
Journal of the Operations Research Society of China
https://doi.org/10.1007/s40305-023-00498-w

Fast Algorithm for the Rainbow Disconnection Coloring of
2-Trees

Xu-Qing Bai1 · Bi Li1 · Chuan-Dong Xu1 · Xin Zhang1

Received: 7 February 2023 / Revised: 26 May 2023 / Accepted: 2 June 2023
© Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and
Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Given a connected graph G = (V , E), a rainbow disconnection k-coloring of G is

a k-edge coloring of G such that for each pair of vertices u, v ∈ V , there is a rainbow
(edge) cut of u, v, which is a subset RC(u, v) ⊆ E such that u, v are disconnected in
G\RC(u, v) and that all edges in RC(u, v) have different colors. Theminimum integer
k such that G admits a rainbow disconnection k-coloring is the rainbow disconnection
number of G, denoted by rd(G). It has been shown that rd(G) is closely related to the
maximumnumber λ+(G) of edge disjoint paths among all pairs of vertices inG. In this
paper, we propose a polynomial-time algorithm for finding a rainbow disconnection
rd(G)-coloring of a 2-tree, a graph G formed by starting with a triangle and then
repeatedly adding vertices in such a way that each added vertex is adjacent to two
ends of an edge. Moreover, the algorithm shows that rd(G) = λ+(G) if G is a 2-tree.
This justifies a conjecture of Bai et al. [MR4385957] in 2-trees, which states that rd(G)

is either λ+(G) or λ+(G) + 1 for each graph G.

This work was supported by the Natural Science Basic Research Plan in Shaanxi Province of China
(Nos. 2022JQ-009, 2023-JC-YB-001 and 2023-JC-YB-054), the Fundamental Research Funds for the
Central Universities (No. XJS220705) and the National Natural Science Foundation of China
(No. 12071370).

B Bi Li
libi@xidian.edu.cn

Xu-Qing Bai
baixuqing@xidian.edu.cn

Chuan-Dong Xu
xuchuandong@xidian.edu.cn

Xin Zhang
xzhang@xidian.edu.cn

1 School of Mathematics and Statistics, Xidian University, Xi’an 710071, Shaanxi, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40305-023-00498-w&domain=pdf
http://orcid.org/0000-0003-1976-4687

X.-Q. Bai et al.

Keywords Rainbow disconnection coloring · 2-Tree · Dynamic programming ·
Polynomial-time algorithm

Mathematics Subject Classification 05C15 · 05C40 · 68W40 · 90C27

1 Introduction

All graphs considered in this paper are finite, undirected and simple. For any
notation or terminology not defined here, we follow those used in [1]. Let G =
(V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). A u-v path in G
is a path with ends u, v ∈ V (G). For a positive integer k, we always write [k] for the
set {1, 2, · · · , k} of integers. Let G be a graph with an edge coloring c: E(G) → [k],
where adjacent edges may be colored the same. When adjacent edges of G receive
different colors under c, the edge coloring c is called proper. The chromatic index
of G, denoted by χ ′(G), is the minimum number of colors needed in a proper edge
coloring of G.

The connectivity of graphs plays a very important role in network flow theory and
can be applied to aviation networks [2], computer networks [3], transport networks
[4] and so on. In the literature, there are two ways to study the connectivity of graphs:
One is to use paths, and the other is to use cuts. The rainbow connection using paths
has been studied extensively; see, for example, papers [5–7] and books [8] and the
references therein. On the other hand, the rainbow connection using cuts was initially
investigated by Chartrand et al. [9] who introduced the concept of rainbow disconnec-
tion of graphs. Bai and Li [10] called proper edge colorings local colorings and called
rainbow disconnection colorings global colorings.

In fact, the rainbow disconnection of graphs has the following application back-
ground. In the movement of people or goods, in order to intercept certain behaviors,
such as the spread of COVID-19, drug smuggling and wildlife trade illegal activities,
the responsible person needs to block these people or goods and locate them efficiently.
Now that we know the people or goods want to move from a node A to another node B
in the network, a natural measure to block such a movement is to assign interceptions
on the edge cut between A and B, i.e., a collection of roads disconnecting B from A.
We model this by installing one annunciator with a certain frequency on each road
that can notify the responsible person, and therefore, an efficient interception is the
found of an edge cut such that there is no two roads among them that are assigned a
same frequency. Such an edge cut helps the responsible person know the location of
the blocked objective just according to which frequency is received. To save costs, it
is desirable to have as few frequencies as possible that are occupied. Hence, our goal
now is equivalent to find an edge coloring of the network with minimum number of
colors so that an “rainbow” edge cut of any pair of nodes can be computed.

Formally, an edge cut of a connected graph G is a set F of edges such that G − F
is disconnected. For two distinct vertices u and v of G, let λG(u, v) (or simply λ(u, v)

when the graph G is clear from the context) denote the minimum number of edges in
an edge cut F such that u and v lie in different components of G − F . The minimum
cardinality of an edge cut of G is the edge connectivity of G, denoted by λ(G) (i.e.,

123

Fast Algorithm for the Rainbow Disconnection Coloring · · ·

λ(G) is the minimum value of λG(u, v) taken over all pairs of distinct vertices u,
v), whereas the maximum value of λG(u, v) taken over all pairs of distinct vertices
u, v is the upper edge connectivity of G, denoted by λ+(G). This graph parameter
λ+(G) was introduced and extensively studied by Bollobás in [11, 12]. The following
proposition presents another interpretation for λG(u, v).

