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A q-degenerate k-partition of a graph G is a collection (V 1, V 2, . . . , Vk) of k pairwise disjoint 
subsets of V (G) such that V (G) = ⋃k

i=1 V i and each V i induces a q-degenerate subgraph. 
Such a partition is called equitable if 

∣∣|V i | − |V j |
∣∣ ≤ 1 for every 1 ≤ i < j ≤ k. Equitable 

partition of graphs can model the problem of partitioning a large network into smaller sub-
modules based on some cardinal principles, and has many other applications in network 
science and information science. In this work, we establish theoretical and algorithmic 
results on equitably partitioning degenerate graphs into graphs with lower degeneracy. 
Specifically, we show that every n-vertex d-degenerate graph with maximum degree at 
most n/β has a q-degenerate k-partition (V 1, V 2, . . . , Vk) for every k ≥ αd so that each V i

has size at most �n/k� whenever q, α, and β satisfy a well-defined inequality, and such a 
partition can be computed in cubic time.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Given a network with a huge number of nodes, we are interested in partitioning this network into smaller sub-modules 
based on some cardinal principles. For the sake of safety, we may require that each smaller sub-module is sparse enough 
so as to identify possible node failures or attacks quickly. For economic reasons, we also require that the sizes of every two 
smaller sub-modules are almost the same and thus we may establish a common standard to manage all sub-modules. This 
can be modeled by equitable partition or equitable coloring of graphs, which has many applications in network science and 
information science.

From now on, we do not distinguish between network and graph and in most cases we use the language of graph theory 
and assume every considering graph is finite and simple.

The degeneracy is a powerful parameter to measure how sparse a graph is. The degeneracy of a graph G is defined to be 
the minimum integer d such that G is d-degenerate, i.e., every subgraph of G contains a vertex of degree at most d. A linear 
time algorithm to compute the degeneracy of a graph is due to Matula and Beck [11].

An equitable k-partition of a graph G is a collection (V 1, V 2, . . . , Vk) of k pairwise disjoint subsets of V (G) such that 
V (G) = ⋃k

i=1 V i and 
∣∣|V i | − |V j |

∣∣ ≤ 1 for every 1 ≤ i < j ≤ k. An equitable k-partition (V 1, V 2, . . . , Vk) of a graph G is 
q-degenerate if each V i induces a q-degenerate subgraph of G . In some occasions we may say equitable q-degenerate k-

✩ This paper is partially supported by National Natural Science Foundation of China (Nos. 11871055, 11701440).

* Corresponding authors.
E-mail addresses: xzhang@xidian.edu.cn (X. Zhang), hqzhangmath@stu.xidian.edu.cn (H. Zhang), beiniu@stu.xidian.edu.cn (B. Niu), libi@xidian.edu.cn

(B. Li).
https://doi.org/10.1016/j.tcs.2021.12.012
0304-3975/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2021.12.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2021.12.012&domain=pdf
mailto:xzhang@xidian.edu.cn
mailto:hqzhangmath@stu.xidian.edu.cn
mailto:beiniu@stu.xidian.edu.cn
mailto:libi@xidian.edu.cn
https://doi.org/10.1016/j.tcs.2021.12.012


X. Zhang, H. Zhang, B. Niu et al. Theoretical Computer Science 905 (2022) 18–30
Table 1
Values of q, α, β satisfying �(q, α, β) > 0.

q α β α β α β q α β α β α β

1

8 56 12 13 17 9

2

7 65 11 12 17 8
9 26 13 12 20 8 8 25 12 11 23 7
10 18 14 11 27 7 9 17 13 10 37 6
11 15 15 10 52 6 10 14 14 9

3

7 36 11 11 20 7

4

6 204 10 12 19 7
8 20 12 10 31 6 7 29 11 10 29 6
9 15 13 9 229 5 8 18 13 9 140 5
10 12 15 8 9 14 15 8

coloring instead of saying equitable q-degenerate k-partition, or in other words we do not distinguish between partition 
and coloring. So the subset V i in an equitable k-partition (V 1, V 2, . . . , Vk) is sometimes called color class.

Equitable 0-degenerate coloring and equitable 1-degenerate coloring are also known as equitable proper coloring and 
equitable tree coloring in the literature, which were introduced by Meyer [12] in 1973 and by Wu, Zhang, and Li [14] in 
2013, respectively. A survey on equitable proper coloring is due to Lih [10] and the list version of equitable q-degenerate 
coloring was investigated by many research groups including [2–4,9,15,17].

The class of planar graphs is well-established subclasses of 5-degenerate graphs. Nakprasit [13] showed that every planar 
graph with maximum degree � at least 9 admits an equitable proper �-coloring, which improved the lower bound for �
of Zhang and Yap [19] from 13. Indeed, improving the lower bound 9 (best known until now) for � in this problem is 
still interesting. For the equitable tree coloring of planar graphs, Esperet, Lemoine and Maffray [5] proved that every planar 
graph has an equitable tree k-coloring for every k ≥ 4, answering a conjecture of Wu, Zhang and Li [14]. It is interesting to 
determine whether every planar graph has an equitable tree 3-coloring (see [6,16] for some partial results). Recently, Kim, 
Oum, and Zhang [6] showed that every planar graph has an equitable 2-degenerate k-coloring for every k ≥ 3, and has an 
equitable 3-degenerate k-coloring for every k ≥ 2.

