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Abstract. An odd coloring of a graph is a proper coloring in such a way
that every non-isolated vertex has some color that appears an odd number
of times on its neighborhood. A graph is 1-planar if it has a drawing in
the plane so that each edge is crossed at most once. Cranston, Lafferty,
and Song showed that every 1-planar graph admits an odd 23-coloring
[arXiv:2202.02586v4]. In this paper, we improve their bound to 16.
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1 Introduction

Throughout the paper, all graphs are finite, simple and undirected. By V (G),
E(G), and δ(G), we denote the set of vertices, the set of edges, and the minimum
degree of a graph G, respectively. If G is a plane graph, then F (G) denotes the
set of faces of G, The neighborhood NG(v) of a vertex v is the set of vertices
adjacent to v in G. The degree of a vertex v in G, denoted by dG(v), is the size of
NG(v), and the degree of a face f in a plane graph G, denoted by dG(f), is the
the number of edges that are incident with f in G, where cut-edges are counted
twice. A k-, k+-, and k−-vertex (resp. face) is a vertex (resp. face) of degree k,
at least k and at most k, respectively. For other undefined notation, we refer the
readers to the book [1].

A coloring of vertices of a hypergraph is conflict-free if at least one vertex in
each (hyper-)edge has a unique color, see [6]. Its research was initially motivated
by a frequency assignment problem in cellular networks. Such networks consist
of fixed-position base stations and roaming clients, each base station is assigned
a certain frequency and transmits data in this frequency within some given
region. Roaming clients have a range of communication and come under the
influence of different subsets of base stations. This situation can be modeled
by means of a hypergraph whose vertices correspond to the base stations. The
range of communication of a mobile agent, that is, the set of base stations it can
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communicate with, is represented by a hyperedge e ∈ E. A conflict-free coloring
of such a hypergraph implies an assignment of frequencies, to the base stations,
which enables clients to connect to a base station holding a unique frequency in
the client’s range, thus avoiding interferences.

Recently, Petruševski and Škrekovski [9] introduced the notion of odd col-
oring, which is a relaxation of conflict-free coloring. Formally, an odd c-coloring
of a graph is a proper c-coloring with the additional constraint that each ver-
tex of positive degree has a color appearing an odd number of times among its
neighborhood. A graph G is odd c-colorable if it has an odd c-coloring. The odd
chromatic number of a graph G, denoted χo(G), is the minimum c such that G
has an odd c-coloring. Petruševski and Škrekovski [9] put forward the following
conjecture:

Conjecture 1. ([9]). Every planar graph admits an odd 5-coloring.

The best progress towards this conjecture is due to Petr and Portier [8],
who proved that the odd chromatic number of every planar graph is at most 8,
improving the preceding bound 9 of Petruševski and Škrekovski [9]. Supporting
this conjecture, Cranston [4] showed that every planar graph of girth at least 7
is odd 5-colorable, Caro, Petruševski and Škrekovski [2] also proved that every
outerplanar graph admits an odd 5-coloring. Qi and Zhang [10] later verified
Conjecture 1 for another two subclasses of planar graphs, saying outer-1-planar
graphs and 2-boundary planar graphs, generalizing the result of Petruševski
and Škrekovski [9]. Note that the bound 5 in Conjecture 1 would be sharp as
χo(C5) = 5.

There are normally two ways to generalize the planarity. One way is to allow
a drawing without crossings in a surface, such as a torus, rather than a plane.
In view of this, Metrebian [7] showed that every torodial graph admits an odd
9-coloring. Another generalization can be established in the way of allowing
bounded number of crossings per edge. Ringel [11] introduced the notion of 1-
planarity in 1965. Precisely, a graph is 1-planar if it can be drawn in the plane so
that each edge is crossed by at most one other edge. Recently, Cranston, Lafferty,
and Song [5] showed that every 1-planar graph admits an odd 23-coloring (the
first bound for the odd chromatic number of 1-planar graphs was 47, due to the
first version of [5]).

The aim of this paper is to find a better upper bound for the odd chromatic
number of 1-planar graphs by showing the following.

Theorem 2. Every 1-planar graph admits an odd 16-coloring.

The proof of Theorem 2 is relied on the proof of the odd 23-colorability of
Cranston, Lafferty, and Song [5]. Readers will see that we borrow all structural
lemmas there. However, with our new discharging rules, the counting of final
charges becomes easier and surprisingly the bound descends.