Proposition 1 [13, 14] For every two vertices u and v in a graph G, λ(u, v) is equal
to the maximum number of pairwise edge disjoint u-v paths in G.

An edge cut R of an edge-colored connected graph G is a rainbow cut if no two
edges in R are colored the same. Let u and v be two distinct vertices of G. A rainbow
edge cut R of G is called a u-v-rainbow cut if u and v belong to different components
of G − R. An edge-colored graph G is called rainbow disconnected if for every two
distinct vertices u and v ofG, there exists a u-v-rainbow cut inG. In this case, the edge
coloring is called a rainbow disconnection coloring (or rd-coloring for short) of G.
For a connected graph G, the rainbow disconnection number of G, denoted by rd(G),
is defined as the smallest number of colors required to make G rainbow disconnected.
An optimal rd-coloring of G is an rd-coloring with rd(G) colors.

Bai et al. [15] studied the rainbow disconnection numbers of many classes of graphs
including connected regular graphs and complete multipartite graphs, and showed that
it is NP-complete to decide whether rd(G) = 3 for a connected cubic graph G. Based
on the known results concerning the rainbow disconnection numbers of graphs in [9,
15], Bai et al. [16] proposed the following conjecture.

Conjecture 1 For any connected graph G, λ+(G) � rd(G) � λ+(G) + 1.

Furthermore, Bai et al. [16] verified the conjecture for subgraph-overfull graphs,
subcubic graphs and graphs G whose maximum degree is at least |G| − 3.

Many algorithmic problems that are NP-complete for arbitrary graphs may be
solved efficiently for k-trees by dynamic programming. A graph G is called a k-
tree if and only if either G ∼= Kk+1 or there is a vertex v of degree k such that NG(v)

induces Kk and G − v is a k-tree. It is easy to observe that the 1-trees are exactly the
trees.

Chartrand et al. [9] obtained that for a tree T , rd(T) = 1, namely rd(T) = λ+(T).
Motivated by this and the definition of k-tree, we ask the following natural question.

Question 1 Given a positive integer k, whether rd(G) = λ+(G) for every k-tree?

This article is arranged as follows. In Sect. 2, we first present several auxiliary
lemmas. In Sect. 3, we design an algorithm to compute λG(u, w) for any edge uw

in a 2-tree G. Finally in Sect. 4, we give a positive answer to the above question for
the case that k = 2. Precisely, we built up a quadratic-time algorithm for 2-trees of
finding rainbow disconnection λ+(G)-colorings. This further supports Conjecture 1.

In the rest of this paper, the intersection G ∩ H of two graphs G and H is the graph
on V (G) ∩ V (H)with the edge set E(G) ∩ E(H), and the union G ∪ H of two graphs
G and H is the graph on V (G) ∪ V (H) with the edge set E(G) ∪ E(H).

123

X.-Q. Bai et al.

2 Preliminaries

Lemma 1 Given a graph G = (V , E), let x, y be two vertices of G and let S be a
minimum edge cut of x, y in G. If uw ∈ S, then S is also an edge cut of u, w in G.

Proof If not, u, w are in the same component in G \ S, which contains at most one of
x, y, then S \ {uw} is an edge cut of x, y in G. This contradicts that S is a minimum
edge cut of x, y in G.

Lemma 2 If G = (V , E) is a 2-tree and {u, v, w} ⊆ V induces a triangle T , then
there are three connected subgraphs G(uv|w), G(uw|v) and G(vw|u) of G such that

(1) G(uv|w) ∩ T = T − w, G(uw|v) ∩ T = T − v, and G(vw|u) ∩ T = T − u;
(2) G(uv|w) ∪ G(uw|v) ∪ G(vw|u) = G;
(3) G(uv|w)∩G(uw|v) = ({u}, ∅), G(uv|w)∩G(vw|u) = ({v}, ∅), andG(uw|v)∩

G(vw|u) = ({w}, ∅);
(4) each of G(uv|w), G(uw|v) and G(vw|u) is a 2-tree as long as it has at least three

vertices.

Proof We proceed induction on |G|. The base case that |G| = 3 is trivial so we assume
that |G| � 4. Since G is a 2-tree, it has a vertex y of degree 2 whose two neighbors
are adjacent.