For degenerate graphs in general, Zhang et al. [18] proved that every d-degenerate graph with maximum degree �
has an equitable tree-k-coloring for every k ≥ (� + 1)/2 whenever � ≥ 9.818d. Kostochka and Nakprasit [7] proved that 
every d-degenerate graph with maximum degree at most k has an equitable proper k-coloring if d ≥ 2 and k ≥ 14d + 1. 
Kostochka, Nakprasit, and Pemmaraju [8] showed that every n-vertex d-degenerate graph G with maximum degree at most 
n/15 admits an equitable proper k-coloring for every k ≥ 16d, and also proved that every d-degenerate graph with d ≥ 2
has a (d − 1)-degenerate k-partition for every k ≥ 3.

The aim of this paper is to establish new theoretical and algorithmic results on equitably partitioning degenerate graphs 
into graphs with lower degeneracy by proving the following main theorem, where

�(q,α,β) =
(

2α(μ − 4)(μ − 6) − 10(μ − 3)2
)
(μ − 1)β − 3

(
α(μ − 6) − 3(μ − 1)(μ − 3)

)
(μ − 4)α

and

μ = (q + 1)α. (1.1)

Theorem 1.1. Let α, β, k, q be positive integers and let G be an n-vertex d-degenerate graph with maximum degree at most n/β . If 
k ≥ αd and �(q, α, β) > 0, then G has a q-degenerate k-coloring with the size of each color classes being at most �n/k�, and this 
coloring can be constructed in cubic time.

Before proving Theorem 1.1, we look back into the function �(q, α, β). Let

�(q) = min{α ∈N | ∃β ∈N, s.t. �(q,α,β) > 0},
�(q) = min{β ∈N | ∃α ∈N, s.t. �(q,α,β) > 0}.

Using MATLAB, one can check that

• �(1) = 8, �(2) = �(3) = 7, and �(q) = 6 for every q ≥ 4;
• �(1) = �(2) = 6 and �(q) = 5 for every q ≥ 3.

Hence we assume α ≥ 6 (thus μ ≥ 2α ≥ 12) and β ≥ 5 throughout this paper. Table 1 displays some values of q, α, and β
satisfying �(q, α, β) > 0.

Applying Theorem 1.1, we have the following.

Theorem 1.2. Let α, β, k, t, q be positive integers and let G be a kt-vertex d-degenerate graph with maximum degree at most kt/β . If 
k ≥ αd and �(q, α, β) > 0, then G has an equitable q-degenerate k-coloring and this coloring can be constructed in cubic time.
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According to Theorem 1.2 and the above table, the following result on equitable tree coloring of graphs is immediate.

Theorem 1.3. If G is an n-vertex d-degenerate graph with maximum degree at most n/56 (resp. n/6), then there is a cubic time 
algorithm to construct an equitable tree k-coloring of G for every k ≥ 8d (resp. k ≥ 52d) that divides n.

Notations: The set of vertices and the maximum degree of G is denoted by V (G) and �(G), respectively. If G is a graph 
and U is a subset of V (G), then deg(v, G) and deg(v, U ) respectively denote the degree of v in G and in the subgraph of 
G induced by U , i.e., the number of neighbors of v contained in V (G) and U . For two disjoint subsets U1 and U2 of V (G), 
e(U , V ) denotes the number of edges that have one end-vertex in U and the other in V . Other undefined notations follow 
those from [1].
Organizations: We divide the proof of Theorem 1.1 into two separate parts according to the value of �n/k�. In Section 2, we 
prove it for the case that �n/k� ≤ β(q + 1 − 1/α) by Proposition 2.2. In Sections 3 and 4, we assume �n/k� ≥ β(q + 1 − 1/α)

and prove the theorem for this case by Proposition 4.3.

2. The case when the size of each color class is small

Throughout this section, α, β, �, k, t, q are positive integers and G is an n-vertex d-degenerate graph with �(G) ≤ � ≤
n/β , (k − 1)t < n ≤ kt , and k ≥ αd. Note that (k − 1)t < n ≤ kt is equivalent to t = �n/k�.

A degenerate ordering v1, v2, · · · , vn of V (G) is a vertex sequence so that vi has at most d neighbors among 
{v1, · · · , vi−1} for each 2 ≤ i ≤ n. One can see from Algorithm 1 that such a degenerate ordering can be found in O (n2)

time. In each algorithm of this paper, the sentence “break” means break out of the current for-iteration.

Algorithm 1: ORDERING(G).

Input: A d-degenerate graph G with V (G) = {v1, v2, . . . , vn};

1 G1 ← G;
2 for i = 1 to n do
3 for j = 1 to n − i + 1 do
4 if deg(v j , Gi) ≤ d then
5 Gi+1 ← Gi \ {v j};
6 w ← vn−i+1;
7 vn−i+1 ← v j ;
8 v j ← w;
9 break;

Output: A degenerate ordering v1, v2, · · · , vn of V (G).

Proposition 2.1. The running time of Algorithm 1 is O (n2). �
The main result of this section is as follows.

