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Abstract By molecular dynamics simulations and

free energy calculations based on Monte Carlo

method, the detailed balance between Pt cluster

isomers was investigated. For clusters of n B 50,

stationary equilibrium is achieved in 100 ns in the

canonical ensemble, while longer time is needed for

n [ 50. Then, a statistical mechanical model was built

to evaluate unimolecular isomerization rate and sim-

plify the prediction of isomer formation probability.

This model is simpler than transition state theory and

can be easily applied on ab initio calculations to

predict the lifetime of nanostructures.

Keywords Nanostructure � Modeling and

simulation � Isomerization rate � Isomers

formation probability

Introduction

In modern nanotechnology, thermal stability of spe-

cific atomic geometry configurations is essential to the

design of nanostructures. Before preparing a nano-

structure, theoretical prediction of the stability should

be essential to avoid repeated experimental attempts.

Since a long time ago, to solve problems about clean

energy conversion and storage, great efforts have been

focused on finding stable Pt-based nano-catalyst. In

recent years, bimetallic Pt3M (Stamenkovic et al.

2007; Cui et al. 2013) and multimetallic Au/FePt3
nanoparticles (Wang et al. 2010) with high electro-

catalytic activity were developed. And Pt, Rh and Pd

have been used very extensively in heterogeneous

catalysis, especially for reactions involving CO and

H2. To predict stable configuration of Pt nanoparticles,

theoretical simulations have been focused on the

potential energy and thermal evolution (Sebetci and

Güvenc 2003; Xiao and Wang 2004; Sebetci et al.

2006). In theoretical point of view, the growth and

isomerization of nanoparticles belong to thermal-

driven atomic migrations. Therefore, corresponding

theoretical investigations should emphasize on the

kinetics of formation and isomerization reactions.

Predicting the shape of nanoparticles is not a simple

task because their growth involves many atomic

processes. In equilibrium, the cluster or nanoparticle

isomer with higher formation probability corresponds

to lower free energy. For isothermal–isobaric situa-

tion, at temperature T the chemical balance between

isomer a and b satisfies

Gb � Ga ¼ �kT lnðNb=NaÞ; ð1Þ

where G the Gibbs free energy of one molecule and

N the molecule number (Slanina et al. 2004), as well as

for isothermal–isovolumic situation the Helmholtz

free energy F satisfies
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Fb � Fa ¼ �kT lnðNb=NaÞ: ð2Þ

However, when T is not high enough, the transforma-

tion rates between isomers are too slow for the system

to reach equilibrium, and the free energy criterion is no

longer tenable. For example, for three-dimensional

crystals or two-dimensional islands on solid surfaces

formed away from equilibrium, their shapes are away

from the prediction of free-energy-based Wulff con-

struction (Venables 2000; Baletto et al. 2000, 2001,

2002, 2003; Yin et al. 2009). It has been found that the

evolution of Co islands is thermodynamically domi-

nated at 300–600 K, while Pt and Pd islands are

kinetically dominated at the same temperature (Bulou

et al. 2013).

Either in equilibrium or non-equilibrium, the

evolution of isomer number N can be evaluated by

solving kinetics equations based on unimolecular

isomerization rates. In equilibrium N becomes time-

independent and satisfies the detailed balance prin-

ciple (Henriksen and Hansen 2008). At high

molecular concentration, unimolecular reactions are

dominated by intermolecular collisions and present

first-order behavior, and in equilibrium the detailed

balance principle reads

Nb=Na ¼ k1st a!b=k1st b!a; ð3Þ

where k1st is isomerization rate constant. Theoretical

prediction of k1st should be an efficient way to

calculate isomer formation probability because it

may be simpler than free energy calculations and

can be applied on non-equilibrium case.

In this work, isomerization of Pt clusters with

dozens of atoms was investigated by molecular

dynamics (MD) simulations, and stationary equilib-

rium and detailed balance in the thermodynamic

evolution were verified. In the MD, the number of each

isomer in the canonical ensemble is in good agreement

with theoretical value [Eqs. (1) or (2)] calculated by

free energy obtained from a technique combining

rigid-rotor and harmonic-oscillator approximation and

Monte Carlo method. Then, a statistical mechanical

model was built to evaluate unimolecular isomeriza-

tion rate, and its accuracy was validated. By the

results, our model produces similar rate with transition

state theory (TST), and this model is simple to be

applied on ab initio calculations.