If y ∈ {u, v, w}, then assume by symmetry that u = y. It follows that G − u is
still a 2-tree. Let G(uv|w) and G(uw|v) just be the edge uv and uw, respectively, and
let G(vw|u) = G − u. One can easily check that G(uv|w), G(uw|v) and G(vw|u)

satisfy the four conditions.
If y /∈ {u, v, w}, then T is an triangle in the graph G ′ = G − y. By the

induction hypothesis, there are three connected subgraphs G ′(uv|w), G ′(uw|v) and
G ′(vw|u) of G ′ such that those conditions hold for G ′. Since the intersection of
any two graphs among G ′(uv|w), G ′(uw|v) and G ′(vw|u) is a single vertex and
G ′(uv|w) ∪ G ′(uw|v) ∪ G ′(vw|u) = G ′, the two neighbors of y in G live in
exactly one graph among those three, say G ′(uv|w), for example. Now G ′(uv|w)+ y
is still a 2-tree. Let G(uv|w) = G ′(uv|w) + y, G(uw|v) = G ′(uw|v), and
G(vw|u) = G ′(vw|u). One can again quickly check that they are connected sub-
graphs of G satisfying the four conditions.

Lemma 3 Given a 2-tree G = (V , E) with order |V | � 3, {u, v, w} ⊆ V induces a
triangle in G. Let x, y be two adjacent vertices in G(uw|v) and let S be a minimum
cut of x, y in G. If uw ∈ S and λG(vu|w)(v, u) � λG(vw|u)(v, w), then we have that:

(1) For any minimum cut F of v, u in G(vu|w), (S ∩G(uw|v))∪ F is a minimum cut
of x, y in G;

(2) If vu ∈ S, then S ∩ G(vu|w) is a minimum cut of v, u in G(vu|w) and S ∩
G(vw|u) = ∅;

(3) If {x, y} = {u, w}, then S ∩ G(uw|v) is a minimum cut of u, w in G(uw|v).

Proof For easy description, we denote the three pairwise disjoint subsets S ∩
G(uw|v), S ∩ G(vu|w) and S ∩ G(vw|u) of S as Suw, Svu and Svw, respectively.
Then S = Suw ∪ Svu ∪ Svw. Note that Suw is a x, y cut in G(uw|v).

123

Fast Algorithm for the Rainbow Disconnection Coloring · · ·

Since uw ∈ S, S is also a cut of u, w from Lemma 1. So Suw is a cut of u, w in
G(uw|v). Moreover, we claim that S is either a cut of v, u or v,w in G. Since if not,
there are a u-v path and a v-w path in G \ S, and then, connecting these two paths
gives a u-w path. It is a contradiction.

(a) If S is a cut of v, u in G, then Svu is a cut of v, u in G(vu|w). Then Suw ∪ Svu

is a cut of u, w in G. This is because that any u-w path in G\(Suw ∪ Svu) goes
through v and this implies that there is a subpath connecting u and v in G(vu|w).
It contradicts with Svu is a cut of v, u in G(vu|w).
We claim that Suw ∪ Svu is also a cut of x, y in G. Suppose if not and there is an
x-y path P in G\(Suw ∪ Svu). If P ⊆ Guw|v , it contradicts with that Suw is a x, y
cut in G(uw|v). If P contains an edge in G(vu|w), then P contains a u-v path in
G(vu|w) as a subpath, which contradicts with that Svu is a v, u cut in G(vu|w).
If P contains an edge in G(vw|u), then P contains a u-w path in G as a subpath,
which contradicts with that Suw ∪ Svu is a cut of u, w in G. So S = Suw ∪ Svu

and Svw = ∅, which implies |S| = |Suw| + |Svu | � |Suw| + λG(vu|w)(v, u) from
Suw ∩ Svu = ∅.

(b) Otherwise S is a cut of v,w inG and Svw is a cut of v,w inG(vw|u). We similarly
prove that S = Suw ∪ Svw and Svu = ∅, which implies |S| = |Suw| + |Svw| �
|Suw| + λG(vw|u)(v, w) � |Suw| + λG(vu|w)(v, u).

One sees that in both case, |S| � |Suw| + λG(vu|w)(v, u).
To prove (1), let F be a minimum cut of v, u in G(vu|w). As proved in case

(a) for Suw ∪ Svu , one can prove that Suw ∪ F is also a cut of x, y in G. Since
|Suw ∪ F | = |Suw| + |F | = |Suw| + λG(vu|w)(v, u) � |S|, so Suw ∪ F is also a
minimum cut of x, y in G. Moreover, |S| = |Suw| + λG(vu|w)(v, u).

To prove (2), if vu ∈ S, then S is a cut of v, u in G from Lemma 1 and we are
in case (a). So Svu is a cut of v, u in G(vu|w) and S = Suw ∪ Svu . Since |S| =
|Suw| + λG(vu|w)(v, u) and |S| = |Suw| + |Svu |, we have that |Svu | = λG(vu|w)(v, u).
So S ∩ G(vu|w) is a minimum cut of v, u in G(vu|w).

To prove (3), since {x, y} = {u, w}, if S ∩ G(uw|v) is not a minimum cut of u, w

in G(uw|v), then replace S ∩G(uw|v) with a minimum cut of u, w in G(uw|v) in S.
The obtained set is a smaller cut of u, w in G. It is a contradiction.

A graph is chordal if the maximum induced cycle is at most 3. There are several
equivalent definitions for chordal graph. We will apply the one related to clique tree,
or a tree decomposition with each bag inducing a maximal clique in the graph.

