C that has the maximum global likelihood. 

Similarly, if Cj(sj) denote the subset of codewords that are consistent with the state 

variable Sj = sj ∈ Sj, then the metric mj(sj) of sj will be defined as 

( )
( ) max ( | )

j j
j j i ix i I

m s p y x
∈

∈

= ∏x C
,           sj ∈ Sj         (4.20) 

We can see that these metrics could be computed by a version of the sum-product algorithm in 
which “sum” is replaced by “max” everywhere, resulting in the so-called “max-product 
algorithm”.  
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In particular, for non-negative real-valued quantities, we have 
 The distributive law: a(max(b, c)) = max(ab, ac) 
 The Cartesian-product distributive law:  

( )( )( , )
max ( ) ( ) max ( ) max ( )

x y x y
f x g y f x g y

∈ × ∈ ∈
=

X Y X Y
                   (4.21) 

From (4.12), we now obtain the past/future decomposition rule 

| | | |( ) ( )
( ) max ( | ) max ( | )

j j
j j i i i iX s X si i

m s p y x p y x
∈ ∈

∈ ∈

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∏ ∏x xP P F F
P FI I

 

| |( | ) ( | )j j j jm s m s= y yP F                               (4.22) 

where | | and y yP F  are observations on the past symbols | { , }ix i= ∈x P PI  and future symbols 

| { , }ix i= ∈x F FI , repectively. 

Similarly, we obtain the max-product update rule 

'| ' ' |( ) '

( | ) max ( | )
j

k j
jk

j j j js j K

m s m s
∈

= ∏y yP PC
                   (4.23) 

where the notation is as in the sum-product update rule (4.17) 
In practice, the algorithm is often carried out in the negative log-likelihood domain. Thus, 

the “product” operation becomes a “sum” and the “max” operation becomes a “min” 
operation, yielding the min-sum algorithm. On a trellis, the result is a bidirectional Viterbi 
algorithm (VA). The forward part of any of these algorithms is equivalent to the VA. The 
update rule (4.23) becomes add-compare-select operation. 
 
4.7.5 The Sum-Product Algorithm on Graphs with Cycles 
On a graph with cycles, there are several basic approaches to decoding. 

 Cluster the graph enough to eliminate the cycles, and then apply the sum-product 
algorithm. The decoding will be exact. However, the complexity advantage of a 
realization on a graph with cycles will be lost. 

 The 2nd approach is simply to apply the sum-product algorithm to the graph with cycles. 
Because the sum-product update rule is local, it may be used in an iterative decoding 
algorithm. One must then specify an initialization rule, a schedule and a stopping 
criterion. The decoding performance is in general suboptomal. There is no guarantee that 
the sum-product algorithm will converge. Even if the algorithm converges, there is now 
no guarantee that it will converge to the correct likelihoods. However, such approximate 
iterative sum-product algorithms often work very well.  

 

Iterative algorithm:. First, all edges are initialized with a neutral message, i.e., a factor μ(·) 

= 1. All messages are then repeatedly updated, according to some schedule. The computation 
stops when a given number of iterations is achieved or when some other stopping condition is 
satisfied (e.g., when a valid codeword was found). 
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Appendix A 

BCJR Trellis of a Linear Block Code 

Consider a binary (n, k, d) linear block code C with parity-check matrix 

0 1 1[ ]n−=H h h h .  Let 0 2 1( , ,..., )nx x x −= ∈x C  be an arbitrary codeword, and let 

r=n-k. We use the column vectors si, 0 ≤ i ≤ n-1, to denote the state variables of the trellis 

corresponding to C. For BCJR trellis, 2
r

i ∈s F  is defined by 

s0 = 0, 

1
0

i

i i i i t t
t

x x+
=

= + =∑s s h h ,    0≤ i < n-1                     (A1) 

Clearly, sn is the syndrome of x and sn = 0 for all codewords. The next state si+1 is determined 
by the current state si and the current input xi. The tripe (si, si+1, xi) specifies the trellis 
branches in the trellis diagram. Thus a trellis can be constructed using (A1). The resulting 
trellis structure is irregular compared to the trellis of a convolutional code. The maximum 

number of states in the BCJR trellis is { }min 2 ,2k n k− . The BCJR trellis has the property that 

it has the smallest number of states. A trellis with this property is called a minimal trellis. 
 

As an example, the BCJR trellis for the (7, 4) cyclic Hamming code with 

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

H  

is shown in Fig. A1, where the trellis state 0 1 2( , , )T
i s s s=s  is labeled with the corresponding 

m-tuples over GF(2). 
The trellis has maximum of 8 states at time i = 3 and i = 4. 



 29

0

110

010

100

000

11

01

10

00

1

0

111

011

101

001

110

010

100

000

111

011

101

001 1

11

01

10

0000

S0
x0 x1

S1
x2 x3 x4 x5 x6

S2 S3 S4 S5 S6 S7

 
 

Figure A1. A trellis diagram for the (7, 4) Hamming code. 
 

The trellis diagram represents the 16 codewords of the Hamming code as the set of 
labeled paths obtained starting from the leftmost vertex and proceeding rightwards in the 

graph. The ith trellis section constrains the possible combinations of 1 1( , , )i i ix− −s s ; in fact, in 

this linear trellis example, these triples always form a linear code. For example, the 3rd section 
forms the local code that consists of the eight binary linear combinations of (00, 0, 000), (00, 
1, 111), (10, 0, 100), (10, 1, 011), and etc. This code may be regarded as a binary (6, 3) code, 
and is labeled as such in Fig. A3. 