MD simulations

To collect data for investigating cluster isomerization,

a model of vapor-phase Pt cluster growth was set up by

MD simulation. A tight-binding like potential U ¼
Pn

i¼1 Ui for interaction between Pt atoms was

employed, in which the energy of ith atom in a n-

atom system is written as

Ui ¼
Xn

j¼1;j 6¼i

Ae�pðrij=r0�1Þ

�
Xn

j¼1;j 6¼i

n2e�2qðrij=r0�1Þ

 !1=2

; ð4Þ

where rij denotes the distance between the ith and jth

atom and A, p, q, n and r0 are presented by Cleri and

Rosato (1993). He atoms were used as buffer gas, with

Pt–He and He–He interactions described by Lennard–

Jones potential Uij ¼ A=r12
ij � B=r6

ij (A = 15.7 eV Å12,

B = 0.989 eV Å6 for Pt–He and A = 69.4 eV Å12,

B = 0.494 eV Å6 for He–He).

The simulation was initialized by randomly putting

n Pt atoms and 80 He atoms in a cubic box with a side

length of 4 nm (corresponding to a He pressure of

about 50 atm at 300 K). Periodic boundary condition

was applied, and the temperature of He was controlled

at T by replacing all the atomic velocities v
*old

i with

v
*new

i in a time interval of 4 fs (Riley et al. 1988). Here,

v
*new

i ¼ ð1� hÞ1=2
v
*old

i þ h1=2v
*T
; ð5Þ

where v
*T

is a random velocity vector chosen from

Maxwellian distribution at T. The controlling param-

eter h = 0.1, which could better stabilize the temper-

ature, has been verified in our previous work. The

temperature of Pt atoms was set as 2,000 K at the

beginning of the simulation, and then gradually

decreased to T by the effect of He buffer gas and

condensed into a cluster. For T = 800–1,000 K, the

simulation lasted for 100 ns. To monitor the evolution

of Pt cluster isomer, the structure was sampled every

5 ps and immediately cooled to 0 K. In once MD

simulation, all the cooled samples compose a canon-

ical ensemble of Pt cluster isomers. By counting

sample numbers, we got the formation probability of

every isomer, and average formation probability at a
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given temperature T can be derived by repeated

simulations. It is worth noting that this technique

precludes equilibrating clusters of different sizes, and

the following simulation technique is independent of

interaction potential and the result was suitable for

common cluster growth.

For the smallest magic number n = 13, the struc-

tures and potential energy of 15 isomers with lowest

potential energy are shown in Fig. 1a. The MacKay

icosahedron, i.e. the 1st one in Fig. 1a, was found to

have the lowest potential energy and the largest

formation probability at T = 800–1,000 K. But for

other isomers, the one with lower potential energy

does not necessarily have higher formation probability

(Fig. 1b–d). Such situation was also observed for

n = 14, whose 15 ones with lowest potential energy

are shown in Fig. 2a. It can be seen that the 3rd isomer,

but not the 1st one, has the largest formation proba-

bility (Fig. 2b–d). Similar result can be also seen in

previous work (Sebetci and Güvenc 2003) in which

presented a same formation probability spectrum as

ours. In fact, for n = 10–600 it was generally found

that the formation probability is not closely related to

the potential energy. Therefore, the most probable

isomer cannot be determined by searching the isomer

with the lowest potential energy.

To confirm that the system is in the equilibrium, a

technique was applied as follows. MD simulation was

performed at given temperature T, starting from a

selected isomer instead of Pt atomic gas. In the

Fig. 1 a The 15 isomers of n = 13 with lowest potential

energy. Corresponding potential energy is shown for every

isomer, and point group symbols are marked for symmetrical

ones. b–d Relative formation probability of the 15 isomers in

MD simulations (black column) and calculated by Eq. (7) (white

column) at T = 800, 900 and 1,000 K, respectively
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following evolution, frequent isomerization happened

and the formation probability of every isomer was

derived by counting the samples. If the isomer

formation probability spectrum gets close to that in

previous MD, it can be judged that stationary equilib-

rium is achieved in the simulation time. According to

the result, for the cases of n B 50 the spectrum

produced from any isomer is similar to the previous

one in MD. For example, the formation probabilities

of 1st, 4th and 8th isomer of n = 13 (which are of

highest probability) (Fig. 1a) in the reproduced spec-

trum are less different than 2 % of the previous one,

and such small difference can be eliminated by taking

the average of repeated simulations. The same situa-

tion was generally found for n B 50. However, for

n [ 50 in once simulation the probability spectrum

cannot be in good agreement with the one in previous

MD. But by abundant simulations the average forma-

tion probabilities produced from any isomer are still

close to the previous one, which means for large n a

time longer than the simulation duration is needed for

the system to achieve stationary equilibrium.