Definition 1 Given a graph G = (V , E), a tree decomposition of G is a pair (T ,X),
where T is a tree, and X = {Xt |t ∈ V (T)} is a family of subsets of V , called bags,
such that:

• ∪X∈X = V ;
• For any edge uv ∈ E , there is a bag Xt ∈ X for some t ∈ V (T) containing both
u and v;

• For any vertex v ∈ V , the set {t ∈ V (T)|v ∈ Xt } induces a subtree in T .

Lemma 4 [17] A graph G = (V , E) is chordal graph if and only if G has a clique
tree, i.e., a tree decomposition (T ,X) such that each bag X ∈ X induces a clique in
G.

123

X.-Q. Bai et al.

Lemma 5 [18] The chromatic number of a chordal graph is equal to its clique number,
i.e., the size of the maximum clique. Moreover, an optimal vertex coloring of a chordal
graph can be found in linear time.

3 Computing �

Let G = (V , E) be a 2-tree and uw ∈ E(G). We are going to compute the size
λG(u, w) of minimum edge cut of u and w. Every edge uw ∈ E(G) is in a triangle,
induced by, for example, {u, w, v}, in G. From Lemma 3, in any minimum edge cut
of u and w, exactly one of the two edges vu and vw is included, depending on the
two sizes λG(vu|w)(v, u) and λG(vw|u)(v, w) of the minimum edge cuts. Note that the
subgraphs G(vu|w) and G(vw|u) are both 2-trees from Lemma 2. In the following
two lemmas, we prove first the equations of λG(u, w) with the corresponding values
in the related sub-2-trees. Then we describe our algorithm.

Lemma 6 Given a 2-tree G = (V , E), u, v, w ∈ V (G) induce a triangle in G. Then

λG(u, w) = min{λG(vu|w)(v, u), λG(vw|u)(v, w)} + λG(uw|v)(u, w).

Proof From the proof of Lemma 3, we see that any a minimum edge cut of u, w in G
is the union of a minimum cut of u, w in G(uw|v) and the minimum one between a
minimum cut of v, u in G(vu|w) and a minimum cut of v,w in G(vw|u). This proves
the lemma directly.

Corollary 1 Given a 2-tree G = (V , E), let u, w ∈ V (G) and uw ∈ E(G). There are
d common neighbors z1, z2, · · · , zd for some d � 1 of u, w in G. Then λG(u, w) =
1 + ∑d

i=1 min{λG(zi u|w)(zi , u), λG(ziw|u)(zi , w)}.
Proof For any 1 � i � d, {u, zi , w} induces a triangle in G. From Lemma 6,

λG(u, w) = min{λG(z1u|w)(z1, u), λG(z1w|u)(z1, w)} + λG(uw|z1)(u, w).

Then we apply Lemma 6 in G1 = G(uw|z1) recursively for the d − 1 triangles
induced by {u, zi , w} and denote by Gi = Gi−1(uw|zi) for 2 � i � d. In the end,
the connected component Gd contains exactly one edge uw. So

λG(u, w) =
d∑

i=1

min{λG(zi u|w)(zi , u), λG(ziw|u)(zi , w)} + λGd (u, w)

=
d∑

i=1

min{λG(zi ,u|w)(zi , u), λG(zi ,u|w)(zi , w)} + 1.

FromCorollary 1, one sees that for any edge uw ∈ E(G), λG(u, w) can be obtained
by computing the corresponding value of the edges of the triangles containing the
edge uw in corresponding subgraphs. Then we apply this corollary recursively until
the subgraphs are only edges.

123

Fast Algorithm for the Rainbow Disconnection Coloring · · ·

For easy computing, given a 2-tree G = (V , E), we construct a tree TG , called the
triangle tree of G, as follows: The vertex set of TG is the set of triangles and edges in
G, for a triangle vertex t ∈ V (TG) and an edge vertex e ∈ V (TG), te ∈ E(TG) if and
only if e is an edge of the triangle t in G.

Lemma 7 Given a 2-tree G = (V , E), the triangle tree TG of G is a tree.

Proof From the construction of a 2-tree, one sees that there are |V (G)| − 2 triangles
and 2|V (G)| − 3 edges in G, so there are 3|V (G)| − 5 vertices and 3(|V (G)| − 2) =
3|V (G)|−6 edges in T . It is sufficient to prove that there is no cycle in TG . We see that
TG is bipartite with two parts of the set of triangle vertices and the set of edge vertices.
So every cycle in TG , if exists, contains two edge disjoint paths of some pair of edge
vertices of distance two in TG . Let u, v, w ∈ V (G) induce a triangle in G. Then the
corresponding vertices of the two edges vu and vw in TG have a common neighbor
the triangle vertex uvw in TG . So vu and vw have distance two in TG . We are going to
prove that these three vertices in TG consist of the unique path of the two vertices vu
and vw in TG . This is because that from Lemma 2, in G \ {u, v, w}, each connected
component is adjacent to exactly two vertices of the triangle. Correspondingly, each
connected component in TG \ {vu, vw, uvw} is adjacent to exactly one vertex of
{vu, vw, uw, uvw}. So there is no other path from vu to vw. So TG is a tree.

Now we describe how to compute λG(u, w) for any edge uw in a 2-tree G in
Algorithm 1.