 
Figure A3. The corresponding factor graph of figure A1 

 

Fig. A4 is the trellis of the (5,3) block code defined by 
1 1 0 1 0
0 1 1 0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

H . 
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Figure A4 

 
 

It is interesting to note that with a syndrome trellis there is no need to label the branches 
with the coded bits. A transition between two states with the same label (i.e., a horizontal 
branch) corresponds to coded bit 0, as seen from equation (A1): If the coded bit is 0, then the 
sum does not change. 

For some classes of codes, such as extended BCH codes and Reed-Muller codes, the 
trellis can be divided into sections. This results in a more regular and symmetric trellis 
structure with many parallel subtrellises, which may be used to build very high-speed Viterbi 
decoders for block codes. 
 

Appendix B 
Application Issues of Forney-Style Factor Graphs 

 
Factor graphs originate in coding theory, but they are applicable to many other areas. For 

example, a large number of practical algorithms for a wide variety of detection and estimation 
problems in signal processing can be derived as summary propagation algorithms. The 
algorithms derived in this way often include the best previously known algorithms as special 
cases or as obvious approximations. We now discuss the FFG in a more general sense, and 
describe the FFG models for several applications. Much of the material in this section is taken 
from [4]. 
 
Application Examples:  

 A main application of factor graphs is probabilistic models. (In this case, the sample 

space can usually be identified with the configuration space X.) For example, let X, Y, 

and Z be random variables that form a Markov chain. Then their joint probability density 

(or their joint probability mass function) ( , , )XYZp x y z can written as 

| |( , , ) ( ) ( | ) ( | )XYZ X Y X Z Yp x y z p x p y x p z y=  

This factorization is expressed by the FFG of Fig. 4.A5. 
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Figure 4.A5 An FFG of a Markov chain 

 
 A deterministic block diagram may also be viewed as a factor graph. Consider, for 

example, the block diagram of Fig. 4.A6, which expresses the two equations 
X = g(U, W)                            (A2) 
Z = h(X, Y )                            (A3) 

In the factor graph interpretation, the function block X = g(U, W) in the block diagram is 

interpreted as representing the factor ( )( , )x g U Wδ − , where δ(.) is the Kronecker delta 

function if X is a discrete variable or the Dirac delta if X is a continuous variable. Considered 
as a factor graph, Fig. 4.A6 thus expresses the factorization 

( , , , , ) ( ( , )) ( ( , ))f u w x y z x g u w z h x yδ δ= − ⋅ −  

Note that this function is nonzero (i.e., the configuration is valid) if and only if the 
configuration is consistent with both (A2) and (A3). 

 
Figure 4.A6 A block diagram 

 
 

Figure 4.A6 (b) The corresponding FFG 
 

 Besides the symbol representing equality constraint, other special symbols are also used 
for frequently occurring local functions. For example, we will use the zero-sum constraint 
node shown in Fig. 4.A7(a), which represents the local function 

( , , ) ( )f x x x x x xδ+ ′ ′′ ′ ′′= + +  

Clearly, X +X’ +X’’ = 0 holds for every valid configuration. Both the nodes in Figs. 4.A7 (b) 

and (c) represent the constraint X +X’ =X’’, or, equivalently, the factor ( )x x xδ ′ ′′+ − . Both 

the equality constraint and the zero-sum constraint can obviously be extended to more than 
three variables. 
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Fig. 4.A7 

 
  FFG for Channel Models 

A channel model is a family p(y|x) of probability distributions over a block 

1 2( , ,..., )Ny y y=y  of channel output symbols given any block 1 2( , ,..., )Nx x x=x  of channel 

input symbols. Two examples of channel models are shown in Figs. 4.A8 and A9. Fig. 4.A8 
shows a memoryless channel with 

1

( | ) ( | )
N

n n
n

p p y x
=

=∏y x  

Fig. 4.A9 shows a state-space representation with internal states S0, S1, . . . , Sn : 

0 1
1

( , | ) ( ) ( , | , )
N

n n n n
n

p p s p y s x s −
=

= ∏y s x  

Such a state space representation might be, e.g., a finite-state trellis as in Fig. 4.6.6., or a 
linear model. 

 
Figure 4.A8 
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Figure 4.A9 

 

 FFG for Signal mapper 
Consider the mapper shown in Fig. 4.A10, where two binary symbols, XA and XB, are 

mapped to a 4-PAM symbol Z. Let 2 2: { 3, 1, 1, 3}f × → − − + +F F  be this mapping and assume 

that xA is mapped to the more significant bit of z. In an FFG, the mapper becomes a factor 
node with local function 

1,     if ( , )
( , , )

0,     otherwise        
A B

f A B

f x x z
I x x z

=⎧
≡ ⎨
⎩

 

 
 
 
 
 
 

Figure 4.A10 Bits-to-symbol mapper 
 
The computation of all messages in and out of the node (cf. Fig. 4.A11) is immediate from the 
sum-product rule. For example, we have 

in out in
,

( ) ( , , ) ( ) ( )
A B

B

X A f A B X B Z
x z

x I x x z x zμ μ μ= ∑  

which expands to 

in out in out in(0) (1) ( 3) (0) ( 1)
A B BX X Z X Zμ μ μ μ μ= ⋅ + + ⋅ +  

in out in out in(1) (0) ( 1) (1) ( 3)
A B BX X Z X Zμ μ μ μ μ= ⋅ − + ⋅ −  

 
 
 
 
 
 

 
f 

XA 

XB 

Z 

-3      -1       +1      +3 

11      10      00      01 

out AXμ  

 
f 

out BXμ  

outZμ  
f 

out BXμ

inZμ  

in AXμ
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Figure 4.A11 Messages through the mapper 
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