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Abstract The strong chromatic index of a graph is the minimum number of colors needed in a proper edge

coloring so that no edge is adjacent to two edges of the same color. An outerplane graph with independent

crossings is a graph embedded in the plane in such a way that all vertices are on the outer face and two pairs of

crossing edges share no common end vertex. It is proved that every outerplane graph with independent crossings

and maximum degree ∆ has strong chromatic index at most 4∆ − 6 if ∆ ≥ 4, and at most 8 if ∆ ≤ 3. Both

bounds are sharp.
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1 Introduction

All graphs in this paper are simple and finite. For a graph G, we denote its vertex set, edge
set, minimum degree, and maximum degree as V (G), E(G), δ(G), and ∆(G), respectively. By
NG(v) we denote the set of the vertices adjacent to v in G. A vertex v ∈ V (G) is a k-vertex
(or k+-vertex ) if the degree dG(v) := |NG(v)| of v in G is k (or at least k). For a vertex
v ∈ V (G), we denote by EG(v) the set of edges incident with v in G. For a set S ⊆ V (G), let
EG(S) =

∪
v∈S

EG(v).

For an integer k, let [k] = {1, 2, · · · , k}. A proper edge k-coloring of a graph G is a mapping
φ : E(G) → [k] so that φ(e1) ̸= φ(e2) if e1 is adjacent to e2 in G. A strong edge k-coloring
is a proper edge k-coloring so that no edge is adjacent to two edges of the same color. The
minimum integer k so that G has a strong edge k-coloring is the strong chromatic index of G,
denoted by χ′

s(G).
The notion of strong edge coloring was firstly introduced by Fouquet and Jolivet[7] in 1983.

At the end of 1985, Erdős and Nešetřil raised the following conjecture at a seminar in Prague:

Conjecture 1.1. If G is a graph with maximum degree ∆, then

χ′
s(G) =


5

4
∆2 if n is even,

1

4
(5∆2 − 2∆ + 1) if n is odd.

Since for every edge e ∈ E(G), there are at most 2(∆(G)−1)∆(G) edges that are at distance
at most 2 from e, we can greedily color the edges of G to obtain a strong edge coloring using
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2(∆(G)−1)∆(G)+1 colors. Therefore we trivially have χ′
s(G) ≤ 2∆(G)2−2∆(G)+1 < 2∆(G)2.

An interesting question relative to Conjecture 1.1 is to find a constant γ < 2 independent of G
so that χ′

s(G) ≤ γ∆(G)2.

Surprisingly, the first novel result concerning this problem appeared in 1997, when Molloy
and Reed[14] proved using probabilistic method that χ′

s(G) ≤ 1.998∆(G)2 provided ∆(G) is
sufficiently large. The next improvement is due to Bruhn and Joos[4], who pulled the coefficient
before ∆(G)2 down to 1.93 in 2015. Three years later, Bonamy, Perrett, and Postle[2] improved
it to 1.835 (the journal version of this result was published in 2022[3]). The best known result
until now is due to Hurley, de Verclos, and Kang [11], who proved in 2021 that χ′

s(G) ≤
1.772∆(G)2 provided ∆(G) is sufficiently large. For P5-free graphs G, Xu and Zhang[18] showed
that χ′

s(G) ≤ 1.25∆(G)2. In particular, their result confirmed Conjecture 1.1 for P5-free graphs
with even maximum degree.

For planar graphs G, Faudree et al. [6] proved χ′
s(G) ≤ 4∆(G) + 4. More generally, they

showed if G is a graph in a minor-closed class G then χ′
s(G) ≤ χ(G)χ′(G), where χ(G) and χ′(G)

denote the chromatic number and the chromatic index of the class G respectively. For planar
graphs G with girth g, Guo, Zhang, and Zhang[8] showed that χ′

s(G) ≤ 3∆(G)−2 if g ≥ 8, and
χ′
s(G) ≤ 3∆(G)− 3 if g ≥ 10.

There are various famous subclasses of planar graphs in the literature.

A graph is outerplanar if it has a plane embedding so that all vertices lie on the outer face
of the drawing. Hocquard, Ochem and Valicov[9] proved that every outerplanar graph G with
∆(G) ≥ 3 has χ′

s(G) ≤ 3∆(G)− 3 and this bound is sharp.

