An Improvement of the Bound on the Odd Chromatic Number of 1-Planar Graphs

Bei Niu(D) and Xin Zhang ${ }^{(\mathbb{}}$ (D)
School of Mathematics and Statistics, Xidian University, Xi'an 710071, China beiniu@stu.xidian.edu.cn, xzhang@xidian.edu.cn

Abstract

An odd coloring of a graph is a proper coloring in such a way that every non-isolated vertex has some color that appears an odd number of times on its neighborhood. A graph is 1-planar if it has a drawing in the plane so that each edge is crossed at most once. Cranston, Lafferty, and Song showed that every 1-planar graph admits an odd 23 -coloring [arXiv:2202.02586v4]. In this paper, we improve their bound to 16 .

Keywords: 1-planar graph • Odd coloring • Discharging

1 Introduction

Throughout the paper, all graphs are finite, simple and undirected. By $V(G)$, $E(G)$, and $\delta(G)$, we denote the set of vertices, the set of edges, and the minimum degree of a graph G, respectively. If G is a plane graph, then $F(G)$ denotes the set of faces of G, The neighborhood $N_{G}(v)$ of a vertex v is the set of vertices adjacent to v in G. The degree of a vertex v in G, denoted by $d_{G}(v)$, is the size of $N_{G}(v)$, and the degree of a face f in a plane graph G, denoted by $d_{G}(f)$, is the the number of edges that are incident with f in G, where cut-edges are counted twice. A k-, k^{+}-, and k^{-}-vertex (resp. face) is a vertex (resp. face) of degree k, at least k and at most k, respectively. For other undefined notation, we refer the readers to the book [1].

A coloring of vertices of a hypergraph is conflict-free if at least one vertex in each (hyper-)edge has a unique color, see [6]. Its research was initially motivated by a frequency assignment problem in cellular networks. Such networks consist of fixed-position base stations and roaming clients, each base station is assigned a certain frequency and transmits data in this frequency within some given region. Roaming clients have a range of communication and come under the influence of different subsets of base stations. This situation can be modeled by means of a hypergraph whose vertices correspond to the base stations. The range of communication of a mobile agent, that is, the set of base stations it can

[^0]communicate with, is represented by a hyperedge $e \in E$. A conflict-free coloring of such a hypergraph implies an assignment of frequencies, to the base stations, which enables clients to connect to a base station holding a unique frequency in the client's range, thus avoiding interferences.

Recently, Petruševski and Škrekovski [9] introduced the notion of odd coloring, which is a relaxation of conflict-free coloring. Formally, an odd c-coloring of a graph is a proper c-coloring with the additional constraint that each vertex of positive degree has a color appearing an odd number of times among its neighborhood. A graph G is odd c-colorable if it has an odd c-coloring. The odd chromatic number of a graph G, denoted $\chi_{o}(G)$, is the minimum c such that G has an odd c-coloring. Petruševski and Škrekovski [9] put forward the following conjecture:

Conjecture 1. ([9]). Every planar graph admits an odd 5-coloring.
The best progress towards this conjecture is due to Petr and Portier [8], who proved that the odd chromatic number of every planar graph is at most 8 , improving the preceding bound 9 of Petruševski and Škrekovski [9]. Supporting this conjecture, Cranston [4] showed that every planar graph of girth at least 7 is odd 5-colorable, Caro, Petruševski and Škrekovski [2] also proved that every outerplanar graph admits an odd 5 -coloring. Qi and Zhang [10] later verified Conjecture 1 for another two subclasses of planar graphs, saying outer-1-planar graphs and 2-boundary planar graphs, generalizing the result of Petruševski and Škrekovski [9]. Note that the bound 5 in Conjecture 1 would be sharp as $\chi_{o}\left(C_{5}\right)=5$.

There are normally two ways to generalize the planarity. One way is to allow a drawing without crossings in a surface, such as a torus, rather than a plane. In view of this, Metrebian [7] showed that every torodial graph admits an odd 9 -coloring. Another generalization can be established in the way of allowing bounded number of crossings per edge. Ringel [11] introduced the notion of 1planarity in 1965. Precisely, a graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. Recently, Cranston, Lafferty, and Song [5] showed that every 1-planar graph admits an odd 23-coloring (the first bound for the odd chromatic number of 1-planar graphs was 47, due to the first version of [5]).

The aim of this paper is to find a better upper bound for the odd chromatic number of 1-planar graphs by showing the following.