Proposition 2.2. If t ≤ β(q + 1 − 1/α), then Algorithm 2 is a cubic-time algorithm to color the vertices of G in a degenerate ordering 
so that in each step, each color class induces a q-degenerate graph and contains at most t vertices.

Proof. Algorithm 2 starts with sorting the vertices of G into a degenerate ordering v1, v2, . . . , vn and then colors them 
in this ordering. When the algorithm enters the i-th iteration of the second “for” of line 4, it is going to color vi in the 
situation that (V 1, V 2, . . . , Vk) is already a partition of the vertex set {v1, . . . , vi−1} such that each V i has size at most t
and induces a q-degenerate subgraph.

Indeed, lines 5 to 13 reorder the partition (V 1, V 2, . . . , Vk) into (V 1
1 , . . . V 1

a−1, V
2
1 , . . . , V 2

b−1) so that vi has most q neigh-
bors in each of the first a − 1 subsets and has least q + 1 neighbors in each of the last b − 1 subsets.

If there is a subset V 1
j for some 1 ≤ j ≤ a − 1 satisfying |V 1

j | ≤ t − 1, then V 1
j ∪ {vi} is a subset of size at most t and 

induces a q-degenerate subgraph. In this case, the for-iteration of line 20 changes nothing because the pointer η becomes 1
before it starts and thus the condition of line 21 is not satisfied. Hence line 28 finally outputs a partition of the vertex set 
{v1, . . . , vi−1, vi} into k subsets such that each subset has size at most t and induces a q-degenerate subgraph.

On the other hand, if |V 1
j | = t for every 1 ≤ j ≤ a − 1, then the “for” interaction of line 15 changes nothing and the 

algorithm enters line 20 with η = 0. In this case, the condition of line 21 is satisfied by some 1 ≤ j ≤ b − 1, because 
otherwise |V 2

j | ≥ t for every 1 ≤ j ≤ b − 1 and thus | ⋃a−1
j=1 V 1

j ∪ ⋃b−1
j=1 V 2

j | ≥ (a + b − 2)t = kt ≥ n, a contradiction.

If the condition of line 23 is satisfied by some 1 ≤ 	 ≤ a − 1, then vi will be moved into V 1
	 by line 24, and the vertex 

w ∈ V 1
	 with deg(w, V 2

j ) ≤ q will be moved into V 2
j by line 25. Now the pointer η resumes 1, so the algorithm changes 

nothing before coming to the last line. Since both V 1 ∪ {vi} \ {w} and V 2 ∪ {w} induce q-degenerate graphs and have sizes 
	 j

20
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Algorithm 2: MAIN-PROCEDURE-1(G, α, β, �, k, t, q).

Input: Positive integers α, β, �, k, t, q, and an n-vertex d-degenerate graph G such that �(G) ≤ � ≤ n/β , (k − 1)t < n ≤ kt , k ≥ αd, and 
t ≤ β(q + 1 − 1/α);

1 ORD(G);
2 for i = 1 to k do
3 V i ← ∅;

4 for i = 1 to n do
5 a ← 1;
6 b ← 1;
7 for j = 1 to k do
8 if deg(vi , V j) ≤ q then
9 V 1

a ← V j ;
10 a ← a + 1;

11 if deg(vi , V j) ≥ q + 1 then
12 V 2

b ← V j ;
13 b ← b + 1;

14 η ← 0;
15 for j = 1 to a − 1 do
16 if |V 1

j | ≤ t − 1 then
17 V 1

j ← V 1
j ∪ {vi};

18 η ← 1;
19 break;

20 for j = 1 to b − 1 do
21 if |V 2

j | ≤ t − 1 and η = 0 then
22 for 	 = 1 to a − 1 do
23 if there is a vertex w ∈ V 1

	 such that deg(w, V 2
j ) ≤ q then

24 V 1
	 ← V 1

	 ∪ {vi} \ {w};
25 V 2

j ← V 2
j ∪ {w} ;

26 η ← 1;
27 break;

28 (V 1, V 2, . . . , Vk) ← (V 1
1 , . . . V 1

a−1, V 2
1 , . . . , V 2

b−1);

Output: An equitable q-degenerate partition (V 1, V 2, . . . , Vk) of V (G).

at most t , line 28 finally partitions the vertex set {v1, . . . , vi−1, vi} into k subsets so that each subset has size at most t and 
induces a q-degenerate subgraph.

Hence the remaining argument is dedicated to showing that there is a vertex w ∈ V 1
	 for some 1 ≤ 	 ≤ a − 1 such that 

deg(w, V 2
j ) ≤ q. Suppose, for a contradiction, that deg(w, V 2

j ) ≥ q + 1 for every w ∈ V 1
	 and every 1 ≤ 	 ≤ a − 1. It follows

�(t − 1) ≥ �|V 2
j | ≥ e(

a−1⋃
	=1

V 1
	 , V 2

j ) ≥ (a − 1)t(q + 1). (2.1)

Since

d ≥ deg(vi,

b−1⋃
j=1

V 2
j ) ≥ (b − 1)(q + 1) = k(q + 1) − (a − 1)(q + 1),

we have

(a − 1)t(q + 1) ≥ kt(q + 1) − dt ≥ kt(q + 1) − kt/α ≥ n(q + 1 − 1/α) ≥ β�(q + 1 − 1/α). (2.2)