A graph is series-parallel if it contains no subgraph isomorphic to a subdivision of a complete
graph K4 of four vertices. Wang, Wang and Wang [17] proved χ′

s(G) ≤ 3∆(G)−2 (being sharp)
for every series-parallel graph G with ∆(G) ≥ 3. Note that a graph is outerplanar if and only
if it contains no subgraph isomorphic to a subdivision of K4 or a subdivision of a complete
bipartite graph K2,3. So a graph is outerplanar only if it is series-parallel.

A graph is outer 1-planar if it can be drawn in the plane so that all vertices are on the
outer face and each edge is crossed at most once. This notion was firstly introduced in 1986 by
Eggleton[5] who called them outerplanar graphs with edge crossing number one and were also
investigated under the notion of pseudo-outerplanar graphs [23]. The outer-1-planarity gener-
alizes the outerplanarity, and is also a combination of the outerplanarity and the 1-planarity.
Formally, a graph is 1-planar if it has a plane embedding so that each edge is crossed at most
once. It is necessary to point out that every outer-1-planar graph is planar[1] and the class of
outer-1-planar graphs is not minor-closed[10].

It may be interesting to say something by combining the outerplanarity with some other
beyond-planarity. For example, a graph is NIC-planar if it admits a drawing in the plane with at
most one crossing per edge and such that two pairs of crossing edges share at most one common
end vertex[20]. By combining the outerplanarity with the NIC-planarity, Zhang[21] introduced
a new graph class say outerplane graphs with near-independent crossings or outer-NIC-planar
graphs and then investigated the total coloring problems on such a class.

As a subclass of NIC-planar graphs, the class of IC-planar graphs is well investigated in the
literature (see e.g. [12, 13, 15, 16, 19, 22]). A graph is IC-planar if it admits a drawing in the
plane with at most one crossing per edge and such that two pairs of crossing edges share no
common end vertex. Combining the outerplanarity with IC-planarity, we obtain a new graph
class say outerplane graphs with independent crossings or outer-IC-planar graphs. Formally, a
graph is outer-IC-planar if it can be drawn in the plane so that all vertices are on the outer
face and two pairs of crossing edges share no common end vertex, and such a drawing is called
an outerplane graphs with independent crossings.

We investigate the strong edge coloring of outer-IC-planar graphs by proving the following.
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Theorem 1.2. If G is an outer-IC-planar graph with ∆(G) ≥ 3, then

χ′
s(G) ≤

{
8, if ∆(G) = 3

4∆(G)− 6, if ∆(G) ≥ 4.

It is easy to see that every pair of edges in each configuration are at distance at most 2,
and the left (resp. right) configuration has exactly 8 (resp. 4∆ − 6) edges. Hence if an outer-
IC-planar graph G contains the left (resp. right) configuration as a subgraph, then its strong
chromatic index is exactly 8 (resp. 4∆− 6) by Theorem 1.2.

Figure 1.1. The sharpness of Theorem 1.2.

2 Structure of the Minimal Counterexample

A pendant edge of a graph G is an edge uv with dG(u) = 1. We define the partial order ≺ on
graphs such that G1 ≺ G2 if and only if.

• |E(G1)| < |E(G2)| or

• |E(G1)| = |E(G2)| and G1 contains more pendant edges than G2.

Let G be a class of graphs. A graph G is k-minimal in G if

• χ′
s (G) > k, and

• χ′
s (H) ≤ k for every graph H ∈ G with H ≺ G.

Let ∆ be an integer and let O∆ be the class of outer-IC-planar graphs with ∆(G) ≤ ∆.
Instead of proving Theorem 1.2, we prove a slightly stronger result as follows.

Theorem 2.1. If G ∈ O∆, then

χ′
s(G) ≤ f(∆) =

{
8, if ∆ = 3,

4∆− 6, if ∆ ≥ 4.

Suppose for a contradiction that Theorem 2.1 is false. Then we would find many coun-
terexamples to that result, from which we choose G to be a minimum counterexample in terms
of ≺. In other words, G is f(∆)-minimal in O∆. Moreover, we assume that G is already an
outerplane graph with independent crossings.