2 The Proof of Theorem 2

Suppose for a contradiction that G is a minimal counterexample (in terms of
|V (G)| + |E(G)|) to this theorem. The associated plane graph G× of G is the
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plane graph obtained from G by turning all crossings of G into new vertices
of degree four. Those new 4-vertices are false vertices of G×, and the original
vertices of G are true vertices of G×. A face of G× is false if it is incident with
at least one false vertex, and true otherwise. For each vertex v ∈ V (G), let d2(v)
denote the number of 2-vertices adjacent to v in G. An odd vertex of G is a
vertex having odd degree. If v ∈ V (G) has even degree at most 6 then we call it
small vertex, and if v ∈ V (G) has degree at least 8 then we call it big vertex.

Claim 1. [5, Claim 1] δ(G) ≥ 2.

Claim 2. [5, Claim 2] Every odd vertex in G has degree at least 9.

Claim 3. [5, Claim 3] No two small vertices are adjacent in G.

Claim 4. [5, Claim 4] Every edge incident to a small vertex in G has a crossing.

Claim 5. [3, Lemma 2.1] If v is a vertex with d2(v) ≥ 1, then 2d(v) ≥ d2(v)+16.

Claim 6. [5, Claim 6] The graph G× has no loop or 2-face, and every 3-face
in G× is incident to either three big vertices or two big vertices and one false
4-vertex.

Claim 7. [5, Claim 7] Every 2-vertex in G× is incident to a 5+-face and to
another 4+-face.

Claim 8. [5, in the proof of Claim 9] For a 4-face zz1vz2z and a 6-face
vz1uz3wz2v of G×, if z1, z2, z3 are false vertices, then at most two vertices among
u, v, w are 2-vertices.

Note that Claims 2 and 5 are different from their original forms. However, we
can prove them using the same arguments only with certain numbers changed.
Moreover, although we change the definitions of small and big vertices, compar-
ing to the ones in [5], the proofs of Claims 3, 4, and 7 work in the same logic as
in [5].

We apply the discharging method to G×. Formally, for each vertex v ∈
V (G×), let ch(v) := dG×(v)−4 be its initial charge, and for each face f ∈ F (G×),
let ch(f) := dG×(f) − 4 be its initial charge. Clearly,

∑

x∈V (G×)∪F (G×)

ch(x) = −8 < 0

by the well-known Euler’s formula.
For convenience we use d(v) and d(f) instead of dG×(v) and dG×(f) if v is a

true vertex and f is a face in G×, respectively. The discharging rules are defined
as follows.

R1 Every big vertex sends 1/4 to each of its incidence 2-vertices;
R2 Every big vertex sends 1/3 to each of its incidence true 3-faces;
R3 Every big vertex sends 1/2 to each of its incidence false faces;



An Improvement of the Bound on the Odd Chromatic Number 391

R4 If f is a 4+-face with positive charge after applying R1–R3 and f is
incident with at least one 2-vertex, then f redistribute its positive charge to
each of its incidence 2-vertices equally.

Let ch∗(x) be the charge of x ∈ V (G×) ∪ F (G×) after applying the above
rules. Since our rules only move charge around, and do not affect the sum, we
have ∑

x∈V (G×)∪F (G×)

ch∗(x) =
∑

x∈V (G×)∪F (G×)

ch(x) < 0.

Next, we prove that ch∗(x) ≥ 0 for each x ∈ V (G×) ∪ F (G×) by Propositions 1,
2 and 3. This gives ∑

x∈V (G×)∪F (G×)

ch∗(x) ≥ 0,

a contradiction. Note that every true vertex of G× is either small or big by Claim
2 and the final charge of any false vertex of G× is trivially 0.

Proposition 1. The final charge of every face of G× is non-negative.

Proof. By Claim 6, every face of G× has degree at least 3. If f is a true 3-
face, then f is incident only with big vertices by Claim 6 and thus ch∗(f) =
3−4+3× 1

3 = 0 by R2. If f is a false 3-face, then f is incident with two big vertices
by Claim 6 and thus ch∗(f) = 3 − 4 + 2 × 1

2 = 0 by R3. If f is 4+-face incident
with 2-vertices, then ch∗(f) = 0 by R4. If f is 4+-face incident with no 2-vertex,
then no rules will be applied to f and thus ch∗(f) = ch(f) = d(f) − 4 ≥ 0. ��
Proposition 2. The final charge of every small vertex of G× is non-negative.

