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The problem of maximising the number of cliques among n-
vertex graphs from various graph classes has received consid-
erable attention. We investigate this problem for the class of
1-planar graphs where we determine precisely the maximum
total number of cliques as well as the maximum number of
cliques of any fixed size. We also precisely characterise the
extremal graphs for these problems.
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1. Introduction

A 1-planar graph is a graph which can be drawn in the plane such that each edge is crossed by
t most one other edge (see Section 2 for a formal definition). This class forms a natural extension
f the class of planar graphs, and was first introduced by Ringel in 1965 [1]. His motivation was
he problem of simultaneously colouring vertices and faces of a plane graph so that each face and
ertex gets a distinct colour from all neighbouring faces and vertices. Such a colouring corresponds
o a vertex colouring of a 1-planar graph, and Ringel made progress on this problem by showing
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that every 1-planar graph is 7-colourable. The problem was later fully answered by Borodin [2],
who showed that six colours are sufficient to colour every 1-planar graph (the triangular prism has
no such 5-vertex-face-colouring).

Since its introduction, the class of 1-planar graphs has proven to be a topic of much interest, as
eflected by the large body of research in the area (some results on the topic are surveyed in [3–5]).
ne reason for interest in the class is that it is closely related to the class of planar graphs, while
aving a number of important qualitative differences. Most notably, whereas the classical results
f Kuratowski [6] and Wagner [7] tell us that planar graphs can be defined as exactly those graphs
ith no K3,3 or K5 (topological) minor, the class of 1-planar graphs has no such characterisation.

n fact it is easy to see that every graph can be made 1-planar by subdividing its edges sufficiently
any times. Another key distinction is that planar graphs can be recognised in time linear in the
umber of vertices [8], but the recognition problem for 1-planar graphs is NP-complete [9,10]. On
he other hand, 1-planar graphs are only a linear number of edges away from being planar. In fact,
henever an n-vertex graph is drawn in the plane so that each edge is crossed at most once and

adjacent edges do not cross, the total number of crossings is at most n − 2 [11].
In extremal graph theory, determining the maximum number of edges in an n-vertex graph from

given graph class is a fundamental problem. The classical theorem of Turán [12] asserts that in
he class of Kr -free graphs, the maximum number of edges is attained (uniquely) by the complete
ultipartite graph with r − 1 parts each of size

⌊ n
r−1

⌋
or

⌈ n
r−1

⌉
. In the class of planar graphs it is

a simple consequence of Euler’s formula that an n-vertex graph contains at most 3n − 6 edges. The
bound on the number of crossings in 1-planar drawings implies that n-vertex 1-planar graphs have
t most 4n − 8 edges, although this was first shown by Bodendiek, Schumacher and Wagner [13].

In the same paper, they characterised the n-vertex 1-planar graphs which achieve this bound as
xactly the graphs obtained from 3-connected planar quadrangulations by adding a pair of crossing
dges into every face.
Going beyond maximising edges it is natural to consider maximising the number of cliques

f a given size t among n-vertex graphs from a class of graphs G. Zykov [14] and Erdős [15]
ndependently determined this number for the class of Kr -free graphs for all positive integers t
nd n. Hakimi and Schmeichel [16] determined the maximum number of triangles in an n-vertex
lanar graph (see Theorem 2.4), and the maximum number of cliques of size four in an n-vertex
lanar graph was determined independently by Alon and Caro [17], and Wood [18]. We determine
he maximum number of cliques of any fixed size in an n-vertex 1-planar graph. Note that for n ≤ 6,
he clique Kn is 1-planar, and contains the maximum possible number of cliques of any fixed size.
t follows from Borodin’s result [2] that 1-planar graphs are 6-colourable that no 1-planar graph
ontains a clique of size 7 or greater. All remaining cases are covered by the following theorems.

heorem 1.1. Given integers k ≥ 2 and s ∈ {0, 1, 2}, the maximum number f3(3k + s) of subgraphs
somorphic to K3 in a 1-planar graph with 3k + s vertices is given by

f3(3k + s) =

{
32 if 3k + s = 8,
19k + 5s − 18 otherwise.

heorem 1.2. Given integers k ≥ 2, and s ∈ {0, 1, 2} and t ∈ {4, 5, 6}, the maximum number
ft (3k + s) of subgraphs isomorphic to Kt in a 1-planar graph with 3k + s vertices is given by

ft (3k + s) = (k − 1)
(
6
t

)
+

(
s + 3
t

)
.

Building on these questions, it is natural to ask for a structural characterisation of the extremal
raphs. The planar graphs which maximise the number of triangles are the planar graphs which
an be formed from K3 by iteratively pasting copies of K4 on facial triangles. These graphs are called
pollonian networks, and they are also the planar graphs with the maximum number of cliques of
ize four. We provide such a structural characterisation for 1-planar graphs, determining precisely
hich graphs attain the bounds in Theorems 1.1 and 1.2. When the number of vertices is divisible

y three, these extremal graphs are analogous to Apollonian networks; they are the 1-planar graphs

2



J.P. Gollin, K. Hendrey, A. Methuku et al. European Journal of Combinatorics 109 (2023) 103654

d

s
a
f
g
m
n
m
n
b
a
n
d
m

T
1

1

1

i
t
t
s
i
o
i
T
t
i
a

o

Fig. 1.1. Examples of extremal graphs for Theorems 1.1, 1.2 and 1.3.

formed from K3 by iteratively pasting copies of K6 on facial triangles 6 (see Fig. 1.1). We give a formal
escription of all extremal graphs in Section 3.
In the class of planar graphs, the n-vertex graphs with the maximum number of cliques of

ize four also have the maximum number of triangles and the maximum number of edges [14],
nd therefore have the maximum total number of cliques. In fact this was Wood’s motivation
or counting cliques of size four in planar graphs [18]. The same is true of the class of Kr -free
raphs, where the graphs with the maximum number of cliques of size t are exactly those with the
aximum number of edges for all t between 2 and r . In the case of 1-planar graphs, the situation is
ot as simple. In fact, for n at least 9 and t between 3 and 6, every n-vertex 1-planar graph which
aximises the number of cliques of size t has strictly fewer than 4n − 8 edges (i.e. the maximum
umber of edges in an n-vertex 1-planar graph). Furthermore, when n is at least 7 and not divisible
y 3, there is no n-vertex 1-planar graph which simultaneously maximises the number of triangles
nd cliques of size five. We nevertheless determine the maximum total number of cliques in
-vertex 1-planar graphs. We also characterise the 1-planar graphs attaining this bound, which we
escribe in Section 3. When n is divisible by three, these are the previously described graphs which
aximise the number of cliques of all fixed sizes between 3 and 6 (see Fig. 1.1).

heorem 1.3. Given integers k ≥ 1 and s ∈ {0, 1, 2}, the maximum number f (3k + s) of cliques in a
-planar graph with 3k + s vertices is given by

f (3k + s) = 56(k − 1) + 2s+3.

We summarise our results in the context of the extremal functions for counting cliques in
-planar graphs in Table 1.

.1. Related extremal results

The problem of maximising cliques in a given graph class has long been an important topic
n extremal combinatorics. Motivated by the famous problem of Erdős of maximising pentagons in
riangle-free graphs (solved by Hatami et al. [19] and Grzesik [20]), the dual problem of maximising
riangles in the class of pentagon-free graphs was introduced by Bollobás and Győri [21], and has
till not been resolved. There are now many graphs H for which the problem of maximising triangles
n H-free graphs has been studied, see for example [22,23]. Determining the maximum number
f cliques in a regular graph was a famous open problem of Alon and Kahn (phrased in terms of
ndependent sets). Kahn [24] resolved the problem under the assumption that the graph is bipartite.
he conjecture was finally settled by Zhao [25] who was able to deduce the general case from
he bipartite case. The maximum number of cliques in the class of graphs with bounded clique or
ndependence number was determined by Cutler and Radcliffe [26]. If only the number of edges
nd vertices are fixed, then Wood [18] determined the maximum possible number of cliques.

6 We will see in Section 7 that these graphs are exactly the graphs which are isomorphic to the strong product K3 ⊠ Pm
f a triangle K and a path P of length m − 1 for some positive integer m.
3 m
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Table 1
The maximum number ft (n) of cliques of size t and the maximum number f (n) of cliques in n-vertex 1-planar graphs.

A more topological example is the class of graphs embeddable on an arbitrary fixed surface,
here Huynh, Joret and Wood [27] determined asymptotically the maximum number of triangles
nd the maximum number of subgraphs isomorphic to K4. In the case of Kt for t ≥ 5 they obtained
stimates on the maximum number of subgraphs isomorphic to Kt (which for t ≥ 5 is constant
ith respect to n). Dujmović et al. [28] considered the question of maximising the total number
f cliques in graphs embeddable on an arbitrary fixed surface, determining the precise asymptotic
ependence on n, and giving a structural description of the class of extremal graphs.
Other minor closed classes have also been considered. Wood [29] determined for all t and r ≤ 9

he maximum number of subgraphs isomorphic to Kt in the class of Kr -minor free graphs, as well
s the maximum total number of cliques in these classes. While giving bounds on the number of
raphs in proper minor closed classes, Norine, Seymour, Thomas and Wollan [30] obtained a bound
n the total number of cliques in a graph with no Kr -minor (of the form (αr

√
log r)rn for some

ixed constant α). A better bound, of the form 2O(r
√
log r)n, was obtained by Reed and Wood [31], and

sed in an algorithmic problem about finding separators. Fomin, Oum and Thilikos [32] improved
he bound to 2O(r log(log(r)))n. This bound was further improved to 25r+o(r)n by Lee and Oum [33],
resolving a conjecture of Wood [18], and finally to 32r/3+o(r)n by Fox and Wei [34], which is sharp
for n ≥ 4r/3. This result was subsequently strengthened by Fox and Wei [35] to hold in the class of
Kr -subdivision free graphs. Kawarabayashi and Wood [36] considered the class of graphs forbidding
a given odd-minor and proved a bound of O(n2) on the number of cliques, which is tight up to a
constant factor.

In this paper we emphasise only the extremal problem of bounding the number of cliques in
graph classes. However, the algorithmic problem of enumerating the cliques (or other subgraphs)
in graphs from a given graph class has also garnered much attention. In particular, Chiba and
Nishizeki [37] gave an algorithm to list the cliques in any graph, whose running time is linear in
the number of cliques and arboricity of the graph.

1.2. Overview of the proofs

We will prove Theorems 1.1, 1.2 and 1.3 by proving the stronger results Theorems 6.6, 6.9
and 6.11 stated in Section 6, which additionally give a precise characterisation of the extremal
graphs. We now give a rough overview of the proof of Theorem 6.6. The proofs of Theorems 6.9
4
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and 6.11 work in a similar way. We proceed by induction on the number of vertices n of an
xtremal graph G. When n is at most twenty, we determine all possible extremal graphs with some
omputational assistance.
For larger values of n, we fix a 1-drawing of G (a drawing of G in which each edge is crossed

y at most one other edge, see Section 2.2), with some additional useful properties (see Section 4).
ur initial strategy will be to iteratively find and delete crossed edges which are contained in at
ost 3 triangles. If we can reduce G to a planar graph in this way, then we can bound the number
f triangles in G in terms of the crossing number and the extremal number of triangles in planar
raphs to complete the proof. Otherwise, G contains a subgraph such that every crossed edge is in
t least four triangles. Using the properties of the drawing and the simple observation that vertex-
isjoint triangles cross an even number of times, we are able to deduce that G contains a subgraph
somorphic to either K2,2,2,2 or K6. It turns out that no 3-connected 1-planar graph contains a proper
ubgraph isomorphic to K2,2,2,2, and it is easy to show that G is 3-connected, so we deduce that G
as a subgraph isomorphic to K6. By analysing the drawing restricted to this subgraph, we find a
riangle which separates G. This allows us to inductively deduce the structure of G from the structure
f the two sides of the separation, and thus compute the extremal function.