In this section, we explore the structural properties ofG and then use them to prove Theorem
2.1 in the next section. Now we need some additional notations that will be used afterwards.
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If the vertices of G are labelled by v1, v2, · · · , vn, which lie in a clockwise ordering on the
outer face, then we say that vi+1 or vi−1 is a right-vertex or a left-vertex of vi, denoted by
vi+1Rvi or vi−1Lvi, respectively. For two distinct vertices vi and vj , we let

V[vi, vj ] =

{
{vi, vi+1, · · · , vj−1, vj}, if i < j,

{vi, vi+1, · · · , vn, v1, · · · , vj−1, vj}, if i > j.

and V(vi, vj) = V[vi, vj ] \ {vi, vj}.
For two vertices u, v ∈ V (G), the set V(u, v) is a non-edge if uLv and uv ̸∈ E(G), and

is a path if either uLv and uv ∈ E(G), or for every vertex z ∈ V(u, v) there exists vertices
x, y ∈ V[u, v] such that xLzLy and xz, yz ∈ E(G).

An edge uv ∈ E(G) is a boundary edge if either uRv or uLv, and is a chord otherwise.
The subgraph obtained from G by removing all 1-vertices is denoted by G∗.

Lemma 2.2. G∗ is 2-connected and thus δ(G∗) ≥ 2.

Proof. If not, then there would be a cut vertex v in G∗. Let G1, G2, · · · , Gp (p ≥ 2) be the
connected components of G∗− v. Let S = EG∗(v). The graph induced by E(Gi)∪S is denoted
by G′

i for each 1 ≤ i ≤ p. Since G′
i ≺ G and G′

i ∈ O∆, G
′
i has a strong edge f(∆)-coloring φi.

Now every two edges in S receive distinct colors under each φi. This allows us to permute the
colors of each φi so that φ1(e) = · · · = φp(e) for every e ∈ S. Combining φ1, · · · , φp together,
we obtain a strong edge f(∆)-coloring of G, a contradiction.

Lemma 2.3. Every chord of G is crossed.

Proof. Suppose, for a contradiction G has a non-crossed chord xy. Let S = EG(x) ∪ EG(y)
and let G1, G2, · · · , Gp (p ≥ 2) be the connected components of G− S. The graph induced by
E(Gi) ∪ S is denoted by G′

i. Clearly, G
′
i ∈ O∆ for each 1 ≤ i ≤ p.

If G′
i ≺ G for each 1 ≤ i ≤ p, then G′

i has a strong edge f(∆)-coloring φi. Since every two
edges of S is at distance at most two in each G′

i, they receive distinct colors under each φi.
Hence we permute the colors of each φi so that φ1(e) = · · · = φp(e) for every e ∈ S, and then
obtain a strong edge f(∆)-coloring of G by combining φ1, · · · , φp together, a contradiction.

If G′
j ̸≺ G for some 1 ≤ j ≤ p, then G′

j
∼= G. It follows that there would be a vertex z such

that xz, yz ∈ E(G∗) and z is not incident with any pendant edges. We split z into two new
vertices z1 and z2 so that xz1, yz2 are edges and z1z2 is a non-edge, and denote the resulting
graph by H. Since |E(H)| = |E(G)| and H has two more pendant edges than G, H ≺ G. It
follows that H has a strong edge f(∆)-coloring ϕ such that ϕ(xz1) ̸= ϕ(yz2). Now we restore
a strong edge f(∆)-coloring φ of G from ϕ by letting φ(xz) = ϕ(xz1), φ(yz) = ϕ(yz2), and
φ(e) = ϕ(e) for each e ∈ E(G) \ {xz, yz}, a contradiction.

Lemma 2.4. Every vertex of G is incident with at most one chord, so dG∗(u) ≤ 3 for every
u ∈ V (G∗).

Proof. If not, then some vertex of G is incident with at least two crossed chords by Lemma 2.3.
This is impossible as every pair of crossings of G are independent.

Lemma 2.5. If u is a vertex of G with at least one pendant edge, then

(1) ∆ ≥ 4;

(2) dG∗(u) = 3;

(3) dG∗(v) = 3 for every v ∈ NG∗(u) provided ∆ ≥ 5.
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Proof. {
φ(e)

∣∣ e ∈ EG−uw(u) ∪ EG−u(NG(u))
}
.

If ∆ ≤ 3, then |Fφ(uw)| ≤ 2 + 2× 2 = 6 < 8 = f(3), and thus φ can be extended to G by
coloring uw with a color not in Fφ(uw). This contradiction implies ∆ ≥ 4 and thus proves (1).

If |NG∗(u)| ≤ 2, then |Fφ(uw)| ≤ (∆ − 1) + 2(∆ − 1) = 3∆ − 3 < 4∆ − 6 = f(∆) for
∆ ≥ 4, and thus φ can also be extended to G, a contradiction implying |NG∗(u)| ≥ 3. Since
|NG∗(u)| ≤ 3 by Lemma 2.4, |NG∗(u)| = 3. This proves (2).