In equilibrium, the detailed balance principle

Eq. (3) was investigated. Starting from an selected

isomer a, MD was performed until isomerization

happened. By thousands times of simulation, the

average rate of isomerization from a to another isomer

b was derived. Starting from the 1st isomer of n = 13,

the reactions 1 ? 8 and 1 ? 11 were found, and then

from the 8th and 11th isomer the reactions 8 ? 1,

8 ? 11, 8 ? 4, 11 ? 1, 11 ? 8, and 4 ? 8 were

found. At T = 900 K, for the isomerization between

Fig. 2 a The 15 isomers of n = 14 with lowest potential

energy. Corresponding potential energy is shown for every

isomer, and point group symbols are marked for the symmetrical

ones. b–d The relative formation probability of the 15 isomers in

MD simulations (black column) and calculated by Eq. (7) (white

column) at T = 800, 900 and 1,000 K, respectively
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the 1st and 11th isomer we have k1st 1!11 ¼ 1:875�
10�5 s�1 and k1st 11!1 ¼ 3:717� 10�4 s�1 (k1st 1!11=

k1st 11!1=0.050), which is close to N11/N1 = 0.052 in

MD simulation. Another example is k1st 8!4 ¼
3:175� 10�4 s�1 and k1st 4!8 ¼ 3:075� 10�4 s�1,

i.e. k1st 8!4=k1st 4!8 ¼ 1:033, and in MD we have N4/

N8 = 1.195. Generally, the detailed balance is satis-

fied at the simulations at T = 800–1,000 K.

Free energy

In isothermal–isobaric (or isothermal–isovolumic)

ensemble, the isomer number N satisfies Eq. (1) [or

Eq. (2)]. At temperature T, the difference of Gibbs free

energy between isomer a and b reads

Gb � Ga ¼ Fb � Fa þ PbVb � PaVa

¼ Fb � Fa þ kTb � kTa ¼ Fb � Fa; ð6Þ

where the isomers are treated as ideal gas, and Nb/Na in

isothermal–isobaric or isothermal–isovolumic ensem-

ble is the same. By Eq. (2) and F ¼ �kT lnQ, where

Q is the partition function of one molecule, the ratio

reads

Nb=Na ¼ e�ðFb�FaÞ=kT ¼ Qb=Qa: ð7Þ

In the following discussion we concern the classical

partition function Q to compare with classical MD

simulation.

At low T, using rigid-rotor and harmonic-oscillator

approximation Q can be decomposed as

Q ¼ QT QR QV e�Ug=kT ; ð8Þ

where Ug the potential energy of the isomer and QT,

QR and QV the translational, rotational and vibrational

partition function, respectively. Here,

QT ¼
ð2pMkTÞ3=2

V

h3
; ð9Þ

where M the molecular mass and V the volume of

simulation box, and

QR ¼
p3

h3d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð8kTÞ3pIxIyIz

q

; ð10Þ

where Ix, Iy and Iz the molecular principal moment of

inertia and d the rotational symmetry number. The

quantum mechanical expression for the vibrational

partition function reads

QV ¼
Y3n�6

i¼1

e�hmi=2kT

1� e�hmi=kT
; ð11Þ

where mi the canonical vibrational frequency of mode

i. In the classical limit, it becomes

QV ¼
Y3n�6

i¼1

kT

hmi

: ð12Þ

At high T, the partition function Q was calculated

numerically. For the atoms located at r
*

1�r
*

n with mass

m1–mn and momentum p
*

1�p
*

n, the total energy reads

E ¼
Xn

i¼1

p
*2

i

2mi

þ Uðr*1; r
*

2. . .r
*

nÞ ð13Þ

and the classical partition function

Q ¼ 1

h3nd

Z

e�E=kT dr
*

1 dr
*

2. . .dr
*

n dp
*

1 dp
*

2. . .dp
*

n

¼ 1

d

Yn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmikT
p

h

� �3
" #Z

e�U=kT dr
*

1 dr
*

2. . .dr
*

n

:

ð14Þ

The translational motion is separated using a new set

of coordinate r
*0

1 ¼ r
*

1; r
*0

2 ¼ r
*

2 � r
*

1; r
*0

3 ¼ r
*

3 � r
*

1. . .