.3. Structure of the paper

The paper is structured as follows. In Section 2, we formally define drawings, set up the notation
hich will be used throughout the paper and collect some useful results from the literature. In
ection 3, we present the classes of extremal graphs for Theorems 1.1, 1.2 and 1.3 and briefly discuss
ome properties of these constructions. In Section 4, we describe a class of 1-drawings with some
seful properties, and prove interesting facts about them. In Section 5, we compute an upper bound
or the number of cliques of any given size in a 1-planar graph with no subgraph isomorphic to K6.
n Section 6, we complete the proofs of Theorems 1.1, 1.2 and 1.3, and additionally we show that the
lasses of graphs defined in Section 3 are exactly the classes of extremal graphs. In Section 7, we give
ore precise characterisations of the classes of extremal graphs in terms of tree-decompositions,
llowing us to generate the graphs in each class in polynomial time. We conclude in Section 8 with
discussion of some open questions.

. Preliminaries

.1. Basic notation

Given an integer k, we denote by [k] the set of all integers i with 1 ≤ i ≤ k.
Let G be a graph with vertex set V (G) and edge set E(G). We denote an edge between vertices v

nd w by the string vw. For a set X ⊆ V (G), we denote the subgraph of G induced on X by G[X]. We
enote by G − X the subgraph of G induced on V (G) \ X . We denote by G the complement of G, which

is the graph with vertex set V (G) and edge set {vw : v,w ∈ V (G), vw /∈ E(G)}. We denote by ∆(G)
nd δ(G) the maximum and minimum degree of G respectively.
Let G and H be graphs. We denote by G ∩ H the intersection of G and H , which is the graph

on V (G) ∩ V (H) with the edge set E(G) ∩ E(H). We denote by G ∪ H the union of G and H , which is
the graph on V (G) ∪ V (H) with the edge set E(G) ∪ E(H), and we denote by G ⊔ H the disjoint union
of G and H , which is the graph on the disjoint union of V (G) and V (H) whose edge set is the disjoint
union of E(G) and E(H). We denote by G + H the graph join of G and H , which is the union of G ⊔ H
with the complete bipartite graph with bipartition classes V (G) and V (H). We denote by G ⊠ H the
strong product of G and H , which is the graph whose vertex set is the cartesian product V (G) × V (H)
with an edge between (v,w) and (v′, w′) if and only if either

• v = v′ and ww′
∈ E(H);

• vv′
∈ E(G) and w = w′; or

′ ′

• vv ∈ E(G) and ww ∈ E(H).

5



J.P. Gollin, K. Hendrey, A. Methuku et al. European Journal of Combinatorics 109 (2023) 103654

W

i
v
a

s
s
w
o
t
a
i

2

s
p
e
v
a
a
h

F
w
‘

o
e
t
c

v
g
t
t
G
o

We write H ⊆ G if H is a subgraph of G, that is V (H) is a subset of V (G) and E(H) is a subset of E(G).
e write N (G,H) for the number of subgraphs H ′

⊆ G that are isomorphic to H .
For a non-negative integer k, we denote by Kk a fixed clique (complete graph) with k vertices, and

f k ≥ 1 we denote by Pk a fixed path with k vertices, and if k ≥ 3 we denote by Ck a fixed cycle with k
ertices. Given an integer ℓ ≥ 2 and a family (ki : i ∈ [ℓ]) of positive integers, we denote by Kk1,...,kℓ
fixed complete multipartite graph with ℓ partition classes of sizes k1, . . . , kℓ, respectively.
A separation of G is a pair (A, B) of subsets of V (G) such that G[A] ∪ G[B] = G. Its order is the

ize of its separator A ∩ B, and we call a separation of order k for some integer k a k-separation. We
ay a separation (A, B) is non-trivial if both A \ B and B \ A are non-empty. For a positive integer k,
e say G is k-connected if G has at least k + 1 vertices and no non-trivial k-separation. A subset S
f V (G) is a non-trivial |S|-separator of G if G − S has at least two components, i.e. there is a non-
rivial separation of G with S as its separator. Given subsets S, X and Y of V (G), we say S separates X
nd Y if there is a separation (A, B) whose separator is S with X ⊆ A and Y ⊆ B. We call a triangle C
n G for which V (C) is a non-trivial 3-separator a separating triangle of G.

.2. Drawings

Given a graph G, we arbitrarily fix a linear ordering ≺ of V (G) and define a topological
pace |G| as follows 7 The ground set is the disjoint union of V (G) together with the cartesian
roduct E(G) × (0, 1) of E(G) and the open unit interval (0, 1). A subset S of |G| is open if for
very edge e, there is an open subset S ′

e of (0, 1) with S ∩ ({e} × (0, 1)) = {e} × S ′
e, and for every

ertex v ∈ S and every neighbour w of v, there is some ε > 0 such that {vw} × (0, ε) ⊆ S if v ≺ w

nd {vw} × (1 − ε, 1) ⊆ S if w ≺ v. For an edge vw of G, we refer to {v,w} ∪ ({vw} × (0, 1))
s an edge of |G|, and to the points in {vw} × (0, 1) as inner points of this edge. Note that up to
omeomorphism, changing the linear ordering of V (G) does not change |G|.
For a surface space S a drawing of G in S is a map ϕ : |G| → S with the following properties:

(D1) ϕ is continuous;
(D2) ϕ is injective on the vertices of G, i.e. for every vertex v, if ϕ(v) = ϕ(x), then x = v;
(D3) there are only finitely many points x ∈ S for which ϕ−1(x) has size at least 2; we call these

points the crossings (of ϕ);
(D4) each crossing x of ϕ satisfies |ϕ−1(x)| = 2, and the corresponding points of |G| are inner points

of distinct edges; we call these edges the edges involved in the crossing;
(D5) for each crossing x of ϕ there is an open set D with x ∈ D such that for every open set D′

⊆ D
with x ∈ D′ the removal of the image of one of the edges involved in x disconnects D′ such
that multiple components contain image points of the other edge involved in x.

or two edges involved in a crossing of ϕ, we say these edges cross (with respect to ϕ). An edge
hich crosses some other edge is called a crossed edge (with respect to ϕ). We may omit the phrase

‘with respect to ϕ’’ if the drawing we are referring to is clear from context.
Intuitively we think of a drawing as the image of such a map ϕ in the surface: a representation

f a graph in the surface, where the vertices of the graph are represented by distinct points and the
dges by Jordan arcs joining the corresponding pairs of points. Properties (D3) and (D4) mean that
here are finitely many points where exactly two edges cross. Property (D5) means that for each
rossing point the edges really ‘‘cross’’ and not just ‘‘touch’’.
Let ϕ be a drawing of a graph G (in a surface S). For simplicity, we may refer to the images of

ertices or edges simply as vertices or edges, respectively, of the drawing (and similarly for other
raph structures). For a subgraph H of G we write ϕ↾H for the drawing of H in S which is just
he restriction of ϕ to |H| (considered as a subspace of |G|). We write ϕ(H) instead of ϕ(|H|) for
he image of |H|, and for simplicity, we will write ϕ(e) instead of ϕ(G[v,w]) for an edge e = vw.
iven another drawing ϕ′ of G in S, we say ϕ and ϕ′ are equivalent if there is an automorphism ψ

f S such that ψ(ϕ′(H)) = ϕ(H) for every subgraph H of G. Moreover, we say ϕ and ϕ′ are weakly

7 This is just the simplicial 1-complex of G.
6
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Fig. 2.1. The unique simple 1-planar drawings (up to weak equivalence) of K6 on the left, of K3 + C4 in the middle and
f K2,2,2,2 on the right.

quivalent if ϕ is equivalent to the composition of ϕ′ with some automorphism of G. Moreover, we
say ϕ and ϕ′ are weakly equivalent if there is an automorphism ϑ of G and a homeomorphism ψ of
S such that ψ(ϕ′(G[ϑ(S)])) = ϕ(G[S]) for every S ⊆ V (G).

A region R of S \ ϕ(G) is a connected component of that topological space. For X ⊆ S, we denote
by cl(X) the topological closure of X in S. The boundary of a region R is cl(R) \ R. If the boundary of R
does not contain any crossings of ϕ, then we call R a face of ϕ. Note that if the boundary of a face
contains an inner point of some edge e of G, then it contains ϕ(e). We define the degree of a face F
o be the number of edges e for which ϕ(e) is contained in the boundary of F , plus the number of
dges e for which ϕ(e) is contained in the boundary of F and not contained in the boundary of any
ther region of S \ ϕ(G). If the boundary of a face is equal to ϕ(C) for a cycle C ⊆ G, then we call C
facial cycle with respect to ϕ. Note that if G is 2-connected, then the boundary of each face of ϕ is
facial cycle with respect to ϕ. If the drawing is clear from the context, we may refer to the faces
f the drawing or facial cycles with respect to the drawing by faces or facial cycles, respectively, of
he graph.

We say ϕ is simple if no two adjacent edges cross. Given a non-negative integer k, we say ϕ is a
-drawing (of G in S) if no edge of G is involved in more than k crossings.

emark 2.1. A graph has a 1-drawing (in S) if and only if it has a simple 1-drawing (in S). □

If ϕ is a drawing of a graph G in the 2-dimensional sphere S2, we call ϕ just a drawing of G. From
ow on we will only consider such drawings.
Note that there is a natural correspondence between drawings in the plane and in S2.
Given a non-negative integer k, a graph G is called k-planar if there is a k-drawing ϕ of G. Note

that the 0-planar graphs in this context are precisely the planar graphs. The minimum integer k for
hich a graph G is k-planar is the local crossing number of G.
A graph G is an edge-maximal k-planar graph if G is k-planar and no proper supergraph of G on

he same vertex set is k-planar.
Building on earlier work of Schumacher [38], Suzuki [39] studied which edge-maximal 1-planar

raphs have unique 1-drawings, up to weak equivalence. We will use the following lemma.

emma 2.2 ([39, Lemma 17 and Corollary 4]). The graphs K6, K3 + C4 and K2,2,2,2 each have a unique
imple 1-drawing up to weak equivalence.

From Lemma 2.2 and Figs. 2.1 and 2.2 we obtain the following corollary.

orollary 2.3. Let G be isomorphic to a graph in {K6, K3+C4, K2,2,2,2} and let ϕ be a simple 1-drawing
of G. The following statements hold.

(i) Every edge which is not crossed with respect to ϕ is incident with two edges which cross each
other.

(ii) If the boundary of some region R of S2
\ ϕ(G) contains at least three vertices, then the boundary

of R is a facial triangle with respect to ϕ, and G is not isomorphic to K .
2,2,2,2

7
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Fig. 2.2. A simple 1-planar drawing of K3 + C4 on the left and of K3 + K1,3 on the right.

(iii) If G is not isomorphic to K2,2,2,2, then exactly two triangles are facial with respect to ϕ and these
are vertex-disjoint. □

Given a drawing ϕ of a graph G, we define the true-planar skeleton S(ϕ) of ϕ to be the subgraph
f G containing exactly the edges of G which are not crossed. We will always consider S(ϕ) to be
rawn with the restriction ϕ↾S(ϕ), which is a planar drawing of S(ϕ). For all figures in this paper
e use black edges for the true-planar skeletons of the drawings depicted.