Combining (2.1) with (2.2), we deduce that t − 1 ≥ β(q + 1 − 1/α), a contradiction.
For the complexity, it costs O (n), O (a − 1), and O ((a − 1)(b − 1)t2) time to complete the for-iterations of lines 7, 15, and 

20, respectively. This implies that the main for-iteration of line 4 runs in n(O (n) + O (a − 1) + O ((a − 1)(b − 1)t2) + O (1)) =
O (n3) time. Note that a and b are bounded by the constant k and t = �n/k�. Since line 1 can be done in O (n2) time by 
Proposition 2.1 and the next two lines runs in O (k) time, the complexity of Algorithm 2 is at most O (n3). �
3. Partition the vertex set into disjoint subsets

Let α, β, �, k, t, q be positive integers. In this section we assume that G is an n-vertex d-degenerate graph with �(G) ≤
� ≤ n/β , (k − 1)t < n ≤ kt , k ≥ αd, and
21
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t ≥ β(q + 1 − 1/α). (3.1)

Let

t = 3mω1 + 3m−1ω2 + · · · + ωm+1 (3.2)

and

	0 = 0, 	i = 3i−1ω1 + 3i−2ω2 + · · · + ωi, i = 1,2, · · · ,m + 1 (3.3)

where m is an integer and ω1, ω2, · · · , ωm+1 are integers chosen from {0, 1, 2} such that ω1 �= 0. Note that m and ωi ’s come 
from the 3-ary representations of t , and can be computed in O (t) ≤ O (n) time. It is easy to see that

	m+1 = t, 	i = 3	i−1 + ωi, i = 1,2, · · · ,m + 1. (3.4)

Algorithm 3: PARTITION(G, α, β, �, k, t, q).

Input: Positive integers α, β, �, k, t, q, and an n-vertex d-degenerate graph G such that �(G) ≤ � ≤ nβ , (k − 1)t < n ≤ kt , k ≥ αd, and 
t ≥ β(q + 1 − 1/α);

1 Compute m and 	i with 1 ≤ i ≤ m according to (3.2) and (3.3).
2 A0, H0 ← ∅;
3 for i = 1 to m do
4 for j = 1 to (	i − 	i−1)k do

5 Find a vertex v that has maximum degree in G[
V (G) −Hi−1 − ⋃ j−1

a=1{vi
a}

]
;

6 vi
j ← v;

7 Ai ← Ai ∪ {vi
j};

8 Bi ← ∅;
9 Di ← Hi−1 ∪Ai ;

10 while there is a vertex v ∈ V (G) −Di so that deg(v, Di) ≥ (μ − 4)d do
11 Bi ← Bi ∪ {v};
12 Di ← Di ∪ {v};

13 Ci ← Ai ∪Bi ;
14 Hi ← Hi−1 ∪ Ci ;

15 Cm+1 ← V (G) − ⋃m
a=1 Ca ;

Output: Vertex sets H1, · · · , Hm and a partition of V (G) into m + 1 disjoint subsets C1, · · · , Cm, Cm+1.

Proposition 3.1. Algorithm 3 outputs vertex sets H1, · · · , Hm and a partition of V (G) into m + 1 disjoint subsets C1, · · · , Cm, Cm+1

in O (n3) time such that∣∣∣∣
i⋃

j=1

C j

∣∣∣∣ <
μ − 4

μ − 5
	ik (3.5)

for each 1 ≤ i ≤ m.

Proof. One can easily check that Algorithm 3 works. Since lines 5–7 run in O (n2) time and they would be carried out at 
most 

∑m
i=1(	i − 	i−1)k = 	mk < n times throughout the algorithm, and the while-iteration of line 10 takes O (n2) time, the 

for-iteration of line 3 runs in at most n · O (n2) + m · O (n2) ≤ O (n3) time. Note that m < log3 t < t ≤ n by (3.2), and the first 
two lines and the last line of Algorithm 3 only run in O (n) time. Hence the complexity of Algorithm 3 is at most O (n3).

We now prove (3.5). Let Hi = G
[⋃i

j=1 C j
]

with 1 ≤ i ≤ m. According to the constructions of Ai ’s, Bi ’s, and Ci ’s, we have

|Hi| =
∣∣∣∣

i⋃
j=1

A j

∣∣∣∣ +
∣∣∣∣

i⋃
j=1

B j

∣∣∣∣ =
i∑

j=1

(	 j − 	 j−1)k +
∣∣∣∣

i⋃
j=1

B j

∣∣∣∣ = 	ik +
∣∣∣∣

i⋃
j=1

B j

∣∣∣∣ (3.6)

and

|E(Hi)| ≥ (μ − 4)d

∣∣∣∣
i⋃

j=1

B j

∣∣∣∣. (3.7)

Since Hi is d-degenerate, |E(Hi)| < d|Hi | and thus∣∣∣∣
i⋃

j=1

B j

∣∣∣∣ <
1

μ − 5
	ik
22
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by (3.6) and (3.7). It follows

∣∣∣∣
i⋃

j=1

C j

∣∣∣∣ = |Hi| < μ − 4

μ − 5
	ik.

by (3.6). �
In the following arguments, we use the notations Ai , Bi , Ci , Hi , and vi

j based on the output of Algorithm 3. The next 
two propositions will be useful for the proofs of the next section.