Algorithm 1: Linear algorithm for computing λG(u, w) for any edge uw in a
2-tree G

Input: A 2-tree G = (V , E) and an edge uw ∈ E .
Output: λG (u, w).

1 Construct the triangle tree TG of G;
2 Root TG at uw;
3 γ ← the furthest distance of any vertex in TG to the root uw;
4 for i = 0 to γ do
5 Li ← the set of vertices in TG at distance i to the root uw;

6 for each leaf vertex l ∈ V (TG) do
7 λ(l) ← 1;

8 for j = γ /2 to 1 do
9 for t ∈ L2 j−1 do

10 λ(t) ← min{λ(e1), λ(e2)|e1, e2 are the two children of t in TG };
11 for e ∈ L2 j−2 do
12 �e ← the set of children of e in TG ;
13 if �e
= ∅ then
14 λ(e) ← 1 + ∑

t∈�e
λ(t);

15 Output λ(uw).

Theorem 1 Given a 2-tree G = (V , E) and an edge uw ∈ E, Algorithm 1 outputs
λG(u, w) in linear time.

123

X.-Q. Bai et al.

Proof From lines 1–3 in Algorithm 1, one sees that the triangle tree TG are rooted at
the vertex uw and the furthest vertex from uw in TG is at distance γ . Note that every
leaf vertex in TG is an edge vertex since every triangle vertex has degree 3 in TG . Then
γ is an even number since the furthest vertex is a leaf vertex, and then, it is an edge
vertex. As in line 5, Li is the set of vertices at distance i from the root uw in TG for
i = 0, 1, · · · , γ . Then L0 = {uw} and for j = 1, · · · , γ /2, each L2 j is set of edge
vertices and each L2 j−1 is set of triangle vertices.

From lines 6–7, we see that λ(l) = 1 for each leaf vertex l ∈ V (TG). Suppose that
a leaf vertex l ∈ V (TG) corresponds to the edge pq ∈ E(G). Let t be the parent of
l in TG . Then for some vertex o ∈ V (G), pq is contained in the triangle opq of G
corresponding to t ∈ V (TG). Note that every triangle vertex has exactly two children
and one parent in TG . Without loss of generality, we assume that po corresponds to the
other child of t in V (TG) and oq corresponds to the parent of t in V (TG). So p ∈ V (G)

has degree two and is adjacent to o, q ∈ V (G). Then one sees thatG(pq|o) has exactly
two vertices p, q and only one edge pq. So λG(pq|o)(p, q) = 1, which is equal to
λ(l) = 1. From line 10 for j = γ /2 and t ∈ L2 j−1, λ(t) = min{λ(pq), λ(po)} = 1.
We assume that:

• For j = γ /2, · · · , 2 and any edge vertex xy ∈ L2 j−2, λ(xy) is equal to
λG(xy|z)(x, y), where z satisfies that xyz is a triangle in G and xz is the parent of
the triangle vertex in TG corresponding to xyz;

• For j = γ /2, · · · , 1 and any triangle vertex abc = t ∈ L2 j−1, λ(t) is equal
to min{λG(ab|c)(a, b), λG(bc|a)(b, c)}, where ac is (ab, bc are) the parent (two
children) of the triangle vertex abc in TG .

We see that the above assumptions are satisfied for Lγ , Lγ−1,where j = γ /2. Suppose
that the assumptions are true for Lγ , · · · , L1. Then we prove it for L0. When j = 1,
in L2 j−2 = L0 = {uw}, λ(uw) = 1 + ∑

t∈�uw
λ(t) as in line 14, where �uw is the

set of children of uw in TG defined in line 12. From the assumption and Corollary 1,
we see that λ(uw) = λG(u, w).

Since γ � |V (G)|, the algorithm outputs λ(uw) in linear time. The theorem is
proved.

4 Quadratic Algorithm of Finding an Optimal Rd-coloring

Given a 2-tree G = (V , E), one can find an order of the vertices in V =
{v1, v2, · · · , vn} such that, for any 3 � i � n, vi is adjacent to exactly the two ends of
an edge in the subgraph Gi induced by Vi = {v1, v2, · · · , vi }. So for each 3 � i � n,
vi has degree 2 in Gi and v1v2 is the unique edge in G2. For easy description, we call
the above order as a construction ordering of G.

The main idea of our dynamic programming algorithm is as follows: Start from G2
with the cut {v1v2} of v1, v2; in each step, add some vertex vi for 3 � i � n, updating
the cuts of pairs of vertices in Gi−1 to get the cuts in Gi . In the end, we get a cut for
each pair of vertices in Gn = G. To color the edges in G such that each obtained cut
is rainbow, a graph H is constructed: The vertex set of H is the edge set of G and two
vertices in H are adjacent if and only if their corresponding edges in G are contained

123

Fast Algorithm for the Rainbow Disconnection Coloring · · ·

in a common cut obtained in G. So a proper vertex coloring of H gives a rainbow
disconnection coloring of G. We will see that every pair of non-adjacent vertices can
be disconnected by some cut of two adjacent vertices in some Gi for 2 � i � n, and
so, it is sufficient to find the rainbow cut of adjacent vertices in all Gi s. Moreover, for
2 � i � n and any adjacent vertices u, v ∈ Gi , we will prove that in each step i the
size of the obtained cut of u, v is at most λG(u, v), and so, the clique number ω(H),
i.e., the size of the maximum clique of H , is λ+(G). Furthermore, we will prove that
H is chordal and its chromatic number is equal to ω(H) = λ+(G). Thus, an optimal
rd-coloring of G is achieved.
Notations. Before describe the algorithm, for any two vertices u, w ∈ V (G) we
explain some notations used in the algorithm:

• RC(u, w) denotes a rainbow cut of u and w;
• SRC(uw) denotes the set of rainbow cuts containing the edge uw.