Theorem 2. Every 1-planar graph admits an odd 16-coloring.
The proof of Theorem 2 is relied on the proof of the odd 23 -colorability of Cranston, Lafferty, and Song [5]. Readers will see that we borrow all structural lemmas there. However, with our new discharging rules, the counting of final charges becomes easier and surprisingly the bound descends.

2 The Proof of Theorem 2

Suppose for a contradiction that G is a minimal counterexample (in terms of $|V(G)|+|E(G)|)$ to this theorem. The associated plane graph G^{\times}of G is the
plane graph obtained from G by turning all crossings of G into new vertices of degree four. Those new 4 -vertices are false vertices of G^{\times}, and the original vertices of G are true vertices of G^{\times}. A face of G^{\times}is false if it is incident with at least one false vertex, and true otherwise. For each vertex $v \in V(G)$, let $d_{2}(v)$ denote the number of 2-vertices adjacent to v in G. An odd vertex of G is a vertex having odd degree. If $v \in V(G)$ has even degree at most 6 then we call it small vertex, and if $v \in V(G)$ has degree at least 8 then we call it big vertex.

Claim 1. [5, Claim 1] $\delta(G) \geq 2$.
Claim 2. [5, Claim 2] Every odd vertex in G has degree at least 9.
Claim 3. [5, Claim 3] No two small vertices are adjacent in G.
Claim 4. [5, Claim 4] Every edge incident to a small vertex in G has a crossing.
Claim 5. [3, Lemma 2.1] If v is a vertex with $d_{2}(v) \geq 1$, then $2 d(v) \geq d_{2}(v)+16$.
Claim 6. [5, Claim 6] The graph G^{\times}has no loop or 2-face, and every 3-face in G^{\times}is incident to either three big vertices or two big vertices and one false 4-vertex.

Claim 7. [5, Claim 7] Every 2-vertex in G^{\times}is incident to a 5^{+}-face and to another 4^{+}-face.

Claim 8. [5, in the proof of Claim 9] For a 4-face $z z_{1} v z_{2} z$ and a 6-face $v z_{1} u z_{3} w z_{2} v$ of G^{\times}, if z_{1}, z_{2}, z_{3} are false vertices, then at most two vertices among u, v, w are 2-vertices.

Note that Claims 2 and 5 are different from their original forms. However, we can prove them using the same arguments only with certain numbers changed. Moreover, although we change the definitions of small and big vertices, comparing to the ones in [5], the proofs of Claims 3, 4, and 7 work in the same logic as in [5].

We apply the discharging method to G^{\times}. Formally, for each vertex $v \in$ $V\left(G^{\times}\right)$, let $\operatorname{ch}(v):=d_{G^{\times}}(v)-4$ be its initial charge, and for each face $f \in F\left(G^{\times}\right)$, let $\operatorname{ch}(f):=d_{G^{\times}}(f)-4$ be its initial charge. Clearly,

$$
\sum_{x \in V\left(G^{\times}\right) \cup F\left(G^{\times}\right)} \operatorname{ch}(x)=-8<0
$$

by the well-known Euler's formula.
For convenience we use $d(v)$ and $d(f)$ instead of $d_{G^{\times}}(v)$ and $d_{G^{\times}}(f)$ if v is a true vertex and f is a face in G^{\times}, respectively. The discharging rules are defined as follows.

R1 Every big vertex sends $1 / 4$ to each of its incidence 2-vertices;
R2 Every big vertex sends $1 / 3$ to each of its incidence true 3 -faces;
R3 Every big vertex sends $1 / 2$ to each of its incidence false faces;
$\mathbf{R 4}$ If f is a 4^{+}-face with positive charge after applying $\mathbf{R 1}-\mathbf{R} 3$ and f is incident with at least one 2-vertex, then f redistribute its positive charge to each of its incidence 2-vertices equally.

Let $\operatorname{ch}^{*}(x)$ be the charge of $x \in V\left(G^{\times}\right) \cup F\left(G^{\times}\right)$after applying the above rules. Since our rules only move charge around, and do not affect the sum, we have

$$
\sum_{x \in V\left(G^{\times}\right) \cup F\left(G^{\times}\right)} \operatorname{ch}^{*}(x)=\sum_{x \in V\left(G^{\times}\right) \cup F\left(G^{\times}\right)} \operatorname{ch}(x)<0 .
$$

Next, we prove that $\operatorname{ch}^{*}(x) \geq 0$ for each $x \in V\left(G^{\times}\right) \cup F\left(G^{\times}\right)$by Propositions 1, 2 and 3. This gives

$$
\sum_{x \in V\left(G^{\times}\right) \cup F\left(G^{\times}\right)} \operatorname{ch}^{*}(x) \geq 0,
$$

a contradiction. Note that every true vertex of G^{\times}is either small or big by Claim 2 and the final charge of any false vertex of G^{\times}is trivially 0 .

