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Chapter 3  Performance Bounds of Coded Communication Systems 
 
 Since the error performance of coded communication systems rarely admits exact 
expressions, tight analytical upper and lower bounds serve as a useful theoretical and 
engineering tool for assessing performance and for gaining insight into the effect of the main 
system parameters. As specific good codes are hard to identify, the performance of ensembles 
of codes is usually considered.  

In this chapter we will study the bounding techniques used for performance analysis of 
coded communication systems, with emphasis on the understanding of Bhattacharyya bound 
and Gallager bound. In particular, Gallager bound provides a better upper bound on the ML 
decoding error probability for a specific code and ensemble of random/structured codes. 
(Gallager bound was introduced in [Gallager65] as an efficient tool to determine the error 
exponents of the ensemble of random codes, providing informative results up to the ultimate 
capacity limit.) 
   We will also show that it is possible to approach capacity on arbitrary DMCs with coding. 

It should be pointed out that although maximum-likelihood (ML) decoding is in general 
prohibitively complex for long codes, the derivation of upper and lower bounds on the ML 
decoding error probability is of interest, providing an ultimate indication of the system 
performance. 

  
Note: The materials presented in Sections 3.3 through 3.7 are based largely on Massey’s 
lecture notes. 
 
3.1 Mathematical Preliminaries 
3.1.1 Basic Inequalities 

 Markov Inequality 
The Markov inequality states that if a non-negative random variable Y has a mean E[Y], 
then the probability that the outcome exceeds any given number satisfies 

[ ]( ) YP Y y
y

≥ ≤
E                             (3.1) 

 Chebyshev Inequality 

Let Z be an arbitrary random variable with finite mean E[Z] and finite variance 2
Zσ . 

Define Y as the non-negative random variable 2( [ ])Y Z Z= −E . The E[Y] = 2
Zσ . 

Applying (3.1), 

{ }
2

2( [ ]) ZP Z Z y
y

σ
− ≥ ≤E  
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Replacing y with ε2 (for any ε>0), this becomes the well-known Chebyshev inequality 

{ }
2

2| [ ] | ZP Z Z σε
ε

− ≥ ≤E                        (3.2) 

 Chernoff Bound (or Exponential bound) 
Let Y = exp(sZ) for some arbitrary random variable Z that has a moment generating 

function ( ) [exp( )]Zg s sZ= E  over some open interval of real values of s including s=0. 

Then, for s in that interval, (3.1) becomes 

{ } ( )exp( ) Zg sP sZ y
y

≥ ≤  

Letting y = exp(sδ) for some constant δ, we have 

( ) [ ],    for 0
( ) [ ],    for 0

s sZ

s sZ

P Z e e s
P Z e e s

δ

δ

δ

δ

−

−

≥ ≤ ≥

≤ ≤ ≤

E
E

                   (3.3) 

The bounds can be optimized over s to get the strongest bound. 
 Jensen’s Inequality 

If f is a convex-∪ function and X is a random variable, then 

[ ( )] ( [ ])f X f X≥E E                         (3.4) 

Moreover, if f is strictly convex, then equality in (3.4) implies that X=E[X] with 
probability 1, i.e., X is a constant. 

 The Union Bound 
For sets A and B, we have 

( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩  

Since ( ) 0P A B∩ ≥ ,  

( ) ( ) ( )P A B P A P B∪ ≤ +  

 
3.2 Block Coding Principles 

In the following discussions, we will restrict our attention to block encoders and 
decoders. 

Consider a discrete memoryless channel (DMC) with input alphabet 1 2{ , ,..., }X Ka a a=A  

and output alphabet 1 2{ , ,..., }Y Jb b b=A . A block code of length N with M codewords for such 

a channel is a list 1 2( , ,..., )Mx x x , each item of which is an N-tuple of elements from AX. See 

Fig. 3.1. We will denote the incoming message index by Z, whose possible values are integers 
from 1 through M = 2L, where L is the length of input binary data sequence. We assume that 
when the information sequence corresponding to integer m enters the encoder, the codeword 
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1 2( , ,..., )m m m mNx x x=x  is transmitted. 

Let 1 2( , ,..., )Ny y y=y  be the output sequence from the channel corresponding to a 

codeword input. If message m enters the encoder, xm is transmitted, and on the basis of the 
received sequence y, the decoder produces an integer m̂ . A block error occurs if m̂ m≠ . We 

will denote the probability of block decoding error by ˆ( ) Pr( )BP e Z Z= ≠ . 

 
 
 
 
 
 
 
 
 

Figuer 3.1 

For a given DMC, given block length N and given code size M, there are ( )N M MNK K=  

different block codes since there are KN choices for each codeword in the list of M codewords. 