Algorithm 2: Quadratic algorithm for rainbow disconnection coloring of 2-trees

Input: A 2-tree G = (V , E).
Output: A rainbow disconnection coloring ϕ of G.

1 Find a construction ordering V = {v1, v2, · · · , vn} of G;
2 RC(v1, v2) ← {v1v2}; SRC(v1v2) ← {RC(v1, v2)};
3 H ← a graph with only one vertex v1v2;
4 for i = 3 to n do
5 uiwi ← the unique edge in Gi−1 with two ends adjacent to vi ;
6 if λG(vi ui |wi)(vi , ui) � λG(viwi |ui)(vi , wi) then
7 x ← ui ; y ← wi ;

8 else
9 x ← wi ; y ← ui ;

10 Add two new vertices vi x and vi y in H ;
11 for each F ∈ SRC(xy) do
12 Make vi x adjacent to each element of F in H ;
13 F ← {vi x} ∪ F ;

14 SRC(vi x) ← SRC(xy);
15 if λG(vi y|x)(vi , y) � λG(xy|vi)(x, y) then
16 RC(vi , x) ← {vi x, vi y}; SRC(vi x) ← SRC(vi x) ∪ {RC(vi , x)};
17 RC(vi , y) ← {vi x, vi y}; SRC(vi y) ← {RC(vi , y)};
18 Make vi y adjacent to vi x in H ;

19 else
20 RC(vi , x) ← RC(x, y);
21 if λG(vi x |y)(vi , x) � λG(xy|vi)(x, y) then
22 RC(vi , y) ← {vi x, vi y}; SRC(vi y) ← {RC(vi , y)};
23 Make vi y adjacent to vi x in H ;

24 else
25 RC(vi , y) ← {vi y} ∪ RC(x, y) \ {vi x}; SRC(vi y) ← {RC(vi , y)};
26 Make vi y adjacent to each element of RC(vi , y) \ {vi y} in H ;

27 ϕ ← an optimal proper (vertex) coloring of H ;
28 Output ϕ.

123

X.-Q. Bai et al.

Theorem 2 Given a 2-tree G = (V , E), Algorithm 2 outputs an optimal rd-coloring
of G in quadratic time.

Proof Given a 2-tree G(V , E), in line 1 the algorithm finds a construction order
V = {v1, v2, · · · , vn} ofG. The proof will proceed by induction on i . For i = 2, line 2
describes a cut RC(v1, v2) = {v1v2} of v1, v2 in G2 and line 3 constructs a graph H
with only one vertex v1v2. Note that v1v2 denotes a vertex in H , corresponding to the
edge in G. The following assumptions are satisfied for i = 2:

(I) For each adjacent pair of vertices u, w ∈ V (Gi), RC(u, w) is a cut of u, w in Gi

and there is a minimum cut M(u, w) of u, w inG such that RC(u, w) ⊆ M(u, w),
which replies that |RC(u, w)| � λG(u, w);

(II) For any pair of non-adjacent vertices v, z ∈ V (Gi), there is a pair of adjacent
vertices u, w ∈ V (Gi), such that the cut RC(u, w) is also a cut of v, z in Gi ;

(III) The constructed graph H is chordal; and an obtained cut of G corresponds to a
clique in H and vice verse.

Suppose that for i = j − 1 for some 3 � j � n in G j−1 all the above assumptions
are satisfied according to lines 4–26 in Algorithm 2. We are going to prove that they
are also satisfied for i = j in G j . Then in Gn = G, from properties (I) and (II), we
get a cut of each pair of vertices in G.

Note that V (Gi)\V (Gi−1) = {vi } and ui , wi are the two adjacent neighbors of vi in
Gi . To be distinguishable, we denote the cut of ui , wi inGi−1 byRCi−1(ui , wi), which
is contained in a minimum cut of ui , wi inG; and the graph H obtained until step i−1
is denoted as Hi−1. From lines 6–9, one sees that λG(vi x |y)(vi , x) � λG(vi y|x)(vi , y)
for x, y ∈ {ui , wi }.