Proposition 1. The final charge of every face of G^{\times}is non-negative.
Proof. By Claim 6, every face of G^{\times}has degree at least 3 . If f is a true 3 face, then f is incident only with big vertices by Claim 6 and thus $\operatorname{ch}^{*}(f)=$ $3-4+3 \times \frac{1}{3}=0$ by $\mathbf{R 2}$. If f is a false 3 -face, then f is incident with two big vertices by Claim 6 and thus $\operatorname{ch}^{*}(f)=3-4+2 \times \frac{1}{2}=0$ by R3. If f is 4^{+}-face incident with 2 -vertices, then $\operatorname{ch}^{*}(f)=0$ by $\mathbf{R} 4$. If f is 4^{+}-face incident with no 2 -vertex, then no rules will be applied to f and thus $\operatorname{ch}^{*}(f)=\operatorname{ch}(f)=d(f)-4 \geq 0$.

Proposition 2. The final charge of every small vertex of G^{\times}is non-negative.
Proof. It is sufficient to prove this result for an arbitrary arbitrarily 2-vertex v, as $\operatorname{ch}^{*}(v)=\operatorname{ch}(v)$ for $d(v)=4,6$ by the discharging rules. Assume $N_{G}(v)=\{x, y\}$. By Claim 4, vx and $v y$ are crossed. Assume that $v x$ is crossed by $u_{1} u_{2}$ at a false vertex z_{1}, and $v y$ is crossed by $w_{1} w_{2}$ at a false vertex z_{2}, such that $u_{1}, z_{1}, v, z_{2}, w_{1}$ are on one face, say f_{1}, and $u_{2}, z_{1}, v, z_{2}, w_{2}$ are on another face, say f_{2}. It may be possible that $u_{1}=w_{1}$ or $u_{2}=w_{2}$. Assume, without loss of generality, that $d\left(f_{1}\right) \leq d\left(f_{2}\right)$. Since v is incident to a 5^{+}-face and to another 4^{+}-face by Claim 7, we consider two cases.

Case 1. $d\left(f_{1}\right)=4$.
This situation implies $u_{1}=w_{1}$ and $u_{2} \neq w_{2}$. For convenience we let $z=$ $u_{1}=w_{1}$. Note that $d\left(f_{2}\right) \geq 5$.

Subcase 1.1. z is a big vertex, see Fig. 1(a).
Now f_{1} sends $1 / 2$ to v by $\mathbf{R} 3$ and $\mathbf{R} 4$. Next we look at f_{2}. Besides z_{1}, v, z_{2}, there are at most $\left\lceil\frac{d\left(f_{2}\right)-3}{2}\right\rceil 2$-vertices on f_{2} by Claim 3. Hence at most $\left\lceil\frac{d\left(f_{2}\right)-1}{2}\right\rceil$ 2 -vertices exist on f_{2}. By R4, f_{2} sends to v at least

$$
\alpha:=\frac{d\left(f_{2}\right)-4}{\left\lceil\frac{d\left(f_{2}\right)-1}{2}\right\rceil} .
$$

Fig. 1. Illustration for the proof of Proposition 2.

If $d\left(f_{2}\right) \geq 7$, then $\alpha \geq 1$.
If $d\left(f_{2}\right)=6$, then f_{2} is incidence with at most two 2 -vertices by Claim 8 . Hence f_{2} sends to v at least $\frac{6-4}{2}=1$, too.

If $d\left(f_{2}\right)=5$, then $u_{2} w_{2} \in E(G)$. This implies that u_{2} and w_{2} are both big by Claim 4 . Hence f_{2} has charge $5-4+2 \times \frac{1}{2}=2$ after applying R3, which will be sent to v by R4.

In each case, v receives at least 1 from $f_{2}, 1 / 2$ from f_{1}, and $1 / 4$ from each of x and y by R1. This gives $\operatorname{ch}^{*}(v) \geq 2-4+1+\frac{1}{2}+2 \times \frac{1}{4}=0$.

