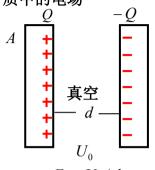
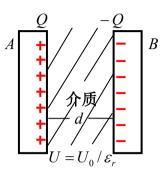
第2节 静电场中的电介质

一、介质的结构

二、介质中的电场



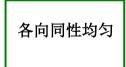


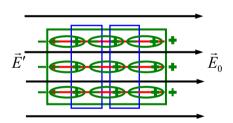
$$E = U/d = U_0/(\varepsilon_r d) = E_0/\varepsilon_r$$

 ε_r : 相对介电常数, $\varepsilon_r > 1$, $\varepsilon = \varepsilon_r \varepsilon_0$: 介电常数,真空: $\varepsilon_r = 1$ $:: \varepsilon_r > 1$, $:: E < E_0$

三、介质的极化过程

1、无极分子电介质

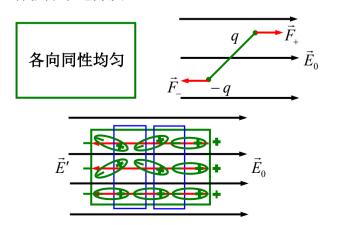




束缚电荷、极化电荷

 $\vec{E} = \vec{E}_0 + \vec{E}'$, \vec{E}' 、 \vec{E}_0 反方向, $E < E_0$ 位移极化

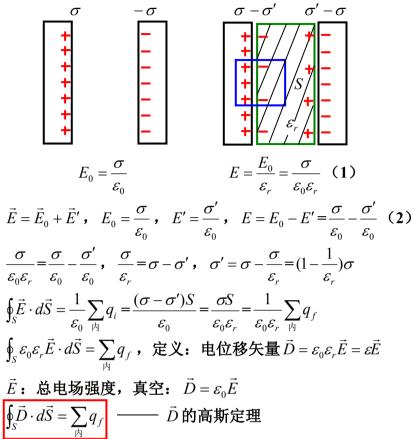
2、有极分子电介质



1

 $\vec{E} = \vec{E}_0 + \vec{E}'$, \vec{E}' 、 \vec{E}_0 反方向, $E < E_0$ 取向极化(为主)+位移极化

四、 \vec{D} 的高斯定理



注意(1) $\Phi_D = \oint_{S} \vec{D} \cdot d\vec{S} = \sum_{th} q_f$ 仅与 $\sum_{th} q_f$ 有关,与束缚电荷无关

但 \vec{D} 、 \vec{E} 与所有电荷及其分布有关

(2)
$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon_{0}} \sum_{i \nmid j} q_{i} \iff \oint_{S} \vec{D} \cdot d\vec{S} = \sum_{i \nmid j} q_{f}$$

有电介质时后者应用更方便

(3) \vec{D} 、 \vec{E} 对比:

各向同性均匀电介质: $\vec{D} = \varepsilon_0 \varepsilon_r \vec{E} = \varepsilon \vec{E}$, $D = \varepsilon_0 \varepsilon_r E = \varepsilon E$

D 没有具体的物理意义

$$\oint_L \vec{E} \cdot d\vec{l} = 0$$
, $\oint_L \vec{D} \cdot d\vec{l} \neq 0$

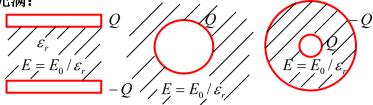
电荷受力,介质极化,电势、电势差由 \vec{E} 决定

电势:
$$U_P = \int_{P}^{R} \vec{E} \cdot d\vec{l}$$
,电势差 $U_{PQ} = \int_{P}^{Q} \vec{E} \cdot d\vec{l}$

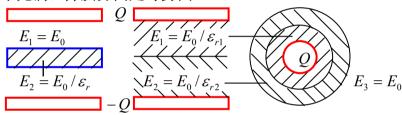
静电场D线的性质:

"由正自由电荷发出,终止于负自由电荷,在无自 由电荷区域, \vec{D} 线不能中断,任意两条 \vec{D} 线不相交。" (4) $\vec{E} = \vec{E}_0 / \varepsilon_r$, \vec{E}_0 : 撤去介质时的电场强度 成立的条件:

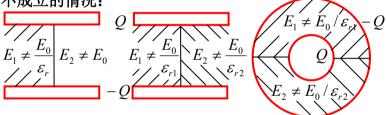
各向同性均匀电介质充满整个电场存在空间, 或虽未充满,但介质界面必须是等势面



未充满,介质界面是等势面:



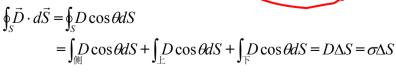
不成立的情况:



 $\vec{E}, \vec{D} = 0$

导体

- 例:确定有介质时,导体表面附近 的 \vec{D} 、 \vec{E} 和导体表面自由电荷 面密度 σ 的关系
- 解:均匀电介质 $\vec{D} = \varepsilon \vec{E}$ 导体表面附近 \vec{E} , \vec{D} \bot 导体表面



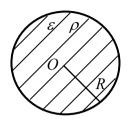
$$D = \sigma$$
 , $D = \varepsilon_0 \varepsilon_r E = \varepsilon E$, $E = \frac{\sigma}{\varepsilon_0 \varepsilon_r} = \frac{\sigma}{\varepsilon}$

$$\vec{D} = \sigma \vec{n}_0 \; \text{,} \quad \vec{E} = \frac{\sigma}{\varepsilon_0 \varepsilon_r} \vec{n}_0 = \frac{\sigma}{\varepsilon} \vec{n}_0$$

真空:
$$\vec{D} = \sigma \vec{n}_0$$
, $\vec{E} = \frac{\sigma}{\varepsilon_0} \vec{n}_0$, \vec{D} 的单位: C/m^2

例:介质球均匀带电,介电常数 ε ,球外为真空

求: \vec{D} 、 \vec{E} , 画出 $D \sim r$ 、 $E \sim r$ 曲线



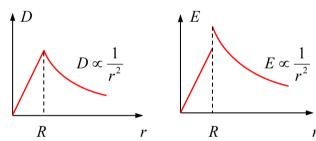
解: (1)、
$$r > R$$

$$\begin{split} \oint_S \vec{D} \cdot d\vec{S} &= D4\pi r^2 = \rho \frac{4}{3}\pi R^3 = Q \text{,} \quad D = \frac{Q}{4\pi r^2} \\ D &= \varepsilon_0 E \text{,} \quad E = \frac{Q}{4\pi \varepsilon_0 r^2} \end{split}$$

(2),
$$r < R$$

$$\oint_{S} \vec{D} \cdot d\vec{S} = D4\pi r^{2} = \rho \frac{4}{3}\pi r^{3}, \quad D = \frac{\rho}{3}r$$

$$D = \varepsilon E \quad E = \frac{\rho}{3\varepsilon} r$$



除非特别指明,不要把带电体看作导体或电介质,介电常数用 ε_0 ,电荷应理解为自由电荷