There are 
NJM  different decoders since there are M choices of Ẑ  for each of the JN values 

of Y. Each such decoder could be used with any such encoder so there are 
NMN JK M  

different coding systems. How do we find a good system from the bewildering array of 
choices? 

 
 Encoding and Decoding Criterion 

The measure of goodness for a block code with M codewords of length N for a given 
channel is the smallness of the block error probability PB(e) when the codeword are equally 

likely and an ML decoder is used. Denote ˆ ( )Z f Y= , where f is the decoding function. The 

ML decoding rule may be described as follows. 
 

The ML decoding rule: For each N-tuple y of channel output symbols, the decoder decodes y 
into message m, i.e., f(y) = m, where m is (any one of) the index(es) that maximizes 

( | )N mP y x . It can be expressed simply as 

ˆ ( ) arg max ( | )N mm
m f P= =y y x  

where ( | )N mP y x  is the probability of receiving a sequence y given that the mth codeword is 

transmitted. 

Source Encoder 

DMC 

Decoder Sink 

1( ,..., )NX X=X  Z 

1( ,..., )NY Y=YẐ
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In the case of a DMC used without feedback, this becomes 

,
1

ˆ ( ) arg max ( | )
N

n m nm n

m f P y x
=

= = ∏y  

 
3.3 Codes with Two Codewords – the Bhattacharyya Bound 

We will denote the set of received sequences decoded into message m as Dm; i.e.,  

{ }| ( )N
m Y f m= ∈ =y yD A  

which is called the decision region for message m. Since the output sequence y is decoded 

(/mapped) to exactly one message, Dm’s form a collection of disjoint sets whose union is N
YA ; 

i.e., 
,    for all 
                     

i j
N

i Y
i

i jφ∩ = ≠⎧⎪
⎨ =
⎪⎩
∪
D D
D A  

Thus, the probability of decoding error, when message m is sent, is defined as 

ˆ( | ) Pr( | ) Pr( | )B m mP e m Z Z Z m≡ ≠ = = ∉y xD  

1 Pr( | ) ( | )
m

m m N mP
∉

= − ∈ = ∑
y

y x y x
D

D                (3.5) 

The overall probability of decoding error, if the message have a priori distribution Pr(m), is 
then given by 

1

( ) Pr( ) ( | )
M

B B
m

P e m P e m
=

= ∑                        (3.6) 

Equations (3.5) and (3.6) apply to any block code and any channel. In particular, the case is 
simple when M = 2. In this case, the error probability, when message 2 is transmitted, is 

1

2( | 2) ( | )B NP e P
∈

= ∑
y

y x
D

                       (3.7) 

We observe that,  

for y∈D1, 1 2( | ) ( | )N NP P≥y x y x  

for ML decoding. It also implies that 1 2( | ) ( | )s s
N NP P≥y x y x , 0 < s < 1, and hence that 

1
2 2 1( | ) ( | ) ( | )s s

N N NP P P−≤y x y x y x                    (3.8) 

Substituting (3.8) into (3.7) and letting s=1/2, we have 

1

1 2( | 2) ( | ) ( | )B N NP e P P
∈

≤ ∑
y

y x y x
D

                   (3.9) 

Similarly, 

2

1 2( |1) ( | ) ( | )B N NP e P P
∈

≤ ∑
y

y x y x
D

                  (3.10) 
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Combining (3.9) and (3.10), we obtain 

1 2( |1) ( | 2) ( | ) ( | )B B N NP e P e P P+ ≤ ∑
y

y x y x                (3.11) 

Notice that the summation is now over all y and hence is considerably easier to evaluate. 
Because PB(e|1) and PB(e|2) are non-negative, the R.H.S. of (3.11) is an upper bound on each 
of these conditional error probabilities. Thus, we have 

1 2( | ) ( | ) ( | )B N NP e m P P≤ ∑
y

y x y x ,   m = 1, 2             (3.12) 

For the special case of a DMC, it simplifies to 

1 2
1

( | ) ( | ) ( | )
N

B n n
n y

P e m P y x P y x
=

≤ ∏∑ ,   m = 1, 2             (3.13) 

where we have written the dummy variable of summation as y rather than yn. The bound in 
(3.12) and (3.13) are known as the Bhattacharyya bound on error probability. 
Defining 

2 1 2log ( | ) ( | )B N Nd P P
⎡ ⎤

= − ⎢ ⎥
⎣ ⎦
∑

y

y x y x                      (3.14) 

which we will call the Bhattacharyya distance between the two channel input sequences, we 
can rewrite (3.12) as 

( | ) 2 Bd
BP e m −≤ ,  m = 1, 2 

In the special case of a binary-input DMC and the repetition code of length N, (3.13) becomes 

( | ) ( | 0) ( |1)
N

B
y

P e m P y P y
⎛ ⎞

≤ ⎜ ⎟
⎝ ⎠
∑ ,    m = 1, 2 

which can be written as  

( | ) 2 BND
BP e m −≤ ,  m = 1, 2 

where 

2log ( | 0) ( |1)B
y

D P y P y
⎡ ⎤

= − ⎢ ⎥
⎣ ⎦
∑  

Note: The bound in (3.12) can also be interpreted as a Chernoff bound as follows. 