Subcase 1.2. z is a small vertex, see Fig. 1(b).
This situation implies u_{2} and w_{2} are big by Claim 3 .
Now we mainly look at f_{2}. Besides $u_{2}, z_{1}, v, z_{2}, w_{2}$, there are at most $\left\lfloor\frac{d\left(f_{2}\right)-5}{2}\right\rfloor$ 2 -vertices on f_{2} by Claims 3 and 4 . Hence at most $\left\lfloor\frac{d\left(f_{2}\right)-3}{2}\right\rfloor 2$-vertices exist on f_{2}. By R3 and R4, f_{2} sends to v at least

$$
\frac{d\left(f_{2}\right)-4+2 \times \frac{1}{2}}{\left\lfloor\frac{d\left(f_{2}\right)-3}{2}\right\rfloor} \geq 2
$$

and thus $\operatorname{ch}^{*}(v) \geq 2-4+2=0$.
Case 2. $d\left(f_{1}\right) \geq 5$.
If u_{i} and w_{i} are big for some $i \in\{1,2\}$, then by a similar argument as in Subcase 1.2, we conclude that f_{i} sends at least 2 to v and thus $\operatorname{ch}^{*}(v) \geq$ $2-4+2=0$. Hence we assume u_{1} is big and w_{1} is small. By Claim 3, w_{2} is big. So we further assume u_{2} is small, see Fig. 1(c).

Now besides u_{1}, z_{1}, v, z_{2}, there are at most $\left\lceil\frac{d\left(f_{1}\right)-4}{2}\right\rceil 2$-vertices on f_{1} by Claim 3. Hence at most $\left\lceil\frac{d\left(f_{1}\right)-2}{2}\right\rceil 2$-vertices exist on f_{1}. By R3 and R4, f_{1} sends to v at least

$$
\frac{d\left(f_{1}\right)-4+\frac{1}{2}}{\left\lceil\frac{d\left(f_{1}\right)-2}{2}\right\rceil} \geq \frac{3}{4}
$$

as $d\left(f_{1}\right) \geq 5$. By symmetry, f_{2} sends to v at least $3 / 4$.
Since both x and y sends $1 / 4$ to v by R1, ch $^{*}(v) \geq 2--4+2 \times \frac{3}{4}+2 \times \frac{1}{4}=0$.

Proposition 3. The final charge of every big vertex of G^{\times}is non-negative.
Proof. Let v be a big vertex. If $d_{2}(v)=0$, then $\operatorname{ch}^{*}(v) \geq d(v)-4-\frac{1}{2} d(v) \geq 0$ by R2 and R3 as $d(v) \geq 8$. If $d_{2}(v) \geq 1$, then $d_{2}(v) \leq 2 d(v)-16$ by Claim 5 . Hence

$$
\begin{aligned}
\operatorname{ch}^{*}(v) & \geq d(v)-4-\frac{1}{4} d_{2}(v)-\frac{1}{2} d(v) \\
& \geq d(v)-4-\frac{1}{4}(2 d(v)-16)-\frac{1}{2} d(v) \\
& =0
\end{aligned}
$$

by R1-R3.

References

1. Bondy, J.A., Murty, U.S.R.: Graph Theory. GTM 244, Springer, New York (2008)
2. Caro, Y., Petruševski, M., Škrekovski, R.: Remarks on odd colorings of graphs. (2022). arXiv: 2201.03608v1
3. Cho, E.-K., Choi, I., Kwon, H., Park, B.: Odd coloring of sparse graphs and planar graphs. (2022). arXiv: 2202.11267v1
4. Cranston, D.W.: Odd Colorings of Sparse Graphs (2022).arXiv:2201.01455v1
5. Cranston, D.W., Lafferty, M., Song, Z.-X.: A note on odd coloring of 1-planar graphs (2022). arXiv: 2202.02586v4
6. Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33, 94-136 (2003)
7. Metrebian, H.: Odd coloring on the torus (2022). arXiv: 2205.05398v1
8. Petr, J., Portier, J.: The odd chromatic number of a planar graph is at most 8 (2022). arXiv: 2201.12381v2
9. Petruševski, M., Škrekovski, R.: Coloring with neighborhood parity condition (2022). arXiv: 2112.13710v2
10. Qi, M.K., Zhang, X.: Odd coloring of two subclasses of planar graphs (2022). arXiv: 2205.09317 v 1
11. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel, Abhandlungen aus dem Mathematischen Seminar der Universität Hambur, 29 107-117 (1965)

[^0]: Supported by the Fundamental Research Funds for the Central Universities (QTZX22053) and the National Natural Science Foundation of China (11871055).
 (C) The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
 Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 388-393, 2022.
 https://doi.org/10.1007/978-3-031-16081-3_33