.3. Extremal results for planar and 1-planar graphs

We now collect some results from the literature which will be needed in the upcoming proofs.
A planar graph G is an Apollonian network if it is isomorphic to K3 or it contains a vertex v of

egree 3 such that G − v is an Apollonian network.

heorem 2.4 ([16]). For an integer n ≥ 3, every n-vertex planar graph has at most 3n − 8 triangles,
ith equality if and only if it is an Apollonian network.

heorem 2.5 ([17,18]). For an integer n ≥ 4, every n-vertex planar graph has at most n − 3 subgraphs
somorphic to K4, with equality if and only if it is an Apollonian network.

heorem 2.6 ([13]). Given a non-negative integer n, the maximum number f2(n) of edges in a 1-planar
raph with n vertices is given by

f2(n) =

⎧⎨⎩
(n
2

)
if n ≤ 6,

4n − 9 if n ∈ {7, 9},
4n − 8 otherwise.

emma 2.7 ([11]). A simple 1-drawing of an n-vertex graph has at most n − 2 crossings.

heorem 2.8 ([40]). A 7-vertex graph is 1-planar if and only if it has no subgraph isomorphic to K4 + K3.

The following corollary is simple to deduce.

Corollary 2.9. A graph with at most 7 vertices is 1-planar if and only if it is isomorphic to a subgraph
of either K3 + C4 or K3 + K1,3. □

. Constructing the extremal graphs

In this section, we will construct the extremal graphs for Theorems 1.1, 1.2 and 1.3. In order
o do this, we must first give some definitions. The following simple lemma describes a method
f combining two 1-planar graphs to form a larger 1-planar graph which is fundamental to our
onstructions.
8
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Lemma 3.1. Let G1 and G2 be 1-planar graphs such that G1 ∩ G2 is a clique K with at most three
vertices. For each i ∈ [2] let ϕi be a 1-drawing of Gi such that K is contained in S(ϕi) and ϕi(Gi − V (K ))
s contained in a unique region of S2

\ ϕi(K ). Then G := G1 ∪ G2 has a 1-drawing ϕ whose restriction
o Gi is equivalent to ϕi for i ∈ [2], such that no edge of G1 crosses any edge of G2.

roof. For each i ∈ [2], let Di and denote a subset of S homeomorphic to an open disc such
that ϕi(G) ⊆ cl(Di) and ϕi(G) \ Di = ϕi(K ) (which exists since K ⊆ S(ϕi)). Let ψ be an automor-
phism of S such that ψ ◦ (ϕ2↾K ) = ϕ1↾K and ψ(D2) = S2

\ cl(D1). The unique 1-drawing of G such
that ϕ↾G1 = ϕ1 and ϕ↾G2 = ψ ◦ ϕ2 satisfies the claim. □

This lemma motivates the following definition.

Definition 3.2. Given 1-planar graphs H1 and H2, a graph G is a stitch of H1 and H2 if there is a
simple 1-drawing ϕ of G and there are proper subgraphs G1 and G2 of G isomorphic to H1 and H2
respectively, such that G1 ∪ G2 = G and T := G1 ∩ G2 is a facial triangle with respect to both ϕ↾G1
and ϕ↾G2. We say that (G1,G2, T , ϕ) witnesses that G is a stitch of G1 and G2.

Lemma 3.1 guarantees that given graphs H1 and H2 with 1-drawings ϕ1 and ϕ2 respectively
which both have at least one facial triangle, there is some stitch of H1 and H2. Furthermore, every
stitch of H1 and H2 has a 1-drawing ϕ such that all but one facial triangle of ϕ1 and all but one
facial triangle of ϕ2 corresponds to a facial triangle of ϕ. This allows us to iteratively take stitches of
copies of a graph H , provided H has a 1-drawing with at least two facial triangles. For example, we
observe that the strong product of a triangle and a path is 1-planar by iteratively stitching copies
of K6 together, see Fig. 1.1, where the graph in the middle is a stitch of two copies of the leftmost
graph, and the rightmost graph is a stitch of the leftmost graph and the graph in the middle.

On the other hand, we can identify whether a graph is a stitch of two smaller graphs by finding a
1-drawing for which the true-planar skeleton contains a separating triangle, as the following lemma
illustrates.

Lemma 3.3. Given a graph G, there exist graphs H1 and H2 such that G is a stitch of H1 and H2 if and
only if there is a simple 1-drawing ϕ of G such that S(ϕ) contains a separating triangle of G.

Proof. If there exist graphs H1 and H2 of which G is a stitch, then the desired 1-drawing and
separating triangle can be read off from a witness as in Definition 3.2.

Now suppose G has a simple 1-drawing ϕ such that S(ϕ) contains a separating triangle T of G.
If T is facial with respect to ϕ, let (A, B) be any non-trivial separation of G satisfying A ∩ B = V (T ).
Otherwise, let R1 and R2 be the two regions of S2

\ ϕ(T ), and let A be the set of all vertices v ∈ V (G)
such that ϕ(v) ∈ cl(R1) and B be the set of all vertices v ∈ V (G) such that ϕ(v) ∈ cl(R2). In either
case, G is a stitch of G[A] and G[B], witnessed by (G[A],G[B], T , ϕ). □

We now define classes Et for t ∈ {3, 4, 5, 6} and E , which we will show are the classes of
extremal 1-planar graphs for cliques of size t and for the total number of cliques, respectively.

Definition 3.4. We define the classes E3, E4, E5, E6 and E recursively as follows. Let E3 be the class
consisting of

• every graph with at most two vertices;
• every graph isomorphic to one of K3, K4, K5, K6, K3 + C4 or K2,2,2,2;
• every graph G which is a stitch of some graphs H1,H2 ∈ E3 ∪ {K2 + P6} such that for each

i ∈ [2] there exist integers ki ≥ 2 and si ∈ {0, 1, 2} with s1 + s2 ≤ 2 and |V (Hi)| = 3ki + si.

Let E4 be the class consisting of

• every graph with at most three vertices;
• every clique with at most six vertices;
• every graph isomorphic to K + C ;
3 4
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• every graph G which is a stitch of some graphs H1,H2 ∈ E4 such that for each i ∈ [2] there
exist integers ki ≥ 1 and si ∈ {0, 1, 2} with s1 = 0 and |V (Hi)| = 3ki + si.

Let E5 be the class consisting of

• every graph with at most four vertices;
• every graph isomorphic to one of K5 or K6;
• every graph G which is a stitch of some graphs H1,H2 ∈ E5 such that for each i ∈ [2] there

exist integers ki ≥ 1 and si ∈ {0, 1, 2} with s1 = 0 and |V (Hi)| = 3ki + si.

Let E6 be the class consisting of

• every graph with at most five vertices;
• every graph isomorphic to K6;
• every graph G which is a stitch of some graphs H1,H2 ∈ E6 such that for each i ∈ [2] there

exist integers ki ≥ 1 and si ∈ {0, 1, 2} with s1 + s2 ≤ 2 and |V (Hi)| = 3ki + si.

Let E be the class consisting of

• every clique with at most six vertices;
• every graph isomorphic to K3 + C4;
• every graph G which is a stitch of some graphs H1,H2 ∈ E such that for each i ∈ [2] there exist

integers ki ≥ 1 and si ∈ {0, 1, 2} with s1 = 0 and |V (Hi)| = 3ki + si.

It is worth noting that since stitches are defined in terms of 1-drawings, the above definitions
do not immediately provide an easy way of generating all of the graphs of a given size in any of
these classes. In order to generate such a list, one would need a method of determining for each
graph in the class which of its triangles are facial with respect to some 1-drawing, and thus which
stitches are possible. In Section 7, we discuss in more detail how to generate the n-vertex graphs
in these classes, and provide alternative structural descriptions for them.

4. Rich 1-drawings and their true-planar skeletons

Consider the following basic observation about 1-planar graphs.

Lemma 4.1 ([41, Lemma 3]). If G is an edge-maximal 1-planar graph and some edge vw crosses some
edge xy in some simple 1-planar drawing of G, then {v,w, x, y} induces a K4 in G.

This fact motivates the following definition. A 1-drawing ϕ of a graph G (in a surface S) is called
quasi-rich if it is simple and for every pair vw and xy of edges which cross, no other edges in
G[{v,w, x, y}] are crossed, and is called rich 8 if it is quasi-rich and for every pair vw and xy of
edges which cross, G[{v,w, x, y}] is isomorphic to K4.

Lemma 4.2. Let ϕ be a simple 1-drawing of an edge-maximal 1-planar graph G such that G is 4-
connected or ϕ has the minimum possible number of crossings among all 1-drawings of G. Then ϕ is
rich. In particular, every edge-maximal 1-planar graph has a rich 1-drawing.

Proof. Let vw and xy be a pair of edges which cross. By Lemma 4.1, {v,w, x, y} induces a K4
in G. Suppose for a contradiction that ϕ is not rich. Without loss of generality, the edge vx is
crossed by some edge e. Since vw and xy cross each other and no other edges, there is a region
of S2

\ ϕ(G) whose boundary contains both v and x. Hence the number of crossings could be reduced
by redrawing vx through this region, so we may assume that G is 4-connected. However for some
endvertex z of e, the set {v, x, z} is a 3-separator of G, a contradiction. □

8 Note that richness is a property of a 1-drawing, and not a graph. Similar concepts appear in the literature, for
example the drawings defining ‘‘kite-augmented’’ 1-planar graphs in [42] or ‘‘partial 4-framed’’ graphs in [43], but there
are some technical differences between all of these notions.
10
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Note that not all simple 1-drawings of edge-maximal 1-planar graphs are rich, see for example
ig. 4.1. Lemma 4.2 and Corollary 4.5, which we prove at the end of this section, together imply that
or 3-connected edge-maximal 1-planar graphs, rich 1-drawings are exactly the 1-drawings with the
ewest crossings. However this is not the case for 1-planar graphs in general. Indeed some 1-planar
raphs, such as K3,3, contain no cliques of size 4, and hence have no rich 1-drawings. However it

is easily seen that deleting crossed edges from a 1-drawing preserves richness, which leads to the
following observation.

Remark 4.3. If ϕ is a rich 1-drawing of a graph G and S(ϕ) ⊆ H ⊆ G, then ϕ↾H is rich.

The following lemma establishes a strong connection between 3-connected 1-planar graphs with
at least five vertices and the true-planar skeletons of their rich 1-drawings, in fact allowing us to
completely recover the original graph from the true-planar skeleton.

Lemma 4.4. Let ϕ be a rich 1-drawing of a 3-connected edge-maximal 1-planar graph G with at least
five vertices. The following statements hold.

(i) S(ϕ) is 3-connected;
(ii) no face of S(ϕ) has degree greater than 4;
(iii) the number of faces of S(ϕ) of degree 4 is equal to the number of crossings of ϕ;
(iv) the number of triangles in G is at most the number of non-trivial 3-separators of S(ϕ), plus four

times the number of faces of S(ϕ) of degree 4, plus the number of faces of S(ϕ) of degree 3.