If ∆ ≥ 5, uv ∈ E(G∗) and dG∗(v) ̸= 3, then dG∗(v) = 2 by Lemmas 2.2 and 2.4. We further
have dG(v) = 2 by (2). So |Fφ(uw)| ≤ (∆− 1) + 1+ 2(∆− 1) = 3∆− 2 < 4∆− 6 = f(∆), and
thus φ can be extended again. This proves (3).

Lemma 2.6. Any two 2-verteices of G∗ are not adjacent.

Proof. Suppose u and v are two adjacent 2-vertices of G∗. By Lemma 2.5(2), dG(u) = dG(v) =
2. Let x ∈ NG(u) \ {v} and y ∈ NG(v) \ {u}. Since G− uv ≺ G and G− uv ∈ O∆, G− uv has
a strong edge f(∆)-coloring φ. Now the set Fφ(uv) of forbidden colors for uw is{

φ(e)
∣∣ e ∈ EG(x) ∪ EG(y)

}
.

Since ∆ ≥ 3, |Fφ(uv)| ≤ 2∆ < f(∆). Hence we can extend φ to G by coloring uv with a color
not in Fφ(uv).

Lemma 2.7. If ∆ ≥ 5, then any 3-vertex of G∗ is adjacent to at most one 2-vertex in G∗.

Proof. Suppose that u has exactly three neighbors x, y, z in G∗ such that dG∗(x) = dG∗(y) = 2.
By Lemmas 2.5(2) and 2.5(3), u, x, or y is not incident with any pendant edge and thus
dG(u) = 3 and dG(x) = dG(y) = 2. Let x′ ∈ NG(x) \ {u}.

Since G− ux ≺ G and G− ux ∈ O∆, G− ux has a strong edge (4∆− 6)-coloring φ. Now
the set Fφ(ux) of forbidden colors for ux is{

φ(e)
∣∣ e ∈ EG(x

′) ∪ EG(y) ∪ EG(z)
}
,

which has size at most ∆+2+∆ = 2∆+2 < 4∆− 6. Hence we can extend φ to G by coloring
ux with a color not in Fφ(ux).

Lemma 2.8. If a 3-vertex of G is adjacent to two 2-vertices x, y in G∗, then NG(x) ̸= NG(y).

Proof. By Lemma 2.5(2), dG(x) = dG(y) = 2. Suppose for a contradiction that NG(x) =
NG(y) = {u, v} and NG(u) = {x, y, z}. By the minimality of G, G − ux has a strong edge
f(∆)-coloring φ. Now the set Fφ(ux) of forbidden colors for ux is{

φ(e)
∣∣ e ∈ EG(y) ∪ EG(v) ∪ EG(z)

}
,

having size at most 2 + ∆ + ∆ − 1 = 2∆ + 1 < f(∆). Hence φ can be extended to G, a
contradiction.

Lemma 2.9. If u is a vertex of G incident with at least one pendant edge, then u is adjacent
to at most one 2-vertex, and furthermore, if u is adjacent to exactly one 2-vertex, then other
neighbors of u in G∗ are 4+-vertices.

Proof. By Lemma 2.5(1), ∆ ≥ 4. By Lemma 2.5(2), incident with a pendant edge uw, u has
three neighbors, say u1, u2 and u3, in G∗.

If dG(u1) = 2 and dG(u2) ≤ 3, the set Fφ(uw) of forbidden colors for uw is{
φ(e)

∣∣ e ∈ EG(u1) ∪ EG(u2) ∪ EG(u3) ∪ EG−uw(u)
}
.

Since |Fφ(uv)| ≤ 2 + 3 +∆+∆− 1− 3 = 2∆+ 1 < 4∆− 6, we can extend φ to G by coloring
uw with a color not in Fφ(uw), a contradiction. This proves the required result.
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Lemma 2.10. Assume that ux and vy are two mutually crossed chords of G so that u, v, x, y
are located in a clockwise ordering on the outer face of G and the size of V[v, u] is minimum.

(1) Each of V(v, x), V(x, y) and V(y, u) forms a non-edge or a path.

(2) If uv ̸∈ E(G), then either u or v is not incident with pendant edges.

(3) dG(z) = 2 for every vertex z ∈ V(v, u) \ {x, y} and each of V(v, x), V(x, y), and V(y, u)
has size at most one.