2
1

1

( | )( |1) Pr log 0  sent
( | )

N
B

N

PP e
P

⎛ ⎞
= ≥⎜ ⎟⎜ ⎟

⎝ ⎠

y x x
y x

1

0 2 2
|

1 1

( | ) ( | )exp log
( | ) ( | )

s
s N N

Y X
N N

P Pe E s E
P P

− ⋅ ⎧ ⎫⎛ ⎞ ⎡ ⎤⎪ ⎪≤ ⋅ =⎨ ⎬⎜ ⎟ ⎢ ⎥
⎪ ⎪⎝ ⎠ ⎣ ⎦⎩ ⎭

y x y x
y x y x

 

Hence, 12
1 1 2

1

( | )( |1) ( | ) ( | ) ( | )
( | )

s
s sN

B N N N
N

PP e P P P
P

−⎡ ⎤
≤ =⎢ ⎥

⎣ ⎦
∑ ∑

y y

y xy x y x y x
y x

. 
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3.4 Codes with Many Codewords – the Union Bhattacharyya Bound and Gallager 
Bound 

3.4.1 Union Bhattacharyya Bound 

We now consider generalizing the bound in (3.12) to a code 1 2{ , ,..., }M= x x xC  with 

many codewords. Since the complement of Dm is given by m
m m

′
′≠
∪ D , and noting that 

, 1, 2,...,i i M=D  are disjoint decision regions, we have ((3.5)也可直接写为(3.15)) 

'
'

( | ) Pr  B m m
m m

P e m sent
≠

⎛ ⎞
= ∈⎜ ⎟

⎝ ⎠
y x∪ D  

      ( )'
'

Pr |  m m
m m

sent
≠

= ∈∑ y xD  

'' 1
'

( | )
m

M

N m
m
m m

P
= ∈
≠

= ∑ ∑
y

y x
D

                        (3.15) 

Note that, for ML decoding, 

' '( | ) ( | )m N m N mP P∈ ⇒ ≥y y x y xD  

Since every y ∈ Dm’ can also be put into the decoding region 2D′  of an ML decoder for the 

code 1 2 '( , ) ( , )m m′ ′ =x x x x  with only two codewords, we see that 

' 2 2

1( | ) ( | ) ( | ) ( |1)
m

N m N m N B
D D

P P P P e
′ ′∈ ∈ ∈

′ ′≤ = ≡∑ ∑ ∑
y y y

y x y x y x
D

             (3.16) 

 

1D
2D

mD

1′D
2′D

Assuming ' 1m =1Say x

Say mx

1Say ′x

2Say ′x

1 2{ , ,..., }M= x x xC 1 2 '' { , } { , }m m′ ′= =x x x xC

' 2Put  into m ′∈y D D

 

Figure 3.2 Illustration of observation space and decision regions 
 

Invoking the Bhattacharyya bound (cf. (3.10)) in (3.16), we have 
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' 2

'( | ) ( | ) ( | )
m

N m N m N m
D

P P P
′∈ ∈

≤∑ ∑
y y

y x y x y x
D

 

'( | ) ( | )N m N mP P≤ ∑
y

y x y x                      (3.17) 

Substituting (3.17) into (3.15), we obtain the so-called union Bhattacharyya bound: 

'
' 1
'

( | ) ( | ) ( | )
M

B N m N m
m
m m

P e m P P
=
≠

≤ ∑ ∑
y

y x y x ,   m=1,2,…,M           (3.18) 

In particular, for memoryless channels, 

'
' 1 1

( | ) ( | ) ( | )
M N

B mn m n
m n y

P e m P y x P y x
= =

≤ ∑∏∑ ,   m=1,2,…,M           (3.19) 

 
3.4.2 Gallager Bound 
For an ML decoder, we know that 

'( | ) ( | )m N m N mP P∉ ⇒ ≥y y x y xD   for some m’ ≠ m. 