Proof. Let H := S(ϕ). For (i), suppose for a contradiction that there is a non-trivial separation (A, B)
of H of order at most 2. Since G is 3-connected, there is an edge in G − E(H) between A \ B
and B \ A. Consider such an edge vw, and let xy be the edge which crosses vw in ϕ. Since ϕ is
rich, {vx, vy, wx, wy} ⊆ E(H), so {x, y} = A ∩ B. In particular, vw is the unique edge crossing xy
in ϕ, so (A, B) is a separation of G − vw. Since ϕ is rich, no edge incident with a vertex in A \ B
crosses any edge incident to a vertex in B \ A. Also, since xy /∈ E(H), no edge incident to x crosses
any edge incident to y. Let R be a region of S2

\ ϕ(G) whose boundary contains x, a segment of an
edge e incident to x in G[A \ {y}] and a segment of an edge e′ incident to x in G[B \ {y}]. Note that
the boundary of R contains a vertex v′ in A \ B (either an endvertex of e or an endvertex of an edge
which crosses e). Similarly, the boundary of R contains a vertex w′ in B \ A. Since G is edge-maximal,
we have v′w′

∈ E(G) \ E(H), and so v′w′ crosses xy, and hence {v′, w′
} = {v,w}. Now x and y lie in

different regions of S2
\ (R ∪ ϕ(vw)). Hence, every component of G − {v,w, x, y} has at most two

neighbours in {v,w, x, y}, contradicting that G is 3-connected.
For (ii), suppose for a contradiction that some facial cycle C of H has length at least 5. Since K5

is not planar, some pair of vertices of C are not adjacent in H . Since G is maximal, there is a crossed
edge between some pair of vertices on C which are not adjacent in H . Since H is 3-connected, this
crossed edge is drawn in the face bounded by C . Hence, since ϕ is rich there is a 4-cycle in H
containing only vertices of C . Some edge of this 4-cycle is not in C , and deleting the endvertices of
this edge disconnects H , contradicting (i).

For (iii), consider a pair of edges e and f which cross in ϕ. Since ϕ is rich, these edges have four
distinct endvertices in total which, by (ii), induce a facial cycle of H . Now consider a facial cycle C
of H of length 4. Since there is no facial cycle of length 4 with respect to any planar drawing of K4,
there is a pair of vertices of C which are not adjacent in H . As G is maximal, there is a crossed edge
between some pair of vertices of C which are not adjacent in H . Since H is 3-connected, this crossed
edge is drawn in the face bounded by C . Now, since every face of H has degree at most 4, there is
a one-to-one correspondence between crossings of ϕ and faces of H of degree 4.

For (iv), observe that trivially the number of triangles of G whose vertices all lie on a facial cycle F
of H is at most four if F has length 4, and at most one if F has length 3. Consider a triangle T of
G whose vertices do not all lie in any facial cycle of H . If no edge of T is crossed in ϕ, then T is a
non-facial triangle of H , and hence a separating triangle of H . Suppose instead that some edge vw
of T is crossed by an edge v′w′. The vertices v, w, v′ and w′ are all on the facial cycle of H in which
this crossing is drawn, so by assumption neither v′ nor w′ is a vertex of T . Hence, ϕ(v′) and ϕ(w′) are
11
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in different regions of S2
\ ϕ(T ). It follows that v′ and w′ are in separate components of H − V (T ).

Hence, if T is a triangle of G such that V (T ) is not contained in a facial cycle of H , then V (T ) is a
on-trivial 3-separator of H . □

orollary 4.5. A rich 1-drawing ϕ of an edge-maximal 3-connected 1-planar graph G on at least 5
ertices has exactly |E(G)| − 3|V (G)| + 6 crossings.

Proof. Let H := S(ϕ). By Lemma 4.4, H is a 3-connected planar graph with no face of degree more
than 4. Hence, H can be extended to a planar triangulation by adding exactly one edge for each
facial cycle of length 4. The result then follows from Lemma 4.4(iii). □

. Bounding the number of cliques in 1-planar graphs excluding K6

In this section, we bound the number of cliques of any and all sizes in 1-planar graphs excluding
ubgraphs isomorphic to K6. The key tool which allows us to do this is the following lemma. While
t only references triangles, it is easy to bound the number of cliques of any size which contain a
iven edge in terms of the number of triangles which contain it.

emma 5.1. Let ϕ be a rich 1-drawing of a graph G with at least one crossing. If every crossed edge
f G is contained in at least four triangles, then G has an induced subgraph H isomorphic to either K6
r K2,2,2,2.

Proof. We first observe the following easy fact.

(†) Every 1-drawing of a graph restricted to the union of two vertex-disjoint triangles has 0 or 2
crossings.

Let v1v2 and x1x2 be two edges which cross, chosen if possible such that v1, v2, x1 and x2 have
common neighbour. Since ϕ is rich, {v1, v2, x1, x2} induces a K4 in G. Note that v1 and v2 (and

ikewise x1 and x2) have at least four common neighbours since by assumption the edge between
hem is in at least four triangles. Choose distinct common neighbours w1 and w2 of v1 and v2
n G − {x1, x2}, and distinct common neighbours y1 and y2 of x1 and x2 in G − {v1, v2}, so that
{w1, w2} ∩ {y1, y2}| is maximised.

First, suppose {w1, w2} = {y1, y2}. By (†), for some i, j ∈ [2], the edge w1vi crosses w2xj. Hence,
since ϕ is rich, w1 and w2 are adjacent. It follows that H := G[{v1, v2, w1, w2, x1, x2}] is isomorphic
to K6 (see Fig. 5.1(a)).

Suppose instead that |{w1, w2} ∩ {y1, y2}| = 1. Without loss of generality, we may assume
that w1 = y1. By (†), without loss of generality, v2w1 crosses x1y2. Since ϕ is rich, w1x1 and v2x2 are
edges of Gwhich are uncrossed with respect to ϕ. Now by (†) applied tow2v1v2w2 andw1x1x2w1, for
some i ∈ [2], the edges viw2 and x2w1 cross with respect to ϕ. By (†), there is no triangle containing
x1y2 which is vertex-disjoint from w1v2x2w1. Hence, x1y2 is a crossed edge which is contained in
at most three triangles (see Fig. 5.1(b)).

Finally, suppose {w1, w2} ∩ {y1, y2} = ∅. By (†), for every i, j ∈ [2] there exist k, ℓ ∈ [2] such
that viwj crosses xkyℓ. Without loss of generality, x1y1 crosses v1w1. Since ϕ is rich, x1w1, y1v1
and y1w1 are all uncrossed edges of G. Hence, by our choice of w1, w2, y1 and y2 we have that y1
s not adjacent to v2 and that w1 is not adjacent to x2. Applying (†) to the triangles x1x2y2x1
nd v1v2w1v1, we find that w1v2 crosses y2x1, and hence v2y2 and w1y2 are uncrossed edges of G.
imilarly w2v1 crosses y1x2 and finally w2v2 crosses y2x2, and so w2y1, w2x2 and w2y2 are all
ncrossed edges of G.
Now consider the pair of crossing edges y1x1 and v1w1. Let w′

1 and w′

2 be the two common neigh-
bours of v1 and w1 distinct from x1 and y1, and let y′

1 and y′

2 be the two common neighbours of x1
and y1 distinct from v1 andw1. By our choice of v1v2 and x1x2, we know that {w′

1, w
′

2} ∩ {y′

1, y
′

2} = ∅.
Applying (†), there are at least four pairs of crossing edges such that one edge is contained
in A := {v1w

′

1, v1w
′

2, w1w
′

1, w1w
′

2} and the other is contained in B := {x1y′

1, x1y
′

2, y1y
′

1, y1y
′

2}. There-
′ ′
fore each edge in A crosses exactly one edge in B, and vice versa. Observe that v2 ∈ {w1, w2},
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so v2w1 ∈ A, which means x1y2 ∈ B, so y2y1 is an edge in B. Similarly, w1w2 is an edge in A, and by
rocess of elimination these edges cross. Now H := G[{v1, v2, w1, w2, x1, x2, y1, y2}] is isomorphic
o K2,2,2,2 (see Fig. 5.1(c)). □

emma 5.2. Let n ≥ 3 be an integer, let G be a 3-connected n-vertex graph with no subgraph
somorphic to K6 and let ϕ be a rich 1-drawing of G with exactly c crossings. Then

N (G, Kt ) ≤

⎧⎨⎩
3c + 3n − 8 if t = 3,
3c + n − 3 if t = 4,
c if t = 5.

Furthermore, if t ∈ {3, 4} and equality holds, then G has exactly c + 3n − 6 edges.

roof. First suppose that G contains a subgraph H isomorphic to K2,2,2,2. By Corollary 2.3(i) no edge
in E(G) \ E(H) crosses any edge of H .

Suppose for contradiction that n ≥ 9, and let C be a component of G − V (H). Note that there is
some region R of S2

\ ϕ(H) which contains ϕ(C). Note that every region of S2
\ ϕ(H) has exactly two

vertices in its boundary by Corollary 2.3(ii). The two vertices in the boundary of R separate V (C)
from V (H) in G, contradicting the 3-connectivity of G. Therefore n = 8, and so G ∼= K2,2,2,2 by
Theorem 2.6. Note that N (G, K3) = 32, N (G, K4) = 16 and N (G, K5) = 0, as required.

Now suppose that G contains no subgraph isomorphic to K2,2,2,2. Let t ∈ {3, 4, 5}, let G0 := G
and for each i ∈ [c], let Gi be a graph obtained from Gi−1 by deleting an edge ei which is crossed
in ϕ↾Gi−1 and subject to this is contained in as few triangles of Gi−1 as possible. By Remark 4.3
and Lemma 5.1, for all i ∈ [c], the edge ei is contained in at most three triangles and hence in at
most

( 3
t−2

)
copies of Kt in Gi−1. It follows that N (G0, Kt ) ≤

( 3
t−2

)
c + N (Gc, Kt ). Since ϕ has exactly c

crossings, Gc is an n-vertex planar graph and hence contains no copy of K5, at most 3n − 8 copies
of K3 by Theorem 2.4, and at most n − 3 copies of K4 by Theorem 2.5. This yields the required bounds
for N (G, Kt ). Furthermore, if t ∈ {3, 4} and equality holds, then Gc is an Apollonian network, and
thus the number of edges in G is c + 3n − 6. □

The following is an immediate corollary of Lemma 4.2, Corollary 4.5, Theorem 2.6 and Lemma 5.2.

Corollary 5.3. If n ≥ 5 and G is a 3-connected edge-maximal 1-planar graph with n vertices and no
subgraph isomorphic to K6, then

N (G, Kt ) ≤

⎧⎨⎩
6n − 14 if t = 3,
4n − 9 if t = 4,
n − 2 if t = 5.

In particular, G contains at most 16n − 32 cliques. Furthermore, if G has less than 4n − 8 edges, then G
contains at most 16n − 40 cliques. □

6. Maximising cliques in 1-planar graphs

In this section we complete the proofs of all of our main theorems. The following lemma is an
important tool in each of these proofs, allowing us to apply Lemma 3.3 to extremal graphs which
contain subgraphs isomorphic to K6.

Lemma 6.1. If G is a 1-planar graph with a proper subgraph H isomorphic to K6, then either there is
a simple 1-drawing ϕ of G such that S(ϕ) contains a separating triangle of G, or there are at least three
components of G − V (H) which have at most two neighbours in H.

Proof. Let G′ be an edge maximal 1-planar graph containing G as a subgraph, let ϕ′ be a rich
1-drawing of G′ and let ϕ0 be the restriction of ϕ′ to G. By Corollary 2.3(i) no edge in E(G) \ E(H)
crosses any edge of H in ϕ .
0
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Let s be the number of components of G − V (H), and let {Ci : i ∈ [s]} be the set of these
omponents. Note that since H is a proper subgraph of G, we have that s ≥ 1. Now, for i ∈ [s], there is
region R of S2

\ ϕ0(H) containing ϕ0(Ci). The vertices in the boundary of R separate V (Ci) from V (H)
n G. If the boundary of R is a face of ϕ0↾H of degree 3, then its facial triangle is a separating triangle
f G contained in S(ϕ0), as desired. Otherwise, such a component has at most two neighbours in H
y Corollary 2.3(ii), so we may assume that s ≤ 2. For i ∈ [s], let Si be the set of neighbours of Ci

in H , and let Gi := G[V (Ci) ∪ Si]. Now there are at most two edges of H in
⋃

{Gi : i ∈ [s]}, so there
is a 1-drawing ϕ∗ of H in which each of these edges is in a facial cycle by Corollary 2.3(iii) and
the symmetry of K6. By considering the restriction of ϕ0 to Gi, with s applications of Lemma 3.1 we
obtain a simple 1-drawing ϕ of G such that ϕ↾H is equivalent to ϕ∗. Now some facial cycle with
respect to ϕ∗ contains S1, and this is a separating triangle of G. □

6.1. Maximising triangles in 1-planar graphs

Lemma 6.2. Let G be a graph with at least four vertices and at least (19|V (G)| − 62)/3 triangles.
If (A, B) is a separation of G of order at most 2, then for some X ∈ {A, B} we have that G[X] has at
least (19|X | − 53)/3 triangles.