Proposition 3.2. For 1 ≤ i ≤ m, if �i is the maximum degree of the graph G
[
V (G) \ ∪i

j=1C j
]
, then

	1� + (	2 − 	1)�1 + (	3 − 	2)�2 + · · · + (	m+1 − 	m)�m ≤ 2� + 10

3
dt.

Proof. By the definitions of Ai and �i , we conclude

|E(G)| ≥
m∑

i=1

(	i−	i−1)k∑
j=1

deg(vi
j, V (G) − (Hi−1 ∪ {vi

1, · · · , vi
j−1})

≥ 	1k�1 + (	2 − 	1)k�2 + (	3 − 	2)k�3 + · · · + (	m − 	m−1)k�m.

Since G is d-degenerate, |E(G)| < dn ≤ dkt . Hence

	1�1 + (	2 − 	1)�2 + (	3 − 	2)�3 + · · · + (	m − 	m−1)�m < dt. (3.8)

If i ≥ 3, then by (3.4) (note that ωi+1 ≤ 2, ωi ≥ 0 and 	i−1 ≥ 3)

	i+1 − 	i

	i − 	i−1
= 3	i + ωi+1 − 	i

3	i−1 + ωi − 	i−1
≤ 2(3	i−1 + ωi) + 2

2	i−1 + ωi
= 3 + 2 − ωi

2	i−1 + ωi
≤ 3 + 1

	i−1
≤ 10

3
.

Hence by (3.8), we have

10

3
dt >

10

3
	1�1 + 10

3
(	2 − 	1)�2 + 10

3

(
(	3 − 	2)�3 + · · · + (	m − 	m−1)�m

)

≥ 10

3
	1�1 + 10

3
(	2 − 	1)�2 + (	4 − 	3)�3 + · · · + (	m+1 − 	m)�m

= 	1� + (	2 − 	1)�1 + (	3 − 	2)�2 + (	4 − 	3)�3 + · · · + (	m+1 − 	m)�m

−
(

	1� + (	2 − 13

3
	1)�1 + (	3 − 13

3
	2 + 10

3
	1)�2

)

Now, it is sufficient to prove that

ξ := 	1� + (	2 − 13

3
	1)�1 + (	3 − 13

3
	2 + 10

3
	1)�2 ≤ 2�. (3.9)

Since 	1 = ω1, 	2 = 3	1 + ω2 = 3ω1 + ω2 and 	3 = 3	2 + ω3 = 9ω1 + 3ω2 + ω3 by (3.4),

3ξ = 3ω1� + (3ω2 − 4ω1)�1 + (3ω3 − 4ω2 − 2ω1)�2.

Recall that � ≥ �1 ≥ �2 and ωi ∈ {0, 1, 2}.
Suppose first that 3ω2 − 4ω1 ≥ 0. If 3ω3 − 4ω2 − 2ω1 ≥ 0, then 3ξ ≤ 3ω1� + (3ω2 − 4ω1)� + (3ω3 − 4ω2 − 2ω1)� =

(3ω3 − 3ω1 − ω2)� ≤ 6�. If 3ω3 − 4ω2 − 2ω1 < 0, then 3ξ ≤ 3ω1� + (3ω2 − 4ω1)� = (3ω2 − ω1)� ≤ 6�.
Suppose, on the other hand, that 3ω2 − 4ω1 < 0. If 3ω3 − 4ω2 − 2ω1 ≤ 0, then 3ξ ≤ 3ω1� ≤ 6�. If 3ω3 − 4ω2 − 2ω1 > 0, 

then 3ξ ≤ 3ω1� + (3ω2 − 4ω1)�1 + (3ω3 − 4ω2 − 2ω1)�1 = 3ω1� + (3ω3 −ω2 − 6ω1)�1. If 3ω3 −ω2 − 6ω1 ≤ 0, we then 
have 3ξ ≤ 3ω1� ≤ 6�. If 3ω3 − ω2 − 6ω1 ≥ 0, then 3ξ ≤ 3ω1� + (3ω3 − ω2 − 6ω1)� = (3ω3 − 3ω1 − ω2)� ≤ 6�.

Therefore, in each case we conclude that 3ξ ≤ 6�, and (3.9) holds. �
Let

Lθ =
{ ⌈

μ−3
μ−5 	θ

⌉
, 1 ≤ θ ≤ m;

t, θ = m + 1.
23
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Proposition 3.3. For 2 ≤ θ ≤ m + 1, if α ≥ 6, then

Lθ−1

Lθ

≤ 1

2
.

Proof. Recall (3.4) that 	θ = 3	θ−1 + ωθ ≥ 3	θ−1 and 	m+1 = t .
If 2 ≤ θ ≤ m, then we consider two subcases. If 	θ−1 ≥ 2, then 	θ ≥ 6 and thus

Lθ−1

Lθ

=
⌈

μ−3
μ−5	θ−1

⌉
⌈

μ−3
μ−5 	θ

⌉ ≤
μ−3
μ−5	θ−1 + μ−6

μ−5
μ−3
μ−5 	θ

≤ 1

3
+ μ − 6

6(μ − 3)

= μ − 4

2μ − 6
<

1

2
.