Then we have 

'

' 1
'

( | ) 1
( | )

sM
N m

m N m
m m

P
P=

≠

⎡ ⎤
≥⎢ ⎥

⎣ ⎦
∑ y x

y x
,  for any s>0 

since at least one term in the summation will itself be at least one and then the sum is at least 
one. We can raise both sides of the above equation to the power of some non-negative 
parameter ρ ≥0 and preserve the inequality, i.e., 

'

' 1
'

( | ) 1
( | )

sM
N m

m
m N m
m m

P
P

ρ

=
≠

⎧ ⎫
⎡ ⎤⎪ ⎪∉ ⇒ ≥⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

∑ y xy
y x

D ,  for any s>0 and any ρ≥0      (3.20) 

Note that (3.20) can be written as 

'
' 1
'

( | ) ( | ) 1
M

s s
N m N m

m
m m

P P

ρ

ρ−

=
≠

⎡ ⎤
⎢ ⎥ ≥
⎢ ⎥
⎢ ⎥⎣ ⎦
∑y x y x ,  any s>0 and any ρ≥0        (3.21) 

By multiplying each of terms in the summation in (3.5) by the L.H.S. of (3.21), we can see 
that the error probability is upper-bounded by 

1
'

' 1
'

( | ) ( | ) ( | )
m

M
s s

B N m N m
m
m m

P e m P P

ρ

ρ−

∉ =
≠

⎡ ⎤
⎢ ⎥≤ ⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑
y

y x y x
D

                (3.22) 

Letting s = 1/(1+ρ) and extending the summation in (3.22) to all y, we have the so-called 
Gallager bound. 

 Gallager Bound: When the code 1 2{ , ,..., }M= x x xC  of length N is decoded by an 

ML decoder, then 
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1 1
1 1

'
' 1
'

( | ) ( | ) ( | )
M

B N m N m
m
m m

P e m P P

ρ

ρ ρ+ +

=
≠

⎡ ⎤
⎢ ⎥≤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑
y

y x y x ,   m=1,…,M and any ρ≥0     (3.23) 

If the channel is memoryless, it becomes 

1 1
1 1

'
1 ' 1

'

( | ) ( | ) ( | )
N M

B mn m n
n y m

m m

P e m P y x P y x

ρ

ρ ρ+ +

= =
≠

⎡ ⎤
⎢ ⎥≤
⎢ ⎥
⎢ ⎥⎣ ⎦

∏∑ ∑                 (3.24) 

We can see that, when optimized by choice of ρ, the Gallager bound is strictly tighter 
than the Bhattacharyya bound except when ρ = 1. (It is clear that the union bound (3.18) is a 
special case of Gallager bound obtained by setting ρ = 1.) Notice that unless the code and 
channel possess a high degree of simplifying symmetry, both bounds are too complicated to 
calculation in most practical cases. 

The Gallager bound is sometimes expressed as 

'

' 1
'

( | )( | ) ( | )
( | )

sM
N m

B N m
m N m
m m

PP e m P
P

ρ

=
≠

⎡ ⎤
⎛ ⎞⎢ ⎥≤ ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑
y

y xy x
y x

,     s>0, ρ≥0           (3.25) 

 
3.5 Ensemble Average Performance of Codes with Two Codewords 

In this section, we consider random coding and evaluate the average PB(e|m) for codes 
with two codewords. Suppose that, for a given channel and given N, one has calculated 
PB(e|m) with ML decoding for every length-N block code with two codewords. Note that the 
error probabilities PB(e|m) are now (random) variables, dependent on the used specific code. 

To make the dependence on the code explicit, we write | 1 2( , )e mP x x  to denote PB(e|m) for 

some ML decoder for the particular code 1 2{ , }= x xC . 

Let QN(x) be an arbitrary probability assignment on the set of channel input sequences of 
length N. Now consider the ensemble of codes where the codewords are selected 
independently using the probability assignment QN(x). The expected value of PB(e|m) over the 
ensemble is then given by 

1 2

| 1 2 1 2( | ) ( , ) ( ) ( )B e m N NP e m P Q Q= ∑∑
x x

x x x x    m= 1, 2 

By symmetry, ( |1) ( | 2)B BP e P e= . From (3.12), ( | )BP e m  is upper-bounded by 

1 2

1 2 1 2( | ) ( | ) ( | ) ( ) ( )B N N N NP e m P P Q Q≤ ∑∑∑
x x y

y x y x x x  

1 2

1 1 2 2( | ) ( ) ( | ) ( )N N N NP Q P Q
⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ ∑ ∑
y x x

y x x y x x ,  m=1, 2    (3.26) 

Note that x1 and x2 in (3.26) are simply dummy variable of summation, (3.26) may reduced to 
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2

( | ) ( ) ( | )B N NP e m Q P⎡ ⎤≤ ⎢ ⎥⎣ ⎦
∑ ∑

y x

x y x ,  m=1, 2            (3.27) 