Proof. Since (A, B) is a separation of order at most 2, we have that

N (G, K3) = N (G[A], K3) + N (G[B], K3).

Suppose for a contradiction that N (G[X], K3) < (19|X | − 53)/3 for each X ∈ {A, B}. Then

N (G, K3) <
19(|A| + |B|) − 106

3
≤

19(|V (G)| + 2) − 106
3

<
19|V (G)| − 62

3
. □

emma 6.3. Let k, s and n be integers such that k ∈ {1, 2}, s ∈ {0, 1, 2} and n = 3k + s, and let G be
1-planar graph with n vertices. If G contains at least 19k + 5s − 18 triangles, then G is isomorphic

o one of K3, K6, K3 + C4, K2 + P6 or K2,2,2,2. In particular, G contains exactly 19k + 5s − 18 triangles
nless G is isomorphic to K2,2,2,2.

roof. The cases where n ≤ 6 are trivial, so we assume k = 2 and s ∈ {1, 2}. If s = 1, the claim
ollows easily from Corollary 2.9. If s = 2, note that no proper subgraph of K2 + P6 or K2,2,2,2 has
t least 30 triangles (since every edge of K2 + P6 is in a triangle and every edge of K2,2,2,2 is in

more than two triangles), so we may take G to be an edge-maximal 1-planar graph. If G has a
2-separation (A, B) with |A| = 7, then G[A] has at most 22 triangles by Corollary 2.9, and so G has
at most 23 triangles. If G has a 2-separation (A, B) with |A| ∈ {5, 6}, then the number of triangles
in G is at most

(
|A|

3

)
+

(10−|A|

3

)
, and is therefore at most 24. Hence, G is 3-connected. Let ϕ be a rich

1-drawing of G. By Lemma 2.7, we know that ϕ has at most 6 crossings. If ϕ has at most 4 crossings,
then G has at most 3 · 4 + 3 · 8 − 8 = 28 triangles by Lemma 5.2.

If ϕ has exactly 5 crossings, then by Lemma 4.4, S(ϕ) is a 3-connected planar graph with 8
vertices with 5 faces of degree 4, whose other faces each have degree 3. Note that the number of
edges of a 3-connected planar graph can be determined from the degrees of its faces, and then the
number of vertices can be deduced from Euler’s formula. Since G has 8 vertices, we can deduce
that S(ϕ) has exactly two faces of degree 3, and exactly 13 edges. Furthermore, the number of
non-trivial 3-separators in S(ϕ) is at least 30 − 4 · 5 − 2 = 8, by Lemma 4.4(iv). Using the program
plantri written by Brinkmann and McKay [44], we find that there is a unique 3-connected 8-vertex
planar graph with 13 edges, faces of degree at most 4 and at least eight non-trivial 3-separators.
The unique maximal 1-planar graph with this true-planar skeleton is K2 + P6 (see Fig. 3.1), since it
s formed by adding edges between all pairs of vertices of S(ϕ) that share a face.

If ϕ has exactly 6 crossings, then by Lemma 4.4, S(ϕ) is a 3-connected planar quadrangulation.
he cube is the unique 3-connected planar quadrangulation on 8-vertices, and K2,2,2,2 is the unique
aximal 1-planar graph with this true-planar skeleton. □
14



J.P. Gollin, K. Hendrey, A. Methuku et al. European Journal of Combinatorics 109 (2023) 103654
Fig. 3.1. A simple 1-drawing of K2 + P6 . We will show in Section 7.2 that this drawing is unique (up to weak equivalence).

Fig. 4.1. Simple 1-planar drawings of K3 + K1,3 , the one on the left is not rich, the one on the right is rich.

Fig. 5.1. The three cases in the proof of Lemma 5.1.

Lemma 6.4. Let k, s and n be integers such that 3 ≤ k ≤ 6, s ∈ {0, 1, 2} and n = 3k + s, and let ϕ
be a rich 1-drawing of an edge-maximal 1-planar 3-connected graph with n vertices. If G contains at
least 19k + 5s − 18 triangles, then S(ϕ) contains a separating triangle of G.

Proof. By Lemma 6.1, we may assume G has no subgraph isomorphic to K6. Hence, by Lemma 5.2, G
has at most 3c + 3n − 8 triangles, where c is the number of crossings of ϕ. It follows that c
≥ n − (10 + s − k)/3. Note that (10 + s − k)/3 ≤ 3 with equality if and only if n = 11, and
that c ≤ n − 2 by Lemma 2.7. It follows that either n = 11 and c = 8, or c = n − 2.
15
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Suppose that n = 11 and c = 8. Note that the number of triangles in G is at least 49. By
emma 4.4, S(ϕ) has exactly eight faces of degree 4, and the other faces of S(ϕ) are of degree 3.
hus there are exactly two facial triangles of S(ϕ), by Euler’s formula. By Lemma 4.4(iv), there are at
east 49 − 4 · 8 − 2 = 15 non-trivial 3-separators of S(ϕ). Using plantri [44], we find that there are
nly three planar graphs9 satisfying the conditions on S(ϕ), each of which contains a separating
riangle of S(ϕ). Note that since no edge of S(ϕ) is crossed with respect to ϕ, every separating
riangle of S(ϕ) is a separating triangle of G.

Suppose instead that c = n − 2. By Lemma 4.4, S(ϕ) is a 3-connected planar graph with n − 2
aces of degree 4, and therefore a 3-connected planar quadrangulation. Furthermore, the number
f triangles in G is at most 4(n − 2) plus the number of non-trivial 3-separators of S(ϕ). Again
sing plantri to generate all 3-connected planar quadrangulations on at most 20 vertices, it is quick
o computationally verify that no such quadrangulation has the requisite number of non-trivial
-separators. □

emma 6.5. Let k, s and n be integers such that k ≥ 1, s ∈ {0, 1, 2} and n = 3k + s, and let ϕ be a
ich 1-drawing of a graph G with n vertices and at least 19k + 5s − 18 triangles. Then G either contains
xactly 19k + 5s − 18 triangles or is isomorphic to K2,2,2,2.
Furthermore, if k ≥ 3, then for each i ∈ [2] there exist integers ki ≥ 2 and si ∈ {0, 1, 2} with

1 + s2 ≤ 2 and a (3ki + si)-vertex graph Hi with exactly 19ki + 5si − 18 triangles such that G is a
titch of H1 and H2.

roof. We proceed by induction on n. For n ≤ 8 the result follows from Lemma 6.3, so we
ssume n ≥ 9.
We first show that G is 3-connected. Suppose for a contradiction that G has a non-trivial separa-

ion (A, B) of order at most 2. By Lemma 6.2, we may assume without loss of generality that G[A] has
t least (19|A| − 53)/3 triangles. Let k′ and s′ be integers such that |A| = 3k′

+ s′ and s′ ∈ {0, 1, 2}.
Note that 19k′

+ 5s′ − 18 is strictly less than (19|A| − 53)/3, and 32 (the number of triangles
in K2,2,2,2) is strictly less than (19 · 8 − 53)/3 = 33. Hence, by induction, |A| ≤ 2. It follows that
the number of triangles in G equals the number of triangles in G[B]. However, 5 ≤ |B| ≤ n − 1, so
the number of triangles in G[B] is less than

(19|B| − 53)/3 ≤
19(3k + s − 1) − 53

3
< 19k + 5s − 18,

a contradiction. Hence, G is 3-connected.
If no subgraph of G is isomorphic to K6, then 19k + 5s − 18 ≤ 6n − 14 by Lemmas 2.7 and 5.2. It

follows that k ≤ 6, and so there is a separating triangle T of G contained in S(ϕ) by Lemma 6.4. If G
contains a subgraph isomorphic to K6, then S(ϕ) contains a separating triangle T of G by Lemma 6.1.

By Lemma 3.3, there are graphs H1 and H2 such that G is a stitch of H1 and H2. The number of
riangles in G is equal to the number of triangles in H1 plus the number of triangles in H2 minus
ne. For i ∈ [2], let ki ≥ 1 and si ∈ {0, 1, 2} be integers such that |V (Hi)| = 3ki + si.
Since T is a facial triangle with respect to ϕ↾Hi, by Corollary 2.3(ii) we have that Hi is not

somorphic to K2,2,2,2. It follows that the number of triangles in Hi is at most 19ki + 5si − 18, by
induction. Note that either s1 + s2 = s and k1 + k2 = k + 1, or s1 + s2 = s + 3 and k1 + k2 = k.
owever, in the latter case, the number of triangles in G is at most

19(k1 + k2) + 5(s1 + s2) − 37 = 19k + 5s − 22 < 19k + 5s − 18.

ence s = s1 + s2 and k1 + k2 = k + 1, and the number of triangles in G is given by

N (H1, K3) + N (H2, K3) − 1 ≤ 19(k1 + k2) + 5(s1 + s2) − 37 = 19k + 5s − 18.

Since equality holds, for each i ∈ [2] applying Lemma 6.3 to Hi implies that ki ≥ 2. □

9 These graphs are true-planar skeletons of rich 1-drawings of a stitch of K6 and K2 + P6 and the two possible stitches
f K + C and itself.
3 4
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The following theorem immediately implies Theorem 1.1.

heorem 6.6. Let n, k and s be non-negative integers with s ∈ {0, 1, 2} and n = 3k + s. An n-vertex
1-planar graph G contains the extremal number f3(n) of triangles if and only if G ∈ E3. In particular,

f3(n) =

⎧⎨⎩
(n
3

)
if n ≤ 6,

32 if n = 8,
19k + 5s − 18 otherwise.

roof. We proceed by induction on n. The result is trivial when n ≤ 6, and follows from Lemma 6.3
hen n ∈ {7, 8}, so we may assume that n ≥ 9.
Consider an n-vertex graph G in E3. By definition, for each i ∈ [2] there are integers ki ≥ 2

nd si ∈ {0, 1, 2} with s1 + s2 ≤ 2 and a graph Hi ∈ E3 ∪ {K2 + P6} with |V (Hi)| = 3ki + si such
hat G is a stitch of H1 and H2. Since s1 + s2 ≤ 2 and |V (G)| = |V (H1)| + |V (H2)| − 3, we have k1+k2
−1 = k and s1 + s2 = s. NowN (G, K3) = N (H1, K3) + N (H2, K3) − 1. Note that K2 + P6 has 19·2+5·

−18 triangles, and that neither H1 nor H2 is isomorphic to K2,2,2,2 by Corollary 2.3(ii). By induction,
e have

N (G, K3) = 19(k1 + k2) + 5(s1 + s2) − 37 = 19k + 5s − 18.