(4) If ∆ ≥ 4, then V(v, x) and V(u, y) are not non-edges.

(5) If ∆ ≥ 4, then uv ̸∈ E(G) and |EG(u) ∪ EG(v)| ≤ ∆+ 3.

(6) If ∆ ≥ 5, then vx and uy are boundary edges.

Proof. (1). If V(v, x) does not form a non-edge, then there is a vertex z ∈ V(v, x) ̸= ∅. If further
V(v, x) does not form a path, then the vertex v or x would separate z from y, contradicting
Lemma 2.2. So V(v, x) forms a non-edge or a path, and so do V(x, y) and V(y, u).

(2). Suppose, for a contradiction, that there are two pendant edges uu′ and vv′. Let G′ be the
graph derived from G by removing edges uu′ and vv′ and adding new edge uv. Since G′ has less
edges than G and ∆(G′) = ∆(G), G′ ≺ G and G′ ∈ O∆. So G′ has a strong edge f(∆)-coloring
φ. Now we construct a strong edge f(∆)-coloring ϕ of G by setting ϕ(uu′) = ϕ(vv′) = φ(uv)
and ϕ(e) = φ(e) for each e ∈ E(G) ∩ E(G′).

(3). If z ∈ V(v, u) \ {x, y}, then by the choice of the chords ux and vy and by Lemma 2.3,
z is not incident with any chord. This implies dG∗(z) = 2 as δ(G∗) ≥ 2 by Lemma 2.2. By
Lemma 2.5(2), z is not incident with any pendant edge, and thus dG(z) = dG∗(z) = 2. We then
claim |V(v, x)| ≤ 1. If not, then there would be two adjacent 2-vertices z1, z2 ∈ V(v, x) by (1),
contradicting Lemma 2.6. Similarly, we have |V(x, y)| ≤ 1 and |V(y, u)| ≤ 1.

(4). Suppose for a contradiction that V(v, x) is a non-edge. If V(y, u) is a non-edge, then we
can easily redraw G to avoid the crossing produced by ux crossing vy. If V(x, y) is a non-edge,
then G∗ has a cut-vertex u, contradicting Lemma 2.2. Hence both V(x, y) and V(y, u) are paths
by (1). Since dG∗(x) = 2 by Lemma 2.4, dG(x) = 2 by Lemma 2.5(2) and xy is a boundary
edge by Lemma 2.6 and by (3).

Let z ∈ NG∗(y) \ {v, x}. Note that it may be possible that z = u.
If there is a pendant edge yw, then G − yw has a strong edge (4∆ − 6)-coloring φ as

G− yw ≺ G and G− yw ∈ O∆. Now the set Fφ(yw) of forbidden colors for yw is{
φ(e)

∣∣ e ∈ EG(x) ∪ EG(z) ∪ EG(v) ∪ EG−yw(y)
}
.

If z = u, then |EG(z) ∪ EG(v)| ≤ max{∆ + 3, 2∆ − 1} = 2∆ − 1 by Lemma 2.4 and by
(2), which follows |EG(x) ∪ EG(z) ∪ EG(v)| ≤ 2 + (2∆ − 1) − 1 = 2∆. If z ̸= u, then by
(3), dG(z) = 2 and thus |EG(x) ∪ EG(z) ∪ EG(v)| ≤ 2 + 2 + ∆ = ∆ + 4 ≤ 2∆. Hence
|Fφ(yw)| ≤ 2∆ + (∆− 1)− 2 = 3∆− 3 < 4∆− 6 and φ can be extended to G.

If y is not incident with any pendant edges, then G−xy has a strong edge (4∆−6)-coloring
φ as G− xy ≺ G and G− xy ∈ O∆. Now the set Fφ(xy) of forbidden colors for xy is{

φ(e)
∣∣ e ∈ EG(x) ∪ EG(z) ∪ EG(v)

}
,

which has size at most 2∆ < 4∆− 6 by above arguments. Hence φ can also be extended to G.
Therefore, V(v, x) is not a non-edge, and by symmetry, V(y, u) is not a non-edge either.

(5). Assume uv ∈ E(G) for a contradiction. It follows that uv is a boundary edge by Lemma
2.3. By (1) and (4), V(v, x) and V(u, y) are paths.
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If V(x, y) is a non-edge, then dG(x) = dG(y) = 2 by Lemma 2.5(2), and furthermore, vx
and uy are boundary edges by (3) and Lemma 2.6. Now G has at most 2∆ − 1 edges and is
trivially strongly edge (4∆− 6)-colorable.