To specialize (3.27) to a memoryless channel, we choose 

1

( ) ( )
N

N n
n

Q Q x
=

= ∏x                             (3.28) 

That is, we are considering an ensemble in which each letter of each codeword is selected 
independently with the probability mass function Q(ak). Then for a DMC, (3.27) becomes 

1

2

1

( | ) ... ( ) ( | )
N n

N

B n n n
y y n x

P e m Q x P y x
=

⎡ ⎤
≤ ⎢ ⎥

⎣ ⎦
∑ ∑ ∏∑  

2

1

( ) ( | )
n n

N

n n n
n y x

Q x P y x
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∏∑ ∑                      (3.29) 

Recognizing that xn and yn are now dummy variables of summation, we can rewrite (3.29) as 
2

( | ) ( ) ( | )
N

B
y x

P e m Q x P y x
⎧ ⎫⎡ ⎤⎪ ⎪≤ ⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
∑ ∑ ,  m = 1, 2          (3.30) 

This is an upper bound on the average error probability over an ensemble of codes with two 
codewords of length N. 

To emphasize the exponential dependence on the code length N, we rewrite (3.30) as 
2

2log ( ) ( | )

( | ) 2 y x

N Q x P y x

BP e m

⎧ ⎫⎡ ⎤⎪ ⎪− − ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑
≤  

We are free to choose Q(x) so that we obtain the tightest upper bound 
0( | ) 2 NR

BP e m −≤  

where  
2

0 2max log ( ) ( | )
Q y x

R Q x P y x
⎧ ⎫⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

∑ ∑                  (3.31) 

Due to monotonicity of the log function, an equivalent expression for R0 is 
2

0 2log min ( ) ( | )
Q y x

R Q x P y x
⎧ ⎫⎡ ⎤⎪ ⎪= − ⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

∑ ∑                  (3.32) 

The quantity that we have denoted R0 is usually called the cut-off rate of the DMC. 
For symmetric channels, an equiprobable distribution on the channel input alphabet, 

Q(x)=1/K, ∀x∈AX, achieves the extremum. In this case, 

2

0 2 2
1log log ( | )

y x

R K P y x
K

⎧ ⎫⎡ ⎤⎪ ⎪= − ⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
∑ ∑  

In particular, for the BSC, 
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2

0 2
1log ( | )
2y x

R P y x⎡ ⎤= − ⎢ ⎥⎣ ⎦
∑ ∑  

21 log 1 ( | 0) ( |1)
y

P y P y
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

∑ 21 log 1 2 (1 )p p⎡ ⎤= − + −⎣ ⎦       (3.33) 

 
3.6 Ensemble Average Performance of Codes with Many Codewords 

We now compute the ensemble average (with respect to code selection, keeping m fixed) 
performance for codes with many codewords. Taking expectation in (3.18), we obtain 

'
' 1
'

( | ) ( | ) ( | )
M

B N m N m
m
m m

P e m P P
=
≠

⎡ ⎤
≤ ⎢ ⎥

⎣ ⎦
∑ ∑

y
y X y XE ,   m=1,2,…,M         (3.34) 

If the probability assignments to the encoders satisfy the condition of pairwise independence 
of codewords, i.e., 

' '( , ) ( ) ( )N m m N m N mQ Q Q=x x x x ,  all m’ ≠ m                (3.35) 

for all choices of xm and xm’, then it follows that 
2

( | ) ( 1) ( ) ( | )B N NP e m M Q P⎡ ⎤≤ − ⎢ ⎥⎣ ⎦
∑ ∑

y x

x y x ,   m=1,2,…,M         (3.36) 

One simple way to get the pairwise independence in (3.35) is to make all the codeword 
independent; i.e., to assign probability 

1
1

( ,..., ) ( )
M

N M N m
m

Q Q
=

= ∏x x x                      (3.37) 

to the encoder for 1 2{ , ,..., }M= x x xC . 

For a DMC, using (3.37) we have 
0( | ) ( 1)2 NR

BP e m M −≤ −  

Since 1 2NRM M− < ≤ , we have that the ensemble average error probability is 
upper-bounded by 

 0 0( )( | ) 2 2 2NR N R RNR
BP e m − − −≤ ⋅ =                      (3.38) 

By introducing the Bhattacharyya exponent 0( )BE R R R= − , (3.38) can be written as 

( )( | ) 2 BNE R
BP e m −≤                            (3.39) 

This is the random coding union bound for block codes. The exponent EB(R) is shown in Fig. 
3.3. 
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Figure 3.3 The Bhattacharyya exponent of the random coding union bound. 