Now suppose that G is an n-vertex graph containing f3(n) triangles. To complete the proof, we
ill show that G ∈ E3. Note thatN (G, K3) ≥ 19k + 5s − 18 by the previous argument. By Lemma 6.5,

or each i ∈ [2] there exist integers ki ≥ 2 and si ∈ {0, 1, 2} with s1 + s2 ≤ 2 and a (3ki + si)-vertex
raph Hi with exactly 19ki + 5si − 18 triangles such that G is a stitch of H1 and H2. By the induction
ypothesis and Lemma 6.3, we have that k1 and k2 are each at least 2 and H1 and H2 are isomorphic
o graphs in E3 ∪ {K2 + P6}, and hence G ∈ E3, as desired. □

.2. Maximising larger cliques in 1-planar graphs

Lemma 6.7. Let k, s and t be integers with k ≥ 1, s ∈ {0, 1, 2} and t ∈ {4, 5, 6} and G be a
graph with 3k + s vertices, and for i ∈ [3] let (Ai, Bi) be non-trivial separations of G of order at
most 2 such that the sets Ai \ Bi are pairwise disjoint and |

⋂
i∈[3] Bi| ≥ 3. If there do not exist inte-

gers k′
≥ 1 and s′ ∈ {0, 1, 2} such that some induced subgraph of G with 3k′

+ s′ vertices contains more
than (k′

− 1)
(6
t

)
+

(s′+3
t

)
subgraphs isomorphic to Kt , then G contains fewer than (k − 1)

(6
t

)
subgraphs

isomorphic to Kt .

Proof. For each i ∈ [3], we may assume that (Ai, Bi) has order exactly 2. Let Gi := G[Ai], let G4 :=

G
[⋂

i∈[3] Bi
]
, and for i ∈ [4] let ki and si be integers with ki ≥ 1 and si ∈ {0, 1, 2} such that |V (Gi)| =

3ki + si. Let k∗ and s∗ be integers with k∗
≥ 1 and s∗ ∈ {0, 1, 2} such that

∑
i∈[4] si = 3k∗

+ s∗ and
note that since 3k + s − 6 =

∑
i∈[4](3ki + si), we have that

∑
i∈[4] ki = k + 2 − k∗. Therefore,

N (G, Kt ) ≤

∑
i∈[4]

(
(ki − 1)

(
6
t

)
+

(
si + 3

t

))
= (k − 2 − k∗)

(
6
t

)
+

∑
i∈[4]

(
si + 3

t

)
≤ (k − 2 − k∗)

(
6
t

)
+

∑
i∈[4]

(
si
2

(
5
t

))
< (k − 2 − k∗)

(
6
t

)
+

3k∗
+ 3
2

(
5
t

)
= (k − 1)

(
6
t

)
+ (k∗

+ 1)
(
3
2

(
5
t

)
−

(
6
t

))
< (k − 1)

(
6
)
. □
t
17
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Lemma 6.8. Let k, s and t be integers with k ≥ 1, s ∈ {0, 1, 2} and t ∈ {4, 5, 6}, let G be a
graph with 3k + s vertices, and let (A, B) be a non-trivial separation of order 3 of G. For X ∈ {A, B}
let kX and sX be integers with kX ≥ 1 and sX ∈ {0, 1, 2} such that |X | = 3kX + sX . If G contains at
least (k − 1)

(6
t

)
+

(s+3
t

)
subgraphs isomorphic to Kt , then one of the following holds

(1) for each X ∈ {A, B}, the graph G[X] contains exactly (kX − 1)
(6
t

)
+

(sX+3
t

)
subgraphs isomorphic

to Kt , and either 0 ∈ {sA, sB}, or both t = 6 and sA = sB = 1;
(2) for some X ∈ {A, B}, the graph G[X] contains more than (kX − 1)

(6
t

)
+

(sX+3
t

)
subgraphs isomor-

phic to Kt .

Proof. Assume that (2) fails. Observe that N (G, Kt ) = N (G[A], Kt ) + N (G[B], Kt ). Assume for a
contradiction that sA + sB ≥ 3, and hence kA + kB = k. Now, since sA, sB ≤ 2 and t ∈ {4, 5, 6}, we
have

N (G[A], Kt ) + N (G[B], Kt ) ≤ (kA + kB − 2)
(
6
t

)
+

(
sA + 3

t

)
+

(
sB + 3

t

)
< (k − 2)

(
6
t

)
+

(
6
t

)
+

(
s + 3
t

)
≤ N (G, Kt ),

contradiction. So sA + sB < 3, and hence kA + kB = k + 1 and sA + sB = s. Since t ≥ 4,

N (G[A], Kt ) + N (G[B], Kt ) ≤ (kA + kB − 2)
(
6
t

)
+

(
sA + 3

t

)
+

(
sB + 3

t

)
≤ (k − 1)

(
6
t

)
+

(
sA + sB + 3

t

)
≤ N (G, Kt ).

ince equality holds, we deduce that (1) holds. □

The following theorem immediately implies Theorem 1.2.

heorem 6.9. Let n, k and s be non-negative integers with s ∈ {0, 1, 2} and n = 3k + s and
et t ∈ {4, 5, 6}. An n-vertex 1-planar graph G contains the extremal number ft (n) of subgraphs
somorphic to Kt if and only if G ∈ Et . In particular, if n ≥ 3 then

ft (n) = (k − 1)
(
6
t

)
+

(
s + 3
t

)
.

roof. We proceed by induction on n. The claim is trivial when n ≤ 6, so assume n ≥ 7.
Consider an n-vertex graph G in Et . If G ∼= K3 + C4, then t = 4 and N (G, K4) = 16, as required.

therwise, for each i ∈ [2] there exist integers ki ≥ 1 and si ∈ {0, 1, 2} with s1 + s2 ≤ 2 and a
raph Hi ∈ Et with |V (Hi)| = 3ki + si such that G is a stitch of H1 and H2, with either s1 = 0 or t = 6.
ince s1 + s2 ≤ 2 and |V (G)| = |V (H1)| + |V (H2)| − 3, we have that k1 + k2 − 1 = k and s1 + s2 = s.
ow N (G, Kt ) = N (H1, Kt ) + N (H2, Kt ) since t > 3. Note that

(s1+3
t

)
= 0,

(s2+3
6

)
= 0 and

(s2+3
t

)(s+3
t

)
. By induction, we have

N (G, Kt ) = (k1 − 1)
(
6
t

)
+

(
s1 + 3

t

)
+ (k2 − 1)

(
6
t

)
+

(
s2 + 3

t

)
= (k − 1)

(
6
t

)
+

(
s + 3
t

)
.

Now suppose that G is an n-vertex graph containing ft (n) subgraphs isomorphic to Kt . To
omplete the proof, we will show that G ∈ Et . By the previous argument we have that N (G, Kt )
(k − 1)

(6
t

)
+

(s+3
t

)
.

First, assume that G is 4-connected. By Lemma 6.1, G has no subgraph isomorphic to K6. This
s a contradiction if t = 6. By Corollary 5.3, we deduce that t = 4 and n = 7. By Corollary 2.9, G is
18
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isomorphic to a subgraph of K3 + K1,3 or of K3 + C4. Every proper subgraph of each of these contains
strictly fewer subgraphs isomorphic to K4, so G ∼= K3 + C4, as desired.

Suppose instead that G is not 4-connected, and consider a non-trivial 3-separation of (A, B) of G,
not necessarily minimal. By Lemma 6.8 and the induction hypothesis, either t = 6 or one of |A|, |B|
is divisible by 3. Hence G has a subgraph isomorphic to K6, either because (k − 1)

(6
6

)
+

(s+3
6

)
≥ 1 or

by Definition 3.4 and the induction hypothesis. Now by Lemma 6.7 and the induction hypothesis,
we obtain from Lemma 6.1 a simple 1-drawing ϕ of G such that S(ϕ) contains a separating triangle
f G. By Lemma 3.3, there are graphs H1 and H2 such that G is a stitch of H1 and H2. By the induction
ypothesis and Lemma 6.8, it follows that G ∈ Et , as desired. □

.3. Maximising all cliques in 1-planar graphs

For a graph G, we write Ncliques(G) for the number of subgraphs H ⊆ G that are cliques.

Lemma 6.10. Let k and s be integers with k ≥ 1 and s ∈ {0, 1, 2}, let G be a graph with 3k + s vertices,
and let (A, B) be a non-trivial separation of G of order at most 3. For X ∈ {A, B} let kX and sX be integers
with kX ≥ 1 and sX ∈ {0, 1, 2} such that |X | = 3kX + sX . If G contains at least 56(k − 1) + 2s+3 cliques,
then one of the following statements holds.

(i) The order of (A, B) is exactly 3, one of sA or sB is equal to 0, and for all X ∈ {A, B}, the graph G[X]

contains exactly 56(kX − 1) + 2sX+3 cliques;
(ii) the order of (A, B) is exactly 3 and G[A ∩ B] is not isomorphic to a triangle;
(iii) for some X ∈ {A, B}, the graph G[X] contains more than 56(kX − 1) + 2sX+3 cliques.

Proof. Assume that (iii) fails. Let k∗ and s∗ be integers with k∗
≥ −1 and s∗ ∈ {0, 1, 2} such that

sA + sB − |A ∩ B| = 3k∗
+ s∗ and note that we have kA + kB = k − k∗ and s = s∗ since 3k + s =

3(kA + kB)+ sA + sB −|A ∩ B|. Observe that for all s′ ∈ {0, 1, 2}, we have 2s′+3
∈ {12s′ + 4, 12s′ + 8}.

Now

Ncliques(G) = Ncliques(G[A]) + Ncliques(G[B]) − Ncliques(G[A ∩ B])

≤ 56(kA + kB − 2) + 2sA+3
+ 2sB+3

− |A ∩ B|
≤ 56(k − k∗

− 2) + 12(sA + sB) + 16 − |A ∩ B|
≤ 56(k − k∗

− 2) + 12(3k∗
+ s + |A ∩ B|) + 16 − |A ∩ B|

≤ 56(k − 1) + 12s − 20k∗
+ 11|A ∩ B| − 40.

Since Ncliques(G) ≥ 56(k − 1) + 2s+3, we deduce that −20k∗
+ 11|A ∩ B| − 40 ≥ 4, and so

|A ∩ B| = 3 and k∗
= −1. This implies that sA + sB = s, and either sA = sB = 1, or one of sA or sB

is equal to 0. We may further assume that Ncliques(G[A ∩ B]) = 8, or else (ii) holds. Now

Ncliques(G[A]) + Ncliques(G[B]) − 8 ≤ 56(kA + kB − 2) + 2sA+3
+ 2sB+3

− 8

≤ 56(k − 1) + 2s+3
≤ Ncliques(G)

and since equality holds, so does (i). □

The following theorem immediately implies Theorem 1.3.

Theorem 6.11. Let n, k and s be non-negative integers with s ∈ {0, 1, 2} and n = 3k + s. An n-vertex
1-planar graph G contains the extremal number f (n) of cliques if and only if G ∈ E . In particular, if n ≥ 3
then

f (n) = 56(k − 1) + 2s+3.

Proof. We proceed by induction on n. The claim is trivial when n ≤ 6, so assume n ≥ 7.
Consider an n-vertex graph G in E . If G ∼= K3 + C4, then Ncliques(G) = 72, as required. Otherwise,

for each i ∈ [2] there exist integers k ≥ 1 and s ∈ {0, 1, 2} and a graph H ∈ E with |V (H )| = 3k +s
i i i i i i
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such that G is a stitch of H1 and H2, with s1 = 0. Since |V (G)| = |V (H1)| + |V (H2)| − 3 and s1 = 0,
e have that k1 + k2 − 1 = k and s2 = s. Now Ncliques(G) = Ncliques(H1) + Ncliques(H2) − Ncliques(K3).
y induction, we have

Ncliques(G) = 56(k1 − 1) + 23
+ 56(k2 − 1) + 2s2+3

− 8

= 56(k − 1) + 2s+3.