If V(x, y) is not a non-edge, then it is a path by (1). By (3), G is isomorphic to one of
graphs in Figure 2.1, each of which is clearly strongly (4∆− 6)-colorable.

Hence uv ̸∈ E(G). Now by Lemma 2.4 and by (2), |EG(u) ∪ EG(v)| ≤ ∆+ 3.

(6). If |V(v, x)| = 1, then let z ∈ V(v, x). By (3), dG(z) = 2. This implies vz, xz ∈ E(G) by (1).
If v is incident with at least one pendant edge, then ∆ ≤ 4 by Lemma 2.5(3), a contradiction.
Hence v is not incident with any pendant edge and thus dG(v) ≤ 3 by Lemma 2.4. By Lemma
2.6, dG(v) = 3. Similarly, dG(x) = 3.

Let G′ = G − vz. Since G′ ≺ G and G′ ∈ O∆, G
′ has a strong edge (4∆ − 6)-coloring φ.

Now the set Fφ(vz) of forbidden colors for vz is{
φ(e)

∣∣ e ∈ EG(x) ∪ EG(y) ∪ EG(w)
}
,

where w ∈ NG(v)\{y, z}. Since |Fφ(vz)| ≤ 3+2∆ < 4∆−6, we can extend φ to G by coloring
vz with a color not in Fφ(vz). Therefore, V(v, x) = ∅ by (3).

If vx is not a boundary edge, then V(v, x) is a non-edge and thus dG∗(v) = dG∗(x) = 2. It
follows dG∗(y) = 3 by Lemma 2.6, and thus V(x, y) is a path by (1). If V(x, y) ̸= ∅, then there
is a vertex z such that yz is a boundary edge. By (3), dG∗(z) = dG(z) = 2. If V(x, y) = ∅, then
xy is a boundary edge. In each case y is adjacent to two 2-vertices in G∗, contradicting Lemma
2.7. Therefore, vx is a boundary edge, and so does uy by the symmetry. This proves (6).

Figure 2.1. Special graphs in the proof of Lemma 2.10(5).

3 Completing the Proof of Theorem 2.1

Let G be a minimal counterexample to the result with respect to the partial order ≺. If there
is no crossing in G, then G is an outer-plane graph and thus χ′

s(G) ≤ 3∆ − 3 ≤ 4∆ − 6 (see
[17, Theorem 5]). So we assume that there is at least one pair of mutually crossed chords in G.



474 K. LI, X. ZHANG

Choose ux and vy to be two mutually crossed chords of G so that u, v, x, y are located in a
clockwise ordering on the outer face of G and the size of V[v, u] is minimum.

Case 1. ∆ ≥ 5.

By Lemma 2.10(6), both vx and uy are boundary edges. If V(x, y) is a non-edge, then
dG∗(x) = dG∗(y) = 2 by Lemma 2.2. By Lemma 2.5(3), v is not incident with any pendant
edges. This implies dG(v) = dG∗(v) ≤ 3 by Lemma 2.4. However, this is impossible by Lemmas
2.6 and 2.7. Hence V(x, y) is a path by Lemma 2.10(1). By Lemma 2.10(3), |V(x, y)| ≤ 1.

If |V(x, y)| = 1, then there is a vertex z ∈ V(x, y) such that zx, zy ∈ E(G) and dG(z) = 2
by Lemma 2.10(3). By Lemma 2.5(3), x or y is not incident with any pandent edges and thus
dG(x) = dG(y) = 3. By the minimality of G, G − yz has a strong edge (4∆ − 6)-coloring φ.
Now the set Fφ(yz) of forbidden colors for yz is{

φ(e)
∣∣ e ∈ EG(x) ∪ EG(u) ∪ EG(v)

}
,

By Lemma 2.10(5). Fφ(yz) ≤ 3 + (∆+ 3)− 2 = ∆+ 4 < 4∆− 6, and thus φ can be extended
to G.

If |V(x, y)| = 0, then xy is a boundary edge. By the minimality of G, G− xy has a strong
edge (4∆− 6)-coloring φ. Now the set Fφ(xy) of forbidden colors for xy is{

φ(e)
∣∣ e ∈ EG(x) ∪ EG(y) ∪ EG(u) ∪ EG(v)

}
,

which has size at most 2(∆− 1) + (∆+ 3)− 4 = 3∆− 3 < 4∆− 6 by Lemma 2.10(5). Hence φ
can also be extended to G.