To prove (I), first for any two adjacent vertices u, w ∈ V (Gi−1), if xy /∈
RCi−1(u, w), then RCi (u, w) = RCi−1(u, w) is still a cut of u, w in Gi ; other-
wise, xy ∈ RCi−1(u, w) and so RCi−1(u, w) ∈ SRCi−1(xy). Then it is sufficient
to add vi x or vi y in RCi−1(u, w) to get a cut of u, w in Gi . As in line 13,
RCi (u, w) = RCi−1(u, w) ∪ {vi x} is a cut of u, w in Gi . Let F be a minimum cut of
vi , x inG(vi x |y) and so vi x ∈ F . Since xy ∈ RCi−1(u, w) ⊆ (M(u, w)∩G(xy|vi)),
then from Lemma 3, M(u, w) ∩ G(xy|vi) ∪ F is a minimum cut of u, w in G. So we
have that RCi (u, w) ⊆ M(u, w) ∩ G(xy|vi) ∪ F and |RCi (u, w)| � λG(u, w).

Now we consider the two pairs of adjacent vertices vi , x and vi , y in Gi . There are
two cases in lines 15–26:

• If λG(vi y|x)(vi , y) � λG(xy|vi)(x, y), then λG(vi x |y)(vi , x) � λG(vi y|x)(vi , y) �
λG(xy|vi)(x, y). One sees that RCi (vi , x) = {vi x, vi y}, as in line 16, is a cut
of vi , x in Gi and |RCi (vi , x)| � λG(vi , x). The case for vi , y can be proved
similarly.

• Otherwise, λG(vi y|x)(vi , y) > λG(xy|vi)(x, y). Then RCi (vi , x) = RCi−1(x, y) ∪
{vi x} = RCi (x, y), as in line 20, is a cut of vi , x inGi . Let M(x, y) be a minimum
cut of x, y in G such that RCi−1(x, y) ⊆ M(x, y). Then (M(x, y)∩G(xy|vi)) ⊇
RCi−1(x, y) is a minimum cut of x, y in G(xy|vi) from (3) of Lemma 3. So
RCi (vi , x) = RCi−1(x, y) ∪ {vi x} is contained in a minimum cut of vi , x in G
which consists of a minimum cut of vi , x in G(vi x |y) and M(x, y) ∩ G(xy|vi)
from Lemma 3. So |RCi (vi , x)| � λG(vi , x). There are two subcases for the pair
vi , y:

123

Fast Algorithm for the Rainbow Disconnection Coloring · · ·

– If λG(vi x |y)(vi , x) � λG(xy|vi)(x, y), then RCi (vi , y) = {vi x, vi y}, as in
line 22, is a cut of vi , y in Gi and |RCi (vi , y)| � λG(vi , y).

– Otherwise,λG(vi x |y)(vi , x) > λG(xy|vi)(x, y). ThenRCi (vi , y) = RCi−1(x, y)∪
{vi y} = RCi (x, y)∪{vi y}\{vi x}, as in line 25, is a cut of vi , y inGi . Similarly
as the case for vi , x , we can prove from Lemma 3 that RCi (vi , y) is contained
in a minimum cut of vi , y in G. So |RCi (vi , y)| � λG(vi , y).

To prove (II), for any non-adjacent two vertices v, z ∈ Gi , if vi /∈ {v, z}, then from
the assumption, RCi−1(v, z) is equal to some RCi−1(u, w) for some adjacent pair
u, w in Gi−1. So RCi (v, z) = RCi (u, w) is a cut of v, z in Gi as proved in the proof
of (I).

Otherwise, vi ∈ {v, z} and without loss of generality, assume that v = vi . If
RCi (vi , x) = {vi x, vi y} or RCi (vi , y) = {vi x, vi y}, then {vi x, vi y} is a cut of vi , z
in Gi . Otherwise we have that RCi (vi , x) = RCi−1(x, y) ∪ {vi x} and RCi (vi , y) =
RCi−1(x, y) ∪ {vi y}. Since z
= vi , z ∈ V (Gi−1). If z is in the same component with
x in Gi−1\RCi−1(x, y), then RCi (vi , x) is a cut of vi , z in Gi ; otherwise, RCi (vi , y)
is a cut of vi , z in Gi .

To prove (III), from the assumption we have that Hi−1 is chordal; moreover, any
edges of Gi−1 contained in some recorded cut together induce a clique in Hi−1 and
vice verse. One sees that in line 3, the graph H2 has only one vertex v1v2, which
satisfies the assumption. It is sufficient to prove that Hi is chordal; and any edges of
Gi contained in some recorded cut together induce a clique in Hi and vice verse.

As in line 10, each step two new vertices are added and V (Hi) \ V (Hi−1) =
{vi x, vi y}. Let us see the new added edges related to the two new vertices vi x and
vi y in Hi : as in lines 11–12, vi x is adjacent to any one, which is contained in a cut
Fi−1 together with xy, i.e., Fi−1 ∈ SRCi−1(xy). Note that at the same time, Fi−1 is
also updated to be Fi including vi x . So in Hi , vi x is adjacent to any edge e of Gi−1
if and only if e is a neighbor of xy in Hi−1. Moreover, a clique in Hi−1 containing
xy becomes a larger clique in Hi by adding vi x . In lines 18 and 23, vi y is adjacent to
vi x if RCi (vi , y) = {vi x, vi y}. Otherwise, in line 26, vi y is adjacent to each element
of RCi (vi , y)\{vi y} = RCi−1(x, y). Since SRCi (vi y) = RCi (vi , y), in any case we
have that the neighborhood of vi y induces a clique in Hi , denoted as Y . So any edges
of Gi contained in some recorded cut together induce a clique in Hi and vice verse.