 
Since R0 has the same dimension as the code rate, R0 is often called the cutoff rate. 
 
3.7 Gallager’s Version of the Coding Theorem for a DMC 

We now consider averaging the Gallager bound in (3.23) over an ensemble of codes with 
many codewords. Rather than bounding E[PB(e|m)] directly over the ensemble of codes, we 
begin with bounding the conditional expectation of PB(e|m) given that the mth codeword is a 
particular vector x’. From (3.23), we have 

[ ]
1 1

1 1
'

' 1
'

( | ) | ' ( | ') ( | ) '
M

B m N N m m
m
m m

P e m P P

ρ

ρ ρ+ +

=
≠

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥= ≤ =⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

∑ ∑
y

X x y x y X X xE E , for all ρ≥0 (3.40) 

Note that ( )f ρα α=  is convex-∩ in the interval α > 0 when 0≤ρ≤1 (since 

2( ) ( 1) 0f ρα ρ ρ α −′′ = − ≤ ). By invoking Jensen’s inequality, we obtain 

[ ]
1 1

1 1
'

' 1
'

( | ) | ' ( | ') ( | ) '
M

B m N N m m
m
m m

P e m P P

ρ

ρ ρ+ +

=
≠

⎧ ⎫⎡ ⎤⎪ ⎪= ≤ =⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑
y

X x y x y X X xE E     (3.41) 

We choose the same ensemble of codes as we did in the previous section, and assume that the 
probability assignments satisfy (3.35). Thus, 

1 1
1 1

' '( | ) ' ( | )N m m N mP Pρ ρ+ +
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

y X X x y XE E  

1
1( ) ( | )N NQ P ρ+= ∑

x

x y x                   (3.42) 

Substituting (3.42) into (3.41) yields 

[ ]
1 1

1 1( | ) | ' ( | ') ( 1) ( ) ( | )B m N N NP e m P M Q P
ρ

ρρ ρ+ +
⎧ ⎫⎪ ⎪= ≤ − ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑
y x

X x y x x y xE        (3.43) 
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Therefore, 

[ ]
'

( | ) ( ') ( | ) | 'B N B mP e m Q P e m= =∑
x

x X xE  

1 1
1 1

'

( ') ( | ') ( 1) ( ) ( | )N N N NQ P M Q P
ρ

ρρ ρ+ +
⎧ ⎫⎪ ⎪≤ − ⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑ ∑
y x x

x y x x y x  

11
1( 1) ( ) ( | )N NM Q P

ρ

ρ ρ

+

+
⎧ ⎫⎪ ⎪= − ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑
y x

x y x ,   0≤ρ≤1                (3.44) 

Inequality (3.44) is Gallager’s celebrated random coding bound and applies for ML decoding 
for any block code on any discrete channel. For the special case of a DMC and the choice 
(3.28) for QN(x), (3.44) reduces to 

11
1( | ) ( 1) ( ) ( | )

N

B
y x

P e m M Q x P y x
ρ

ρ ρ

+

+
⎧ ⎫⎡ ⎤⎪ ⎪≤ − ⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∑ ,    0≤ρ≤1       (3.45) 

Considering 1 2NRM M− < ≤ , we have 

11
1( | ) 2 ( ) ( | )

N

NR
B

y x
P e m Q x P y x

ρ

ρ ρ

+

+
⎧ ⎫⎡ ⎤⎪ ⎪≤ ⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∑  

= 0[ ( , ) ]2 N E Q Rρ ρ− − ,     0≤ρ≤1, m=1,…,M              (3.46) 

where  
1

1/(1 )
0 2( , ) log ( ) ( | )

y x

E Q Q x P y x
ρ

ρρ
+

+⎡ ⎤= − ⎢ ⎥⎣ ⎦
∑ ∑              (3.47) 

Since (3.46) is valid for each message index m in the code, we see that the average error 
probability over the messages satisfyies 

1

( ) Pr( ) ( | )
M

B B
m

P e m P e m
=

= ∑ 0[ ( , ) ]2 N E Q Rρ ρ− −≤                   (3.48) 

Since ρ and Q are arbitrary in (3.47), we get the tightest bound by choosing ρ and Q to 
maximizing [E0(ρ, Q)-ρR]. Thus, we define the random coding exponent as 

00 1
( ) max max[ ( , ) ]G Q

E R E Q R
ρ

ρ ρ
≤ ≤

= −                      (3.49) 

which will be also called the Gallager exponent. With this definition, we have 
( )( ) 2 GNE R

BP e −≤                               (3.50) 

 
3.7.1 Properties of EG(R) 

 It is seen that 0( ) ( )G BE R E R R R≥ = −  with equality iff ρ = 1 is maximizing in 