Case 2. ∆ = 4.
By Lemma 2.10(5), uv /∈ E(G). By Lemmas 2.10(1) and 2.10(4), V(v, x) and V(y, u) are

paths. By Lemma 2.10(2), we assume, without loss of generality, that u is not incident with
any pendant edges, and thus dG(u) ≤ 3 by Lemma 2.4.

If V(x, y) is a non-edge, then dG∗(x) = dG∗(y) = 2 by Lemma 2.2. Now V(v, x) and V(y, u)
are not non-edges, and thus are paths by Lemma 2.10(1). If vx is not a boundary edge, then
there is a vertex z such that xz ∈ E(G) and dG(z) = 2 by Lemma 2.10(3), contradiction Lemma
2.6. Hence vx is a boundary edge and so does uy. It follows NG(x) = NG(y). However, this is
impossible by Lemmas 2.6 or 2.8 as dG(u) ≤ 3. Hence V(x, y) is a path by Lemma 2.10(1). By
Lemma 2.10(3), |V(x, y)| ≤ 1.

If |V(x, y)| = 1, then there is a vertex z ∈ V(x, y) such that zx, zy ∈ E(G) and dG(z) = 2
by Lemma 2.10(3). By Lemmas 2.9, there are no pendant edges incident with x and y, so
dG(x) = dG(y) = 3. If v is incident with some pendant edge, then vx is a boundary edge by
Lemmas 2.9 and 2.10(3), and thus |EG(v) ∪ EG(x)| ≤ 6. If v is not incident with any pendant
edges, then we also have |EG(v) ∪ EG(x)| ≤ 6 by Lemma 2.4.

By the minimality of G, G − yz has a strong edge 10-coloring φ. Let w ∈ NG(y) \ {z, v}.
Note that w may be u and thus dG(w) ≤ 3 by Lemma 2.10(3). Now the set Fφ(yz) of forbidden
colors for yz is {

φ(e)
∣∣ e ∈ EG(w) ∪ EG(v) ∪ EG(x)

}
.

Since |Fφ(yz)| ≤ 3 + 6 < 10, φ can be extended to G.
If |V(x, y)| = 0, i.e., xy is a boundary edge, then we claim that x and y are not incident

with any pendant edges.
If y is incident with a pendant edge yy′, then by the minimality of G, G− yy′ has a strong

edge 10-coloring φ. Let w ∈ NG(y) \ {v, x}. Note that w may be u and |EG(w) \ {ux}| ≤ 2
by Lemma 2.10(3). If x is incident with some pendant edge, then vx is a boundary edge by
Lemmas 2.9 and 2.10(3) as dG(u) ≤ 3, and thus |EG(v) ∪EG(x)| ≤ 7. If x is not incident with
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any pendant edges, then dG(x) ≤ 3 by Lemma 2.4 and we also have |EG(v)∪EG(x)| ≤ 7. Note
that the set {

φ(e)
∣∣ e ∈ (

EG(w) \ {ux}
)
∪ EG(v) ∪ EG(x)

}
of forbidden colors for yy′ has size at most 2 + 7 = 9 < 10, and thus φ can be extended to G.

If x is incident with a pendant edge xx′, then by the minimality of G, G− xx′ has a strong
edge 10-coloring φ. By Lemmas 2.9 and 2.10(3), vx is a boundary edge. Since y is not incident
with any pendant edges now, the set{

φ(e)
∣∣ e ∈ EG−xx′(x) ∪ EG(y) ∪ EG(u) ∪ EG(v)

}
of Fφ(xx′) of forbidden colors for xx′ has size at most 3+ 3+ 3+ 4− 4 = 9 < 10. Hence φ can
be extended to G, a contradiction.

Now, there are no pendant edges incident with x or y. Then any strong edge 10-coloring φ
of G− xy can be extended to G, as the set of forbidden colors for xy is{

φ(e)
∣∣ e ∈ EG−xy(x) ∪ EG−xy(y) ∪ EG(u) ∪ EG(v)

}
,

which has size at most 2 + 2 + 3 + 4− 2 = 9 < 10.

Case 3. ∆ = 3
By Lemma 2.5(1), there are no pendant edges in G.
If V(x, y) is a non-edge, then dG(x) = dG(y) = 2 and vx and uy are boundary edges by

Lemmas 2.2, 2.6, 2.10(1), and 2.10(3), contradicting Lemma 2.8. So V(x, y) is a path with
|V(x, y)| ≤ 1 by Lemmas 2.10(1) and 2.10(3).