If 	θ−1 = 1, then 	θ ≥ 3 and

Lθ−1

Lθ

=
⌈

μ−3
μ−5	θ−1

⌉
⌈

μ−3
μ−5 	θ

⌉ ≤
⌈

μ−3
μ−5

⌉
⌈

3 · μ−3
μ−5

⌉ ≤ 2

4
= 1

2
.

If θ = m + 1, then 	θ = t , 	m/t ≤ 1/3 and

Lθ−1

Lθ

=
⌈

μ−3
μ−5	θ−1

⌉
t

≤
μ−3
μ−5	m + 1

t
≤ μ − 3

3(μ − 5)
+ α

β(μ − 1)

<
μ − 3

3(μ − 5)
+

α
(

2α(μ − 4)(μ − 6) − 10(μ − 3)2
)

3(μ − 4)(μ − 6)α2 + 9α(μ − 4)(μ − 3)(μ − 1)

<
μ − 3

3(μ − 5)
+

α
(

2α(μ − 4)(μ − 6) − 10(μ − 4)(μ − 6)
)

3(μ − 4)(μ − 6)α2 + 9α(μ − 4)(μ − 6)(μ − 1)

= 1

3
+ 2

3(μ − 5)
+ 2α − 10

3α + 9(μ − 1)
<

1

3
+ 2

3(2α − 5)
+ 2α − 10

3α + 9(2α − 1)

= 1

3
+ 4

3
· α2 − 4α + 11

14α2 − 41α + 15
<

1

3
+ 4

3
· 1

8
= 1

2
.

Note that t ≥ β(μ − 1)/α by (3.1) and

β(μ − 1) >
3(μ − 4)(μ − 6)α2 + 9α(μ − 4)(μ − 3)(μ − 1)

2α(μ − 4)(μ − 6) − 10(μ − 3)2
,

derived from �(q, α, β) > 0. �
4. The case when the size of each color class is large

In this section, we continue to prove Theorem 1.1 algorithmically for the case t ≥ β(q + 1 − 1/α). We follow all assump-
tions and notations of Section 3.

Proposition 4.1. Algorithm 4 outputs a q-degenerate coloring of G[C1] with k color classes V 1, V 2, . . . , Vk in O (n3) time such that

|V i | ≤
⌈μ − 3

μ − 5
	1

⌉
(4.1)

for each 1 ≤ i ≤ k.

Proof. To show the correctness of Algorithm 4, it is sufficient to show that for each 1 ≤ i ≤ c1, there is an integer 1 ≤ j ≤ k
such that deg(v1

i , V j) ≤ q and |V j | < �μ−3
μ−5 	1�. This is equivalent to say that in the i-th stage of the for-iteration of line 4, 

lines 7 and 8 are executed exactly once, and thus v1
i would be added to some color class V j such that V j ∪ {v1

i } induces a 
q-degenerate graph and has size at most �μ−3

	1�, as desired.
μ−5
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Algorithm 4: COLORING-C1(G, α, β, �, k, t, q).

Input: Positive integers α, β, �, k, t, q, and an n-vertex d-degenerate graph G such that �(G) ≤ � ≤ n/β , (k − 1)t < n ≤ kt , k ≥ αd, and 
t ≥ β(q + 1 − 1/α);

1 PARTITION(G, α, β, �, k, t, q);
2 ORDERING(G[C1]);
/* Let v1

1, v1
2, . . . , v1

c1
be the ordering of C1 outputted by line 2. */

3 (V 1, V 2, . . . , Vk) ← (∅, ∅, . . . , ∅);
4 for i = 1 to c1 do
5 for j = 1 to k do
6 if deg(v1

i , V j) ≤ q and |V j | < � μ−3
μ−5 	1� then

7 V j ← V j ∪ {v1
i };

8 break ;

Output: A q-degenerate coloring (V 1, V 2, . . . , Vk) of G[C1] such that |V i | ≤ � μ−3
μ−5 	1� for each i ∈ [k].

Suppose for a contradiction that for each vertex v1
i with 1 ≤ i ≤ c1 and each integer 1 ≤ j ≤ k, either deg(v1

i , V j) ≥ q + 1

or |V j| ≥ �μ−3
μ−5 	1�. Since v1

i has at most d neighbors among 
⋃i−1

k=1{v1
i } by line 2 of Algorithm 4,∣∣∣∣

{
V j

∣∣∣∣ deg(v1
i , V j) ≥ q + 1

}∣∣∣∣ ≤ d

q + 1
.