r
*0

n ¼ r
*

n � r
*

1. By Uðr*1; r
*

2; r
*

3. . .r
*

nÞ ¼ Uð0; r
*0

2; r
*0

3

. . .r
*0

nÞ, the third factor on the right-hand side of

Eq. (14) reads
Z

e�Uð r*1; r
*

2; r
*

3... r
*

nÞ=kT dr
*

1 dr
*

2. . .dr
*

n

¼
Z

e�Uð0; r*02; r
*0

3... r
*0

nÞ=kT oðr*1; r
*

2. . .r
*

nÞ
oðr*01; r

*0
2. . .r

*0
nÞ

�
�
�
�
�

�
�
�
�
�
dr
*0

1 dr
*0

2. . .dr
*0

n;

¼V

Z

e�Uð0; r*02; r
*0

3... r
*0

nÞ=kT dr
*0

2. . .dr
*0

n

ð15Þ

in which the Jacobian
oð r
*

1; r
*

2... r
*

nÞ

oð r*
0

1; r
*
0

2... r
*
0

nÞ
¼ 1. Then, the

rotational motion is further separated by another

coordinate transformation. Starting from

r
*�

2¼ð0;0;rÞ, r
*�

3¼ðq;0;sÞ and arbitrary r
*�

4�r
*�

n, any

molecular orientation can be produced by 3-2-3 Euler

rotation, i.e. rotate r
*�

2�r
*�

n by f about the z axis, and by

h about the y axis, and then by u about the z axis. The

coordinates r
*0

i¼Rr
*�

i generated by the rotation are

presented by the rotation matrix
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Then, by

r
*0

2 ¼ Rr
*�

2 ¼ R

0

0

r

0

@

1

A ¼
r cos u sin h
r sin u sin h

r cos h

0

@

1

A ð17Þ

and

r
*0

3 ¼ Rr
*�

3 ¼ R

q

0

s

0

B
@

1

C
A ¼

qðcos u cos h cos f� sin u sin fÞ þ s cos u sin h

qðsin u cos h cos fþ cos u sin fÞ þ s sin u sin h

�q sin h cos fþ s cos h

0

B
@

1

C
A;

ð18Þ

the integral element in Eq. (15) reads

dr
*0

2 dr
*0

3. . .dr
*0

n

¼ oðr*02; r
*0

3. . .r
*0

nÞ
oðr; h;u; q; s; f; r

*�
4; r

*�
5. . .r

*�
nÞ

�
�
�
�

�
�
�
�

dr dh du dq ds df dr
*�

4 dr
*�

5. . .dr
*�

n

¼ or
*0

2

oðr; h;uÞ

�
�
�
�

�
�
�
�dr dh du � or

*0
3

oðq; s; fÞ

�
�
�
�

�
�
�
�dq ds df

� or
*0

4

or
*�

4

�
�
�
�

�
�
�
�
or
*0

5

or
*�

5

�
�
�
�

�
�
�
�. . .

or
*0

n

or
*�

n

�
�
�
�

�
�
�
�dr

*�
4 dr

*�
5. . .dr

*�
n:

¼ r2 sin h dr dh du � q dq ds df � dr
*�

4 dr
*�

5. . .dr
*�

n

ð19Þ

Then, by rotational invariance the final factor in

Eq. (15) becomes
Z

e�Uð0; r*02; r
*0

3... r
*0

nÞ=kT dr
*0

2. . .dr
*0

n

¼
Z

e�Uð0; r*�2; r
*�

3... r
*�

nÞ=kT r2 sinh dr dh du

�q dq ds df �dr
*�

4 dr
*�

5. . .dr
*�

n:

¼ 8p2

Z

r2qe�Uð0; r*�2; r
*�

3... r
*�

nÞ=kT dr dq ds dr
*�

4 dr
*�

5. . .dr
*�

n

ð20Þ

Combining Eqs. (14), (15) and (20) we have

Q¼ 8p2V

d

Yn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmikT
p

h

� �3
 !

Z

r2qe�Uð0; r*�2; r
*�

3... r
*�

nÞ=kT dr dq ds dr
*�

4 dr
*�

5. . .dr
*�

n

� �

ð21Þ

and

QðT2Þ
QðT1Þ

¼
R

r2qe�U=kT2 dr dq ds dr
*�

4 dr
*�

5. . .dr
*�

nR
r2qe�U=kT1 dr dq ds dr

*�
4 dr

*�
5. . .dr

*�
n

¼
R

r2qe
U
k

1
T1
� 1

T2

� �

e�U=kT1 dr dq ds dr
*�

4 dr
*�

5. . .dr
*�

n
R

r2qe�U=kT1 dr dq ds dr
*�

4 dr
*�

5. . .dr
*�

n

;

ð22Þ

whose right-hand side can be treated as the average

value of e
U
k

1
T1
� 1

T2

� �

in the canonical ensemble at T1.