From Lemma 4, we assume that (Ti−1,Xi−1) is a tree decomposition of Hi−1 such
that each bag ofXi−1 induces a clique in Hi−1.Wewill construct such a tree decompo-
sition of Hi in the following to show that Hi is chordal. As shown in Fig. 1, to construct
a tree decomposition of Hi , add a vertex vi x to each bag containing xy in (Ti−1,Xi−1).
Moreover, add a new bag Y adjacent to the bag containing RCi−1(x, y). (Note that
RCi−1(x, y) induces a clique in Hi−1 and so there is a bag in (Ti−1,Xi−1) containing
RCi−1(x, y).) The obtained tree decomposition (Ti ,Xi) is a tree decomposition Hi

such that each bag induces a clique in Hi . So Hi is chordal.

123

X.-Q. Bai et al.

Fig. 1 Construct a tree decomposition (Ti ,Xi) of Hi based on a tree decomposition (Ti−1,Xi−1): add a
vertex vi x to each bag containing xy in (Ti−1,Xi−1); and add a new bag Y adjacent to the bag containing
D = RCi−1(x, y) (Note that xy ∈ D and Y is the neighborhood of vi y in Hi)

From Lemma 5, we have that a proper coloring ϕ of H can be found in linear time
and the needed number of colors is the clique number of H , which is exactly λ+(G).
So ϕ is an optimal rd-coloring of G. From the for loop and Theorem 1, we see that
the algorithm runs in O(n2) time.

Acknowledgements We are very grateful to the reviewers for their helpful comments and suggestions.

Author Contributions X.-Q. Bai, B. Li, C.-D. Xu and X. Zhang conceived or designed the work. X.-Q. Bai
and B. Li drafted the article. C.-D. Xu and X. Zhang critically revised the article.

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

References

[1] Bondy, J.A., Murty, U.S.R.: Graph theory. In: Graduate Texts in Mathematics, vol. 244. Springer,
Berlin (2008)

[2] Goedeking, P.: Networks in Aviation: Strategies and Structures. Springer Science & Business Media,
London (2010)

[3] Peterson, L.L., Davie, B.S.: Computer Networks: a Systems Approach. Elsevier, Amsterdam (2007)
[4] Bell, M.G., Iida, Y.: Transportation Network Analysis. Wiley, New York (1997)
[5] Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in graphs. Math. Bohem.

133, 85–98 (2008)
[6] Li, X., Shi, Y., Sun, Y.: Rainbow connections of graphs: a survey. Graphs Combin. 29, 1–38 (2013)
[7] Li, X., Sun, Y.: An updated survey on rainbow connections of graphs—a dynamic survey. Theory

Appl. Graphs 0, 1–67 (2017)
[8] Li, X., Sun, Y.: Rainbow Connections of Graphs. Springer, New York (2012)
[9] Chartrand, G., Devereaux, S., Haynes, T.W., Hedetniemi, S.T., Zhang, P.: Rainbow disconnection in

graphs. Discuss. Math. Graph Theory 38, 1007–1021 (2018)
[10] Bai, X., Li, X.: Graph colorings under global structural conditions. arXiv:2008.07163 (2020)
[11] Bollobás, B.: On graphs with at most three independent paths connecting any two vertices. Studia

Sci. Math. Hungar. 1, 137–140 (1966)
[12] Bollobás, B.: Extremal Graph Theory. Academic Press Inc, London (1978)
[13] Elias, P., Feinstein, A., Shannon, C.E.: A note on the maximum flow through a network. IRE Trans.

Inform. Theory IT 2, 117–119 (1956)
[14] Ford, L.R., Jr., Fulkerson, D.R.: Maximal flow through a network. Canad. J. Math. 8, 399–404 (1956)
[15] Bai, X., Chang, R., Huang, Z., Li, X.: More on rainbow disconnection in graphs. Discuss. Math.

Graph Theory. 42, 1185–1204 (2022)

123

http://arxiv.org/abs/2008.07163

Fast Algorithm for the Rainbow Disconnection Coloring · · ·

[16] Bai, X., Huang, Z., Li, X.: Bounds for the rainbow disconnection number of graphs. Acta Math. Sin.
Engl. Ser. 38, 384–396 (2022)

[17] Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Combin.
Theory Ser. B 16, 47–56 (1974)

[18] Heggernes, P.: Treewidth, partial k-trees, and chordal graphs. In: Partial Curriculum in INF334
Advanced Algorithmical Techniques. Department of Informatics, University of Bergen, Norway
(2005)

[19] Wald, J.A., Colbourn, C.J.: Steiner trees, partial 2-trees, and minimum IFI networks. Networks 13(2),
159–167 (1983)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Fast Algorithm for the Rainbow Disconnection Coloring of 2-Trees
	Abstract
	1 Introduction
	2 Preliminaries
	3 Computing λ
	4 Quadratic Algorithm of Finding an Optimal Rd-coloring
	Acknowledgements
	References