It follows that∣∣∣∣
{

V j

∣∣∣∣ |V j| ≥
⌈μ − 3

μ − 5
	1

⌉}∣∣∣∣ ≥ k − d

q + 1
,

and thus∣∣∣∣
k⋃

j=1

V j

∣∣∣∣ ≥
(

μ − 3

μ − 5
	1

)(
k − d

q + 1

)

>

(
μ − 4

μ − 5
	1

)(
μ

μ − 1

(
k − d

q + 1

))

=
(

μ − 4

μ − 5
	1

)(
μk − αd

μ − 1

)

≥
(

μ − 4

μ − 5
	1

)(
μk − k

μ − 1

)

= μ − 4

μ − 5
	1k. (4.2)

On the other hand, by Proposition 3.1,∣∣∣∣
k⋃

j=1

V j

∣∣∣∣ ≤ |C1| < μ − 4

μ − 5
	1k,

contradicting (4.2).
For the complexity, the running time of the for-iteration of line 4 is at most

c1

∣∣∣∣
k⋃

j=1

V j

∣∣∣∣ ≤ c1
μ − 4

μ − 5
	1k ≤ n

μ − 4

μ − 5
kt <

μ − 4

μ − 5
n(n + t) ≤ 2(μ − 4)

μ − 5
n2 = O (n2)

Furthermore, line 1 runs in O (n3) time by Proposition 3.1, line 2 can be done in O (n2) time by Proposition 2.1, and line 3
uses constant time. Hence the complexity of Algorithm 4 is O (n3). �

The idea of proving Theorem 1.1 for the case t ≥ β(q + 1 − 1/α) is to color C1, C2, . . . , Cm and Cm+1 in this ordering 
based on certain principles. Specifically, let Q i be the subgraph of G induced by 

⋃i
j=1 C j . Algorithm 4 already constructs 

a q-degenerate k-coloring of Q 1 so that each color class has size at most L1. The next step is extending this coloring to 
a q-degenerate k-coloring of Q 2 so that each color class has size at most L2, and then we repeat this idea recursively. 
Rephrased, once we have q-degenerate k-colored Q i−1 for some 2 ≤ i ≤ m + 1 so that each color class has size at most Li−1, 
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our next goal is to k-color the vertices of Ci in a degenerate ordering so that each color class of Q i induces a q-degenerate 
subgraph and has size at most Li , and no vertex in Q i−1 is recolored. We win if Q m+1 is colored based on this principle.

A partial q-degenerate coloring (V 1, V 2, . . . , Vk) of G is a q-degenerate coloring of a subgraph G ′ of G such that 
⋃k

i=1 V i =
V (G ′). Algorithm 5 constructs a digraph D on the vertex set {V 1, V 2, . . . , Vk}, where V i ’s are color classes of a partial 
q-degenerate coloring of G . In particular, we conclude the following.

Proposition 4.2. Algorithm 5 constructs in O (n2) time the adjacency matrix of a digraph D on the class classes V 1, V 2, . . . , Vk of a 
partial q-degenerate k-coloring of G, and meanwhile outputs a set of vertices xij such that V j ∪ {xij} induces a q-degenerate subgraph 
of G. �

Let D be the digraph constructed by Algorithm 5. For two disjoint vertex sets S, T ⊆ V (D), an (S, T )-path of D is a 
directed path from some vertex X ∈ S to some vertex Y ∈ T . If S owns one single vertex, i.e., S = {X}, then we write 
(X, T )-path instead of ({X}, T )-path. Similarly, if both S and T are single, i.e., S = {X} and T = {Y }, then we use (X, Y )-
path instead of ({X}, {Y })-path. If u is a vertex of G outside of 

⋃k
i=1 V i , then a (u, S)-path is a (U , S)-path of D such that 

U ∈ V (D) and deg(u, U ) ≤ q.

Algorithm 5: CONSTRUCT-D(V 1, V 2, . . . , Vk, W ).

Input: A partial q-degenerate coloring (V 1, V 2, . . . , Vk) of G and a subset W ⊆ ⋃k
i=1 V i ;

1 for i = 1 to k do
2 M[i, i] ← 0;
3 for j = 1 to k and j �= i do
4 M[i, j] ← 0;
5 while there is a vertex z ∈ V i \ W such that deg(z, V j) ≤ q do
6 M[i, j] ← 1;
7 xij ← z;
8 break;

Output: A digraph D with adjacent matrix M, vertex set {V 1, V 2, . . . , Vk}, and V i V j being a directed edge if and only if M[i, j] = 1, and a set of 
vertices xij such that xij ∈ V i \ W and deg(xij , V j) ≤ q.

Algorithm 6: SWITCHING-WITNESS(V 1, V 2, . . . , Vk, W , u, θ).

Input: A q-degenerate coloring (V 1, V 2, . . . , Vk) of a subgraph G ′ of G , a subset W ⊆ V (G ′), a vertex u ∈ V (G \ G ′), and an integer θ such that 
|V i | ≤ Lθ for each i ∈ [k];

1 CONSTRUCT-D(V 1, V 2, . . . , Vk, W );
2 Y0 ← ∅;
3 for i = 1 to k do
4 if |V i | < Lθ then
5 Y0 ← Y0 ∪ {V i};
6 Find a (u, Y0)-path P in D using breadth-first search;
/* Assume P = V s1 V s2 . . . V sr . */

7 V s1 ← V s1 ∪ {u} \ {xs1 s2 };
8 for i = 2 to r − 1 do
9 V si ← V si ∪ {xsi−1 si } \ {xsi si+1 };

10 V sr ← V sr ∪ {xsr−1 sr };

Output: A q-degenerate coloring (V 1, V 2, . . . , Vk) of G ′ + u such that |V i | ≤ Lθ for each i ∈ [k].

The following is the main result of this section.