Based on the above, a technique was developed to

calculate Q at every T. At T = 100 K, Q was calcu-

lated by Eqs. (8), (9), (10) and (12). Then, Eq. (22) was

employed to precisely calculate Q step-by-step from

low to high T. By Metropolis Monte Carlo method, the

calculation temperature T1 was increased to 100, 150,

200… 950 K while keeping T2 = T1 ? 50 K. For

given n, Q of every isomer was calculated and

corresponding formation probability was evaluated

by Eq. (7). Note, for isomers with chirality, Q was

taken as the sum of partition function of two

enantiomers.

Figure 1b–d and Fig. 2b–d present the isomer

formation probability by Eq. (7) and MD simulation

for n = 13 and 14 at T = 800, 900 and 1,000 K,

showing a good agreement between the theoretical and

MD value. For n B 50, the theoretical formation

probability was found always in accordance with MD.

However, for n [ 50 the isomer formation probability

produced in once MD simulation is less consistent

with the theoretical value. As an example, for n = 55

we focus on the sampling of three isomers with lowest

potential energy, the MacKay icosahedron, and 4

isomers with highest formation probability, which are

denoted in sequence as 1–8 (Fig. 3a). For once MD

R ¼
cos u cos h cos f� sin u sin f � cos u cos h sin f� sin u cos f cos u sin h
sin u cos h cos fþ cos u sin f � sin u cos h sin fþ cos u cos f sin u sin h

� sin h cos f sin h sin f cos h

0

@

1

A: ð16Þ
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simulation at T = 800 K, the fourth isomer was hardly

found (Fig. 3b), and for another simulation at

T = 900 K, the second and third isomer was hardly

found (Fig. 3c). Such result indicates that for n [ 50

stationary equilibrium of the system could not be well

achieved in the simulation duration (100 ns).

Unimolecular isomerization rate

Although isomer formation probability can be predicted

by theoretical calculation of partition function Q, the

calculation quantity is too high to be applied on ab initio

simulations since full information of potential energy

surface is needed. And by isomerization rate k1st, Eq. (3)

may be a more convenient way. In this work, a statistical

mechanical model was built to evaluate the

unimolecular isomerization rate. In nanosystems, an

element process may involve transfer of some ‘‘key

atoms’’ in a potential valley crossing over E0. In most

cases the atomic kinetic energy (*kT) at the valley

bottom is significantly smaller than E0, and the atom

vibrates many times within the valley before crossing

over the barrier. In classical level, the Boltzmann

distribution of atomic kinetic energy e reads

f ðeÞ ¼ e1=2e�e=kBT de
Rþ1

0
e1=2e�e=kBT de

¼ e1=2e�e=kBT de
ffiffiffi
p
p
ðkBTÞ3=2=2

; ð23Þ

and the probability of e larger than E0 is

P ¼
Zþ1

E0

f ðeÞ de ¼
Rþ1

E0
e1=2e�e=kBT de
ffiffiffi
p
p
ðkBTÞ3=2=2

: ð24Þ

Fig. 3 a For n = 55, the structures of 3 isomers with lowest

potential energy, the MacKay icosahedron and 4 isomers with

highest formation probability, which are denoted in sequence as

1–8. The potential energy and point group symbols are marked.

b, c The relative formation probability of these isomers in once

MD simulation (black column) and calculated by Eq. (7) (white

column) at T = 800 and 900 K, respectively
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With an attempt frequency k0, the atomic transfer rate

over the barrier reads

k1st ¼ k0

Rþ1
E0

e1=2e�e=kBT de
ffiffiffi
p
p
ðkBTÞ3=2=2

: ð25Þ

Here, k0 can be evaluated by the potential energy

U = U(s) along the reaction path, where ds2 ¼
Pn

i¼1 midr
*2

i is the reaction coordinate. The Lagrangian

along the reaction path is

L ¼ 1

2

ds

dt

� �2

�U; ð26Þ

and corresponding Lagrange’s equation approxi-

mately reads

d2s

dt2
þ k2

0s ¼ 0; ð27Þ

where k0 ¼ d2U

ds2

�
�
�
s¼0

is just the attempt frequency.