Now suppose that G is an n-vertex graph containing f (n) cliques. To complete the proof, we will
how that G ∈ E . Note that Ncliques(G) ≥ 56(k − 1) + 2s+3 by the previous argument, and that G is
n edge maximal 1-planar graph since adding edges to a graph increases the number of cliques.
lso G is 3-connected by Lemma 6.10 and the induction hypothesis.
First, assume that G contains no subgraph isomorphic to K6. By Corollary 5.3, we deduce

hat n ∈ {7, 8}. If n = 7, then by Corollary 2.9, G is either K3 + K1,3 or K3 + C4, as desired. Now
uppose for a contradiction that n = 8. First, assume that G has a vertex v of degree at most 4.
ow Ncliques(G) ≤ Ncliques(G − v) + 24

≤ 88 by induction, and since equality holds we have that
− v ∼= K3 + C4 and that the degree of v is exactly 4. Since G is edge maximal, there is a rich

1-drawing ϕ of G. By Corollary 2.3(i) no edge of G − v is crossed with respect to ϕ, so at least four
vertices are contained in the boundary of the region of S2

\ϕ(G−v) containing ϕ(v). This contradicts
orollary 2.3(ii). We therefore can assume that δ(G) ≥ 5 and hence ∆(G) ≤ 2. It was shown by

Bodendiek, Schuhmacher and Wagner [45] that the graph K2,2,2,2 is up to isomorphism the only
8-vertex 1-planar graph with 24 edges, and since it contains exactly 81 cliques, we may assume
that G has at least 5 edges. It is straightforward to verify that of the nine 8-vertex graphs with
ive edges and maximum degree at most 2, only C5 + K3 contains 88 independent sets of vertices.
However, C5 + K3 contains 31 triangles, and hence is not 1-planar by Lemma 6.3. We therefore
deduce that n ̸= 8, as required.

So we may assume that G contains a subgraph H isomorphic to K6. By Lemma 6.1, Lemma 3.3
nd the fact that G is 3-connected, there are graphs H1 and H2 such that G is a stitch of H1 and H2.
y Lemma 6.10 and the induction hypothesis, we deduce that G ∈ E , as required. □

. Generating extremal graphs efficiently with tree-decompositions

In Section 3, we gave a recursive definition of the classes of graphs which are extremal in the
ense of Theorems 6.6, 6.9 and 6.11. While this recursive definition was useful for the proofs in
ection 6, it does not by itself provide a way to generate all of the graphs in these classes. The reason
or this is that in order to determine which graphs are stitches of two extremal graphs H1 and H2,
we need to determine which triangles of H1 and H2 are facial with respect to some 1-drawing. We
solve this problem in Section 7.1, which allows us to provide a structural characterisation of the
classes of extremal graphs in terms of tree-decompositions. In Section 7.2, we discuss how to use
these characterisations to generate the n-vertex graphs in each of these classes in polynomial time.

7.1. A structural characterisation of the extremal graphs in terms of tree-decompositions

A pair (T ,V) is a tree-decomposition of G if T is a tree and V is a family (Vt : t ∈ V (T )) of sets of
ertices of G such that

(T1) V (G) =
⋃

V;
(T2) for every edge e ∈ E(G) there is a t ∈ V (T ) such that e ∈ E(G[Vt ]); and
(T3) Vs ∩ Vt ⊆ Vu whenever u is a node on the unique path from s to t in T .

We call the sets in V the parts of (T ,V). We call the sets Vs ∩ Vt for each edge st ∈ E(T ) the
dhesion sets of (T ,V). We call V (T ) the set of nodes of the tree.

efinition 7.1. We define sets A(E3), A(E4), A(E5), A(E6) and A(E) as follows:
A(E3) := {K6, K3 + C4, K2 + P6};
A(E ) := {K , K , K , K + C };
4 4 5 6 3 4
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A(E5) := {K4, K5, K6};
A(E6) := {K3, K6} ∪ {H ⊆ K5 :H is 3-connected};
A(E) := {K4, K5, K6, K3 + C4}.

Lemma 7.2. Let C be one of E3, E4, E5, E6 or E . Every 3-connected graph G ∈ C with at least 9 vertices
has a tree-decomposition (T ,V) with the following properties.

(a) For each node t ∈ V (T ) the graph G[Vt ] is isomorphic to a graph in A(C) \ {K3};
(b) each graph in H := {G[Vs ∩ Vt ] : st ∈ E(T )} is a triangle;
(c) one of the following holds:

• at most one part induces a graph not isomorphic to K6;
• C is E3 and two parts each induce a subgraph isomorphic to K3 + C4 and all other parts

induce a subgraph isomorphic to K6;
• C is E6 and two parts each induce a subgraph isomorphic to K4 that share no triangle and

all other parts induce a subgraph isomorphic to K6.

Proof. Since the stitch of two graphs is 3-connected if and only if both of them are, by the
definition of C we inductively obtain a tree-decomposition T = (T ,V) of G satisfying properties (a),
(b) and (c), except that if C is E6, then two distinct parts Vx and Vy with G[Vx] ∼= G[Vy] ∼= K4 may
share a triangle D. In this case, for any distinct nodes s and t on the unique path P from x to y
in T , we have D = G[Vs ∩ Vt ] by property (b) and (T3). We now define a tree T ′ from T by first
deleting the edge in E(P) incident to x, adding a new edge between x and y and contracting
that edge to a new node z. Moreover, we define V ′

t := Vt for all t ∈ V (T ′) \ {z} and V ′
z := Vx ∪ Vy.

Now G[V ′
z] is a stitch of two copies of K4, and hence is isomorphic to a graph in A(E6). Hence, the

tree-decomposition (T ′, (V ′
t : t ∈ V (T ′))) satisfies all desired properties. □

The following lemma now completes the picture, allowing us to determine when a graph with
a tree-decomposition as in Lemma 7.2 is in the given class C.

Lemma 7.3. Let G be a 3-connected graph with tree-decomposition (T ,V) as in Lemma 7.2. Let D be
a set of triangles in G and let F ⊆ E(G). The following statements are equivalent.

(1) There is a 1-drawing ϕ of G with respect to which all triangles in D are facial and no edge in F
is crossed.

(2) • D and H are disjoint;
• for each D ∈ H, there is a unique edge st ∈ E(T ) such that G[Vs ∩ Vt ] = D;
• for every node t ∈ V (T ) there is a 1-drawing of G[Vt ] with respect to which all trian-

gles D ⊆ G[Vt ] in D ∪ H are facial and all edges in E(G[Vt ]) ∩ F are uncrossed.

Proof. Suppose that (1) holds. We may assume that ϕ is quasi-rich, since redrawing a crossed
edge so that it is no longer crossed can only increase the set of facial triangles. In particular, we
may assume that ϕ↾G[Vt ] is quasi-rich for every node t of T . Consider a triangle D in H. Note
that by property (c) in Lemma 7.2, at most one part of (T ,V) induces a graph which contains D
and is not isomorphic to a graph in {K6, K3 + C4}. Let k be the number of distinct parts of (T ,V)
containing V (D), and let {Hi : i ∈ [k]} be the graphs induced on these parts, so that every graph in
{Hi : i ∈ [k − 1]} is isomorphic to a graph in {K6, K3 + C4}. Note that k ≥ 2 by the definition of H.

Let x ∈ [k − 1] and y ∈ [k] \ {x} and let H := Hx ∪ Hy. By Corollary 2.3(i) applied to ϕ↾Hx no
edge of Hy crosses any edge of Hx, since ϕ↾H is quasi-rich. It follows that for every component C
of Hy − V (D) there is a unique region R of S2

\ ϕ(Hx) containing ϕ(C). Since Hy is 3-connected,
the boundary of R contains V (D). The intersection of ϕ(Hx − E(D)) with the boundary of R is V (D).
Since Hx is 3-connected, the boundary of R is a simple closed curve. It follows that we can redraw
the edges of D inside R, so that they do not cross any edge of H , forming a new quasi-rich drawing ϕ′

of H . Again by Corollary 2.3(i), no edge which is crossed with respect to ϕ↾Hx can be redrawn so
that it is uncrossed. In particular, the edges of D are uncrossed with respect to ϕ↾(H). Note that for
21
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each edge vw ∈ E(D), at most one of the regions of S2
\ (ϕ(vw) ∪ ϕ′(vw)) contains a point of ϕ(H),

ince H is 3-connected. It follows that ϕ′ and ϕ↾H are equivalent. Hence ϕ(D) is the boundary of the
egion of S2

\ ϕ(Hx) containing ϕ(C), and by symmetry is the boundary of every region of S2
\ ϕ(Hx)

ontaining ϕ(C ′) for any component C ′ of Hy − V (D). Since Hx is 3-connected, it follows that one
egion of S2

\ ϕ(D) contains ϕ(Hy − V (D)), the other region of S2
\ ϕ(D) contains ϕ(Hx − V (D)), and D

s not facial with respect to ϕ. In particular, D /∈ D. Since no edge of Hy crosses any edge of Hx with
espect to ϕ, it follows that D is a facial triangle with respect to both ϕ↾Hx and ϕ↾Hy, and hence D
s facial with respect to the restriction of ϕ to any subgraph of G induced on a part of (T ,V) which
ontains V (D). If k ≥ 3, then by the pigeonhole principle we can find distinct i and j in [k] such that
(Hi −V (D)) and ϕ(Hj −V (D)) are contained in the same region of S2

\ϕ(D), a contradiction. Hence
here is a unique edge st ∈ E(T ) with D = G[Vs ∩ Vt ]. Uncrossed edges with respect to ϕ are still
ncrossed in all restrictions ϕ to subgraphs of G, so (1) implies (2).
It is an easy consequence of Lemma 3.1 that (2) implies (1). □

orollary 7.4. Each tree-decomposition as in Lemma 7.2 also satisfies

(d) for each D ∈ H, there is a unique edge st ∈ E(T ) such that G[Vs ∩ Vt ] = D;
(e) for each node t ∈ V (T ), the graph G[Vt ] has a 1-drawing with respect to which all triangles

D ⊆ G[Vt ] in H are facial.

roof. By property (c) of Lemma 7.2, for each edge st ∈ E(T ) either G[Vs] or G[Vt ] is isomorphic to
graph in {K6, K3 + C4}. The result now follows from Lemma 7.3. □

Now for the classes E3, E4 and E , these results immediately yield a characterisation in terms of
hese tree-decompositions.

roposition 7.5. Let C be one of E3, E4 or E . A graph G with at least 9 vertices is in C if and only if it
as a tree-decomposition (T ,V) with the following properties.