(3.49). This follows from the fact that 0 0max (1, )
Q

E Q R= . 
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 We rewrite (3.49) as ( ) max ( , )G GQ
E R E R Q= , where 

00 1
( , ) max[ ( , ) ]GE R Q E Q R

ρ
ρ ρ

≤ ≤
= −                    (3.51) 

We can see that EG(R, Q) has the following properties. See Fig. 3.4. 
a) EG(0, Q) = E0(1, Q) 
b) EG(R, Q) is linear with slope –1 in the interval 0 ≤ R ≤ Rc(Q), where 

0

1

( , )( )c
E QR Q

ρ

ρ
ρ =

∂
=

∂
 

c) EG(R, Q) is convex-∪ and positive in the interval 0 ≤ R ≤ IQ(X; Y), where 

( ; ) ( ; ) |
XQ P QI X Y I X Y ==

( | )( ) ( | ) log
( ) ( | )k j

i

P j kQ k P j k
Q i P j i

= ∑∑ ∑
 

 
 It follows immediately from ( ) max ( , )G GQ

E R E R Q=  that EG(R) is just the upper 

envelope of the curves EG(R, Q) taken over all Q. It has the following properties. See 
Fig. 3.5. 
a) 0 00 1

(0) max (1, )GE E Q R
ρ≤ ≤

= = . 

b) EG(R) is linear with slope –1 in the interval 0≤R≤Rc, where 
0:
max ( )c cQ R achieving

R R Q
−

=  

c) EG(R) is convex-∪ and positive in the interval 0 ≤ R ≤ C, where C is the capacity 
of the DMC. 
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Figure 3.4 The general form of the exponent EG(R, Q) 

 
Figure 3.5 The general form of the Gallager exponent EG(R) 

 

 
Each pair of Q and ρ corresponds to a line with slope -ρ. Up to Rcrit ρ=1 achieves 
maximum. 
 

 
3.7.2 Gallager’s Coding Theorem for a DMC 

Since at least one code in the ensemble has error probability as good as ensemble average 
(3.50), we then have the fundamental coding theorem for DMCs. 

 Noisy-Channel Coding Theorem: Given a DMC with capacity C, there exist block 
codes with M=2NR codewords of length N, each with fixed rate R < C, for which the 
block error probability of a ML decoder diminishes to zero exponentially fast in N. 
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Similar results are obtainable for channels with discrete input alphabets and continuous output 
alphabets. 
 
3.7.3 A Summary of Performance Bounds 

 For a specific code with two codewords:  
- Bhattacharyya bound (3.12) 

 For a specific code with many codewords: 
- Union Bhattacharyya bound (3.18) 
- Gallager bound (3.23) 

 For ensembles of random codes with two codewords: 
- Cutoff rate (3.31) 

 For ensembles of random codes with many codewords: 
- Random coding union bound: Bhattacharyya exponent (3.39) 
- Gallager’s random coding bound (3.46): Gallager exponent (3.48) 

 
3.8 Random Coding Bound for Trellis Codes 

The R0 and capacity theory is pertinent to the ensemble of trellis codes as well. A detailed 
discussion can be found in Viterbi and Omura [2]. We briefly present some results below. 

Viterbi showed that for the ensemble of (n0, k0) convolutional codes of rate R over a 
DMC, the average bit error probability satisfies 

( , )( ) ( )2 t tN E R
b vP e c εε −<                          (3.52) 

where 0( 1)tN T n= +  (T is the memory order of the encoder) is the constraint length, and 

cv(ε) is a constant given by 
0

0 2

2( )
(1 2 )

k

v nc εε =
−

 

Here, ε is an arbitrary positive number. Et(R, ε) is a random coding exponent for trellis codes, 
and given by 

0 0
*

0 0

,               for 
( , ) max ( , ),    t

Q

R R R
E R E Q R R C

ε
ε ρ ε ε

< −⎧⎪= ⎨ − < < −⎪⎩
                (3.53) 

where ρ* (which depends Q) is the solution to 
*

0
*

( , )E Q Rρ ε
ρ

−
=  

and C is the capacity of the DMC. 
By choosing ε as small as we like, we see that the best exponent that can be achieved at 

rate R is 

0
( ) lim ( , )V tE R E R

ε
ε

→
=                            (3.54) 

which will be referred to as Viterbi exponent. In other word, 
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0 0
*

0 0

,                for 
( ) max ( , ),    for V

Q

R R R
E R E Q R R Cρ

<⎧⎪= ⎨ < <⎪⎩
                   (3.55) 

where ρ* is the solution to * *
0( , ) /E Q Rρ ρ = . 