To verify the model, its result was compared to TST

with rigid-rotor and harmonic-oscillator approxima-

tion. In TST, the 1st rate constant reads

k
1st a!b

¼ kT

h

QTS

Qa

� �

e�E0=kT ; ð28Þ

where E0 is the static barrier, QTS and Qa are partition

functions of transition state and the reactant a,

respectively. By rigid-rotor and harmonic-oscillator

approximation [Eqs. (8), (10) and (12)], Eq. (28)

becomes

k
1st a!b

¼
da

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ITS;xITS;yITS;z

p

dTS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ia;xIa;yIa;z

p

Q3n�6

i¼1

ma;i

Q3n�7

i¼1

mTS;i

0

B
B
B
@

1

C
C
C
A

e�E0=kT ;

ð29Þ

where ITS, dTS and mTS are the principal moment of

inertia, rotational symmetry number and canonical

frequencies of transition state, respectively.

Our model and TST with rigid-rotor and harmonic-

oscillator approximation was applied on unimolecular

isomerization rate of Pt clusters. For TST, molecular

canonical frequency and moment of inertia were

calculated by the potential Eq. (4). By nudged elastic

band method (Mills and Jónsson 1994; Mills et al.

1995; Henkelman et al. 2000), the potential energy

U = U(s) along the reaction path was obtained to

apply our model [Eq. (25)]. To obtain enough data to

verify TST and our model, MD simulations for typical

isomerization progresses were repeatedly performed

at T = 700–1,000 K by thousands of times, and the

derived k1st were averaged at every temperature. Then,

we changed the side length of simulation box in

2–15 nm and performed the same MD simulations,

finding that at every temperature the isomerization rate

are independent of the side length of simulation box,

which means the molecular concentration of He buffer

gas is high enough and the isomerization progresses

are all first order reactions.

For 5 typical isomerization progresses of n = 13,

E0, k0 and reaction path degeneracy are shown in

Table 1. Here, the atomic migration barrier E0 in small

Pt clusters are smaller than the atomic migration

barrier in surface islands of Pt solid (Bulou et al.

2013). Note, 60 equivalent reaction paths were found

for 1 ? 8 and 1 ? 11 since the 1st isomer has Ih

symmetry. Figure 4a–c shows the result of MD, TST

and our model for these reactions. For 1 ? 8, 11 ? 1

and 8 ? 4, both TST and our model are in accordance

with the MD data, while having some deviation for

8 ? 1. For 1 ? 11, our model is better than TST.

Generally, our model is successful in predicting

isomerization rate of Pt clusters with n = 13.

For further verification, MD simulation was per-

formed for Mackay icosahedron of Pt cluster with

n = 55, and the rate data of most probable progress

(see the sketch in Fig. 4c) was employed. By the

reaction path calculation, we got E0 = 0.674 eV and

k0 = 1.39 9 1012 s-1, and the reaction path degener-

acy of Mackay icosahedron with Ih symmetry is 60.

The corresponding k1st is smaller than 109 s-1 at

T = 500 K, which is in accordance of previous

simulation (Bulou et al. 2013). For

T = 700–1,000 K, k1st derived by MD, TST and our

model were plotted in Fig. 4c, showing the validity of

both TST and our model.

Finally, our model was applied on the Stone–Wales

transformation of C60 fullerene (see the sketch in

Fig. 4d). MD simulation was performed by the same

technique used above with C–C interaction described

by the Brenner potential (Brenner 1990). By reaction

path calculation, we got E0 = 3.268 eV and

k0 = 1.05 9 1013 s-1. The reaction path degeneracy

is 120 because the 60 atoms in C60 molecule are

equivalent and each atom has two vibration directions

for the reaction. For T = 2,400–3,200 K, k1st derived
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by MD, TST and our model were plotted in Fig. 4e,

showing that our model fits the MD data well while

TST fails to predict the rate constant.

Summary

In summary, based on free energy calculation, theo-

retically predicted isomer formation probability of Pt

clusters is in good agreement with MD simulations for

cluster gas-phase growing. And the detailed balance

between isomers was verified by MD. For clusters of

n B 50, stationary equilibrium is achieved in 100 ns in

the canonical ensemble, while longer time is needed

for n [ 50. Then, a statistical mechanical model was

built to evaluate isomerization rate and simplify the

prediction of isomer formation probability. By MD

data, its accuracy was validated. This model is simpler

than TST and can be easily applied on ab initio

calculations to predict the lifetime of nanostructures.
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