If uv ∈ E(G), then uv is a boundary edge by Lemma 2.3. Now G is isomorphic to one of
graphs in Figure 3.1 by Lemmas 2.8 and 2.10(3), each of which is strongly edge 8-colorable.
Hence uv ̸∈ E(G).

Figure 3.1. Special graphs in the proof of Case 3.

Case 3.1. |V(x, y)| = 1.
Let z1 ∈ V(x, y) such that xz1, yz1 are boundary edges and dG(z1) = 2. By Lemma 2.6,

V(v, x) cannot be a non-edge, and thus it is a path by Lemma 2.10(1). By symmetry, V(y, u)
is a path too. By Lemma 2.10(3), max{|V(v, x)|, |V(u, y)|} ≤ 1.

If |V(v, x)| = |V(u, y)| = 0, then any strong edge 8-coloring φ of G − yz1 can be extended
to G as the set of forbidden colors for yz1 is{

φ(e)
∣∣ e ∈ EG(u) ∪ EG(v) ∪ EG(x)

}
,

having size at most 3 + 3 + 3− 2 = 7.
If |V(v, x)| = 1 and |V(u, y)| = 0, then let z2 be a 2-vertex such that vz2x is a boundary

path. Then any strong edge 8-coloring φ of G− xz1 can be extended to G as the set{
φ(e)

∣∣ e ∈ EG(y) ∪ EG(u) ∪ EG(z2)
}

of forbidden colors for xz1 has size at most 3 + 3 + 2− 1 = 7.
If |V(v, x)| = |V(u, y)| = 1, let z2 and z3 be 2-vertices such that vz2x and uz3y are boundary

paths. By Lemma 2.6, dG(u) = dG(v) = 3. Let u′ ∈ NG(u) \ {x, z3} and v′ ∈ NG(v) \ {y, z2}.
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By the minimality of G, then G′ = G − yz1 has a strong edge 8-coloring φ. Now the set
Fφ(yz1) of forbidden colors for yz1 is{

φ(vv′), φ(vz2), φ(z2x), φ(vy), φ(ux), φ(xz1), φ(uz3), φ(yz3)
}
.

If |Fφ(yz1)| ≤ 7, then φ can be easily extended to G. Hence we assume, without loss of
generality, that φ(vv′) = 1, φ(vz2) = 2, φ(z2x) = 3, φ(vy) = 4, φ(ux) = 5, φ(xz1) = 6,
φ(uz3) = 7 and φ(yz3) = 8. It follows φ(uu′) ̸= φ(yz3) = 8. This makes it possible to complete
a strong edge 8-coloring of G by recoloring z2x with 8 and then coloring yz1 with 3.

Case 3.2. |V(x, y)| = 0
By the minimality of G, G−xy has a strong edge 8-coloring φ. The set Fφ(xy) of forbidden

color for xy is {
φ(e)

∣∣ e ∈ EG−xy(x) ∪ EG−xy(y) ∪ EG(u) ∪ EG(v)
}
.

Clearly, |Fφ(xy)| ≤ 2 + 2 + 3 + 3− 2 = 8.
If |Fφ(xy)| ≤ 7, we can easily extend φ to G. If |Fφ(xy)| = 8, then there are 2-vertices z2

and z3 such that vz2x and uz3y are boundary paths. By Lemma 2.6, dG(u) = dG(v) = 3. Let
u′ ∈ NG(u) \ {x, z3} and v′ ∈ NG(v) \ {y, z2}. Since |Fφ(xy)| = 8, we assume, without loss of
generality, that φ(uu′) = 1, φ(uz3) = 2, φ(ux) = 3, φ(vy) = 4, φ(vv′) = 5, φ(vz2) = 6,
φ(z3y) = 7 and φ(z2x) = 8.

If we are able to recolor uz3 (resp. vz2) with 5 or 6 (resp. 1 or 2) so that the resulting
coloring is still a strong edge coloring, then φ can be finally extended to G by coloring xy with
2 (resp. 6). Hence φ(EG(u

′)) = {1, 5, 6} and φ(EG(v
′)) = {1, 2, 5}. In such a situation we can

complete a strong edge 8-coloring of G by recoloring uz3 and vz2 with 8, z2x with 2, and then
coloring xy with 6.
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