(a) For each t ∈ V (T ) the graph G[Vt ] is isomorphic to a graph in A(C);
(b) each graph in H := {G[Vs ∩ Vt ] : st ∈ E(T )} is a triangle;
(c) the number of nodes t ∈ V (T ) such that G[Vt ] is not isomorphic to K6 is at most two, and this

inequality is strict unless C is E3 and two distinct parts each induce a subgraph isomorphic
to K3 + C4;

(d) for each D ∈ H, there is a unique edge st ∈ E(T ) such that G[Vs ∩ Vt ] = D;
(e) for each node t ∈ V (T ), the graph G[Vt ] has a 1-drawing with respect to which all trian-

gles D ⊆ G[Vt ] in H are facial.

roof. First note that each G ∈ C with at least 9 vertices is 3-connected. Hence the existence of
uch a tree-decomposition is given from Lemma 7.2 and Corollary 7.4.
For the other direction, if G has a tree-decomposition (T ,V) with these properties, then it follows

asily from Lemma 3.1 that G is 1-planar. Using property (c), a simple induction on |V (T )| lets us
onclude that G is in C. □

Note that not all sufficiently large graphs in E5 and E6 are 3-connected, so a structural character-
sation in terms of tree-decompositions needs to take separations of order less than 3 into account.
eneralising the well-known notion of the block-cutvertex tree, Tutte [46] proved a decomposition
heorem about ‘‘3-blocks’’ in graphs, for which we will use the following special case.

heorem 7.6 ([46]). Let G be a 2-connected graph in which every non-trivial 2-separator induces a
lique. Then G has a tree-decomposition of adhesion 2 in which every part induces a 3-connected graph
r a triangle.

orollary 7.7. Let G be an edge-maximal 1-planar graph, and let ϕ be a rich 1-drawing of G. Then G
as a tree-decomposition in which each part induces a triangle or a 3-connected subgraph, and each
dhesion set induces a subgraph isomorphic to K , whose unique edge is uncrossed with respect to ϕ.
2
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Proof. Let (A, B) be a non-trivial separation of order at most 2 and let R be a region of S2
\ ϕ(G[A])

containing a vertex in B \ A. We may assume that no vertex of A \ B is on the boundary of R, or
else we could draw a new uncrossed edge from A \ B to B \ A inside R, contradicting the edge-
aximality of G. Now the boundary of R contains a simple closed curve but contains at most two
ertices of G[A], so in particular it contains a crossing of ϕ↾G[A]. It follows that A ∩ B consists of
xactly two vertices v and w, and that some edge incident to v crosses some edge incident to w.
ince ϕ is rich, G[A ∩ B] ∼= K2, and the edge in G[A ∩ B] is uncrossed with respect to ϕ. The result
ow follows from Theorem 7.6. □

This allows us to complete our characterisation for the classes E5 and E6. Note that for the sake
f simplicity the following characterisation only characterises the graphs in the respective class up
o possible deletion of a small constant number of edges that are not contained in any copy of one
f the respective cliques.

roposition 7.8. A graph G with n ≥ 3 vertices is in E6 if and only if it is a spanning subgraph of some
raph G′ with N (G′, K6) = N (G, K6) which has a tree-decomposition (T ,V) satisfying the following
roperties.

(a) For each node t ∈ V (T ), the graph G′
[Vt ] is isomorphic to a graph in A(E6);

(b) each graph in H := {G[Vs ∩ Vt ] : st ∈ E(T )} is a clique of order 2 or 3;
(c) there are exactly ⌊(n − 3)/3⌋ nodes t ∈ V (T ) such that G′

[Vt ] is isomorphic to K6;
(d) for each triangle D ∈ H, there is a unique edge st ∈ E(T ) such that G′

[Vs ∩ Vt ] = D;
(e) for each node t ∈ V (T ), the graph G′

[Vt ] has a 1-drawing with respect to which all trian-
gles D ⊆ G[Vt ] in H are facial and all edges of G′

[Vt ] ∩
⋃

H are uncrossed.

Proof. If there is a supergraph G′ with such a tree-decomposition, then G contains ⌊(n − 3)/3⌋
subgraphs isomorphic to K6 by (c). Hence, by Theorem 6.9 it is sufficient to show that G′ is 1-planar.
This follows easily from Lemma 3.1.

For the other direction, suppose G is in E6, and let G′ be an n-vertex edge-maximal 1-planar graph
containing G. By Theorem 6.9, G′ is also in E6. Let T ′

:= (T ′, (V ′
t : t ∈ V (T ))) be a tree-decomposition

of G′ as in Corollary 7.7. It is easy to construct a 1-planar graph G′′ with a tree-decomposition
(T ′, (V ′′

t : V (T ))) such that each adhesion set has size two, for each t ∈ V (T ) the graph G[V ′′
t ] is in E6

and |V ′′
t | = |V ′

t |. Hence, by Theorem 6.9, each part of T ′ induces a graph in E6.
By Lemmas 7.2 and 7.3, for each t ∈ V (T ′), the graph G[Vt ] has a tree-decomposition T t

:=

(T t , (V t
s )) satisfying properties (a), (b), (d) as well as

(e′) for each node s ∈ V (T t ) the graph G′
[V t

s ] has a 1-drawing with respect to which all trian-
gles D ⊆ G′

[V t
s ] in H are facial and all edges of G′

[V t
s ] ∩

⋃
H′ are uncrossed, where H′

:=

{G′
[V ′

s ∩ V ′
t ] : st ∈ E(T ′)}.

We now construct a tree T as the disjoint union of the trees T t for all t ∈ V (T ′) by adding for
each edge st of T ′ an edge between some arbitrary nodes u ∈ V (T s) and v ∈ V (T t ) for which V s

u ∩V t
v

= V ′
s ∩ V ′

t . Setting for each s ∈ V (T ) the part Vs to be equal to the part V t
s for the unique t ∈ V (T ′)

with s ∈ V (T t ) yields a tree-decomposition that is easily seen to satisfy properties (a), (b), (d) and (e).
By Theorem 6.9, it also satisfies (c). □

For the class E5 we observe the following.

Proposition 7.9. An n-vertex graph G is in E5 if and only if G ∈ E6 and either n is congruent to 1
modulo 3 or G ∈ E .

7.2. Efficiently generating the extremal graphs

We begin by observing that the 3k-vertex extremal graphs for any integer k ≥ 2 are isomorphic

to the strong product of a triangle and a path of length k, as mentioned in the introduction.
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Fig. 7.1. On the left, the unique simple 1-drawing of K5 (up to weak equivalence), and on the right, the only simple
1-drawing of K3 + K2 (up to weak equivalence) such that the separating triangle is facial.

orollary 7.10. Let C be one of E3, E4, E5, E6 or E and let k ≥ 2 be an integer, then a 3k-vertex graph G
s in C if and only if G is isomorphic to the strong product of a triangle and a path of length k − 1.

roof. By the characterisations given in Propositions 7.5, 7.8 and 7.9, a 3k-vertex graph G in C
as a tree-decomposition (T ,V) in which each part is isomorphic to K6 with a drawing in which
ach adhesion set is a distinct facial triangle. By Corollary 2.3(iii), each part has at most two such
riangles, and these triangles are vertex disjoint. Hence T is a path of length k − 2, and the result
ow follows from the definition of the strong product. □

If n is not divisible by 3, Propositions 7.5, 7.8 and 7.9 still allow us to generate all extremal graphs
f size n in polynomial time.
If C is E3, we observe that K3 + C4 has a unique 1-drawing which has exactly two facial triangles

see Lemma 2.2 and Corollary 2.3(iii)). Moreover, by Lemma 4.2, each 1-drawing of K2 + P6 is rich,
nd there is a unique rich 1-drawing of K2 + P6 up to weak equivalence by the computer search

in Lemma 6.3. Hence, the tree T in the tree-decomposition from Proposition 7.5 is again a path of
length ⌊n/3⌋. With the restrictions on the parts given in the characterisation in Proposition 7.5, we
conclude that we can generate all n-vertex graphs in E3 in polynomial time.

If C is either E4 or E , then as there is at most one part inducing a graph not isomorphic to K6,
e observe that T is the subdivision of a star. Moreover, K4 contains only four triangles, and since
very simple 1-drawing of K5 is rich by Lemma 4.2, and it is easy to observe that the drawing
epicted in Fig. 7.1 is the unique 1-drawing of K5 up to weak equivalence, we conclude that T has
aximum degree at most 4. As before, the restrictions on the parts given in the characterisation in
roposition 7.5 allow us to generate all n-vertex graphs in E4 or E in polynomial time.
In the case of E6, note that the only non-planar graphs in A(E6) are K6 and K5. In a planar drawing

f a graph, every non-separating triangle is facial. Thus in order to apply Proposition 7.8, the only
emaining graph to consider is K3 + K2, since this is the only graph in A(E6) with a separating
riangle. It is easy to show that there is only one 1-drawing up to weak equivalence such that the
eparating triangle is facial, see Fig. 7.1. Thus we can again generate all n-vertex graphs in E6 in
olynomial time.
By Proposition 7.9, we can extract all n-vertex graphs in E5 from the previously generated lists.

. Concluding remarks

For 1-planar graphs, our results show that for any t and t ′ in {3, 4, 5, 6}, there is not much
ifference between maximising cliques of size t and maximising cliques of size t ′. In fact, when n
s divisible by 3, the n-vertex graphs with ft (n) copies of Kt also have ft ′ (n) copies of Kt ′ . This
ehaviour is similar to what we observe for planar graphs, where Apollonian networks are the
raphs maximising both triangles and cliques of size 4. Interestingly however, the 1-planar graphs
hich maximise cliques of any size greater than 2 do not maximise the number of edges. The n-
ertex 1-planar graphs with 4n− 8 edges, called optimal 1-planar graphs, form an interesting class
24



J.P. Gollin, K. Hendrey, A. Methuku et al. European Journal of Combinatorics 109 (2023) 103654

n

Fig. 8.1. A 2-planar drawing of K7 . The black edges are the edges of the true-planar skeleton, the blue edges are crossed
exactly once and the red edges are crossed exactly twice. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

in their own right. Indeed, much of the research into 1-planar graphs has focused explicitly on this
subclass. We therefore pose the following question.

Question 8.1. Let n and t be positive integers with t ∈ {3, 4, 5} and n ≥ 10. What is the maximum
umber of subgraphs isomorphic to Kt in an n-vertex 1-planar graph with 4n − 8 edges?

For t = 3, Lemma 4.4 implies that this question is equivalent to maximising the number of non-
trivial 3-separators in a 3-connected planar quadrangulation. In this case, we suspect the answer is
given by following construction. Let H0 be the 4-cycle v0v1v2v3v0, let ϕ0 be a planar drawing of H0,
and let F 0

1 and F 0
2 be the faces of ϕ0. For each positive integer i, let Hi be obtained from Hi−1 by adding

a new vertex vi+3 adjacent to vi+2 and the non-neighbour of vi+2 in the boundary of F i−1
2 and let ϕi

extend ϕi−1 to a drawing of Hi by drawing the new vertices and edges inside F i−1
2 . Let F i

1 := F i−1
1 and

let F i
2 be a face of ϕi whose boundary contains vi+3, (chosen arbitrarily). Finally let Gi be obtained

from Hi by taking two disjoint copies of the cube Q3, and identifying a 4-cycle in the first copy
with the boundary cycle of F i

1 and a 4-cycle in the second copy with the boundary cycle of F i
2. We

will call the class of graphs Gi constructed this way G∗. Every graph in G∗ is a 3-connected planar
quadrangulation, and it can be shown that n-vertex graphs in G∗ have exactly 4n − 14 non-trivial
3-separators. Lemma 4.4 and Lemma 5.2 together imply that this is within ten of the maximum
possible value. We conjecture the following.

Conjecture 8.2. For n ≥ 14, the n-vertex 3-connected planar quadrangulations with the maximum
number of 3-separators are exactly the n-vertex graphs in G∗.

In another direction, it is natural to consider extending our results to k-planar graphs for higher
values of k. For k ≥ 3, not even the maximum number of edges is known for n-vertex k-planar
graphs, so counting larger cliques is likely to be an extremely difficult problem. However, counting
triangles in 2-planar graphs is a logical next step toward broadening our understanding. Here, we
conjecture the following.

Conjecture 8.3. For n ≥ 7, the maximum number of triangles in an n-vertex 2-planar graph is at most
(17n − 49)/2.

The bound in Conjecture 8.3 is achieved by the 2-planar graphs formed by stitching copies of K7
together. This stitching is possible since K7 has a 2-drawing with two facial triangles, see Fig. 8.1.
It may even be the case that for all positive integers k, maximising copies of the largest k-planar

cliques also maximises triangles, up to an additive constant, and vice versa.
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