The general form of EV(R) is sketched in Fig. 3.6. We can see that 
EV(R) > EG(R),   for 0≤R<C 

 
Figure 3.6 The general form of EV(R) and EG(R). 

 
Remark: 

 Error exponents provide us with a tool for comparing codes. 
 It yields a technique for analyzing random ensembles of codes. 
 Of course, in comparing coding techniques, other issues such as decoding complexity 

and decoding delay must be taken into account. 
 There is a potentially large coefficient cv(ε) in the bound for trellis codes. 

 
3.9 Application of Gallager Bound 

We have derived the upper bound on the ML decoding error probability for a particular 
code and the ensemble of random codes. Furthermore, the Gallager bounds can also be 
applied to a specific structured code and ensembles of structured codes. It is suitable for both 
block and bit error probability analysis. The guideline is as follows. The detailed discussion 
will be provided in Chapter 4. 

By partitioning a binary linear block code into constant Hamming-weight subcodes, a 
union bound over the subcodes yields 

min

|0( | 0) ( )
N

B e
d d

P e P d
=

≤ ∑  

where dmin is the minimum Hamming distance of the block code of length N, and Pe|0(d) is the 



 3-17

conditional decoding error probability with respect to the subcode with a constant Hamming 
weight d. 
 In fact, many existing upper bounds can be regarded as variations of the Gallager bound. 
The interconnections between them are depicted in Fig. 3.7. See [R1] for details. 

 
Figure 3.7 

 
C. Schlegel provides in [6, chapter 6] a brief discussion on the error exponent of an 

8-PSK constellation over the AWGN channel. Refer to Fig. 3.8, where the uniform input 
symbol distribution is assumed, and E0(ρ) = E0(ρ, uniform distribution) and R0 = R0(uniform 
distribution). For the AWGN channel, 

1
1/(1 )

0 2( , ) log ( ) ( | )
y

x
E Q x p y x dy

ρ
ρρ

+
+⎛ ⎞

− ⎜ ⎟
⎝ ⎠
∑∫Q  

where 1( ,..., )Mq q=Q  is the probability with which x is chosen from a signal set AX of size 

M=|A|, and p(y|x) is the conditional probability of the channel output signal. 
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Figure 3.8: Error exponent as a function of the rate R for an 8-PSK constellation on an 
AWGN-channel at a signal-to-noise ratio of Es/N0 = 10dB. 
 

 Code Complexity 
The last, and somewhat hidden player in the application of coding is complexity. First 

there is what we might term code complexity. In order to approach the Shannon bound, larger 
and larger codes are required. In fact, Shannon et. al. [] proved the following lower bound on 
the codeword error probability PB: 

( ) [ ]( ) ( )
01

2 ;    ( ) max max ( , )spN E R o N
B spP E R E R

ρ
ρ ρ− +

>
> = −

Q
Q  

The bound is plotted for rate R = 1/2 in Figure 3.9 for BPSK modulation [6], together 
with selected Turbo coding schemes and classic concatenated methods. The performance of 
various length codes follows in parallel to the bound, and we see that there is codesize of 
limiting return at N ≈ 104--105, beyond which only small gains are possible. This is the reason 
why most practical applications of large codes target block sizes no larger than this. On the 
other hand, codes cannot be shortened much below N = 104 without a measurable loss in 
performance. Implementations of near-capacity error control systems therefore have to 
process blocks of 10,000 symbols or more, requiring appropriate storage and memory 
management. 
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Figure 3.9: Block error rate PB and sphere-packing lower bound for rate R = 1/2 coded 
example coding systems using BPSK. Turbo codes and selected classic concatenated coding 
schemes are compared. 
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Figure. 3.10 The bit error performance of the same coding schemes as a function of the block 
length N. 

 
The other component of the complexity consideration is the computational complexity; 

that is, the amount of processing that has to be performed to decode a codeword. 
 
3.10 Achieving Capacity on Arbitrary DMCs with binary Codes 

In Chapter 6 of [3], Gallager proved a coding theorem for parity-check codes, which may 
be addressed as follows. 

 Theorem: Binary linear codes can be used to achieve capacity on an arbitrary discrete 
memoryless channel. 
Gallager also demonstrated a simple algorithm to generate codewords with the 

probability distributions required to achieve the results of the coding theorem. However, the 
problem is that finding decoding algorithm is not simple. 

Fig. 3.11 shows an example, where each channel codeword is a sequence of N ternary 
independent digits with the probabilities Q(0)=3/8, Q(1)=3/8 and Q(2)=2/8.  
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(a)  

 
(b) 

Figure 3.11 An example for use of binary codes on a DMC. (a) System model. (b) Mapping 
rule 
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