Proof. It is sufficient to prove this result for an arbitrary arbitrarily 2-vertex v, as
ch∗(v) = ch(v) for d(v) = 4, 6 by the discharging rules. Assume NG(v) = {x, y}.
By Claim 4, vx and vy are crossed. Assume that vx is crossed by u1u2 at a false
vertex z1, and vy is crossed by w1w2 at a false vertex z2, such that u1, z1, v, z2, w1

are on one face, say f1, and u2, z1, v, z2, w2 are on another face, say f2. It may
be possible that u1 = w1 or u2 = w2. Assume, without loss of generality, that
d(f1) ≤ d(f2). Since v is incident to a 5+-face and to another 4+-face by Claim
7, we consider two cases.

Case 1. d(f1) = 4.
This situation implies u1 = w1 and u2 �= w2. For convenience we let z =

u1 = w1. Note that d(f2) ≥ 5.
Subcase 1.1. z is a big vertex, see Fig. 1(a).
Now f1 sends 1/2 to v by R3 and R4. Next we look at f2. Besides z1, v, z2,

there are at most 	d(f2)−3
2 
 2-vertices on f2 by Claim 3. Hence at most 	d(f2)−1

2 

2-vertices exist on f2. By R4, f2 sends to v at least

α :=
d(f2) − 4⌈
d(f2)−1

2

⌉ .
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Fig. 1. Illustration for the proof of Proposition 2.

If d(f2) ≥ 7, then α ≥ 1.
If d(f2) = 6, then f2 is incidence with at most two 2-vertices by Claim 8.

Hence f2 sends to v at least 6−4
2 = 1, too.

If d(f2) = 5, then u2w2 ∈ E(G). This implies that u2 and w2 are both big
by Claim 4. Hence f2 has charge 5− 4+2× 1

2 = 2 after applying R3, which will
be sent to v by R4.

In each case, v receives at least 1 from f2, 1/2 from f1, and 1/4 from each of
x and y by R1. This gives ch∗(v) ≥ 2 − 4 + 1 + 1

2 + 2 × 1
4 = 0.

Subcase 1.2. z is a small vertex, see Fig. 1(b).
This situation implies u2 and w2 are big by Claim 3.
Now we mainly look at f2. Besides u2, z1, v, z2, w2, there are at most �d(f2)−5

2 �
2-vertices on f2 by Claims 3 and 4. Hence at most �d(f2)−3

2 � 2-vertices exist on
f2. By R3 and R4, f2 sends to v at least

d(f2) − 4 + 2 × 1
2⌊

d(f2)−3
2

⌋ ≥ 2

and thus ch∗(v) ≥ 2 − 4 + 2 = 0.
Case 2. d(f1) ≥ 5.
If ui and wi are big for some i ∈ {1, 2}, then by a similar argument as

in Subcase 1.2, we conclude that fi sends at least 2 to v and thus ch∗(v) ≥
2− 4+2 = 0. Hence we assume u1 is big and w1 is small. By Claim 3, w2 is big.
So we further assume u2 is small, see Fig. 1(c).

Now besides u1, z1, v, z2, there are at most 	d(f1)−4
2 
 2-vertices on f1 by

Claim 3. Hence at most 	d(f1)−2
2 
 2-vertices exist on f1. By R3 and R4, f1

sends to v at least

d(f1) − 4 + 1
2⌈

d(f1)−2
2

⌉ ≥ 3
4

as d(f1) ≥ 5. By symmetry, f2 sends to v at least 3/4.
Since both x and y sends 1/4 to v by R1, ch∗(v) ≥ 2−−4+2× 3

4 +2× 1
4 = 0.

��
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Proposition 3. The final charge of every big vertex of G× is non-negative.

Proof. Let v be a big vertex. If d2(v) = 0, then ch∗(v) ≥ d(v) − 4 − 1
2d(v) ≥ 0

by R2 and R3 as d(v) ≥ 8. If d2(v) ≥ 1, then d2(v) ≤ 2d(v) − 16 by Claim 5.
Hence

ch∗(v) ≥ d(v) − 4 − 1
4
d2(v) − 1

2
d(v)

≥ d(v) − 4 − 1
4
(2d(v) − 16) − 1

2
d(v)

= 0

by R1–R3. ��
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