Proposition 4.3. Algorithm 7 outputs in O (n3) time a q-degenerate partition (V 1, V 2, . . . , Vk) of G such that |V i| ≤ t for each i ∈ [k].

Proof. Its first line partitions V (G) into m + 1 disjoint subsets C1, · · · , Cm, Cm+1, where Ci = Ai ∪ Bi for each 1 ≤ i ≤ m
and Ai, Bi are defined by Algorithm 3. Our goal is to show that for each 2 ≤ i ≤ m + 1, if the vertices of 

⋃i−1
	=1 C	 have 

been q-degenerate k-colored so that the size of each color class is at most Li−1, then lines 4 to 7 of Algorithm 7 extend 
this q-degenerate k-coloring to a q-degenerate k-coloring of G[⋃i

	=1 C	] so that the size of each color class is at most Li

by coloring the vertices vi
1, v

i
2, . . . , v

i
ci

of Ci in a degenerate ordering. If so, then G[⋃m+1
	=1 C	], which is G itself, admits 

a q-degenerate k-coloring so that the size of each color class is at most Lm+1 = t , as desired. Note that the second line 
of Algorithm 7 guarantees that G[C1] has a q-degenerate k-coloring so that the size of each color class is at most L1 by 
Algorithm 4, and thus the condition of the base case i = 2 of the above recursion satisfies.
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Algorithm 7: MAIN-PROCEDURE-2(G, α, β, �, k, t, q).

Input: Positive integers α, β, �, k, t, q, and a d-degenerate n-vertex graph G such that �(G) ≤ � ≤ n/β , (k − 1)t < n ≤ kt , k ≥ αd, and 
t ≥ β(q + 1 − 1/α);

1 PARTITION(G, α, β, �, k, t, q);
2 COLORING-C1(G, α, β, �, k, t, q);
3 for i = 2 to m + 1 do
4 ORDERING(G[Ci ]);

/* The output ordering of Ci is assumed to be vi
1, vi

2, . . . , vi
ci
. */

5 W ← ⋃i−1
j=1 C j ;

6 for j = 1 to ci do
7 SWITCHING-WITNESS(V 1, V 2, . . . , Vk, W , vi

j , i);

Output: A q-degenerate partition (V 1, V 2, . . . , Vk) of G such that |V i | ≤ t for each i ∈ [k].

It is sufficient to prove the correctness of line 7 of Algorithm 7 and thus we look back into Algorithm 6, inputting vi
j

and i into u and θ there, respectively. For convenience, in the following arguments, we still use u to represent the vertex vi
j

being colored, where 2 ≤ i ≤ m and 1 ≤ j ≤ ci are fixed, and use G ′ to represent the colored subgraph of G before coloring 
u. At this stage, the coloring (V 1, V 2, . . . , Vk) inputted into Algorithm 6 is actually a q-degenerate k-coloring of G ′ . We use 
c to denote this coloring below.

The first line of Algorithm 6 constructs a digraph on the color classes of c in O (n2) time by Proposition 4.2. Lines 2 to 5
take O (k) = O (1) time to define Y0 to be a set of color classes of c with sizes less than Li . Since | ⋃i

	=1 C	| < μ−4
μ−5 	ik < Lik

for each 1 ≤ i ≤ m by Proposition 3.1, and | ⋃m+1
	=1 C	| = n ≤ kt = Lm+1k, there is always a color class containing less than Li

vertices when the vertex u is being colored, and thus Y0 �= ∅. The fundamental part of Algorithm 6 is its line 6. We first 
assume in advance that this line works (i.e., the (u, Y0)-path in D exists) and prove it later. We now analysis its complexity. 
Indeed, searching for the (u, Y0)-path can be divided into two stages. The first stage is finding a set S of vertices X ∈ V (D)

such that deg(u, X) ≤ q, which costs at most O (n) time. The second stage is searching for an (S, Y0)-path using breadth-
first search. Since D owns k vertices and k is actually a constant independent of n, this stage costs O (1) time. Hence line 6
of Algorithm 6 can be done in O (n) time. Additionally, One can see that another lines of Algorithm 6 run in O (1) time.

Therefore, we conclude that if line 6 of Algorithm 6 works, then line 7 of Algorithm 7 works too, and it takes O (n2)

time. In this case, the complexity of Algorithm 7 is O (n3), since line 4 of Algorithm 7 takes O (n2) time by Proposition 2.1, 
the for-iteration of line 6 costs 

∑m+1
i=2 O (cin2) ≤ O (n3) time, and the first two lines of Algorithm 7 take O (n3) time by 

Propositions 3.1 and 4.1.
Now we pay attention to showing that the (u, Y0)-path in D exists, and thus line 6 of Algorithm 6 works, as desired.
By Yi (i ≥ 1), we denote the set of color classes of G ′ such that
(i) Yi ∩ ⋃i−1

j=0 Y j = ∅, and
(ii) for any color class Mi ∈ Yi there exists a color class Mi−1 ∈ Yi−1 so that Mi Mi−1 ∈ E(D).
Let Y = ⋃

Y j and let y = |Y|. It is sufficient to prove that there exists one color class M j ∈ Y j ∈ Y containing at most q
neighbor of u, which implies the existence of an (u, Y0)-path by the definition of Yi . We facilitate a contradictory argument 
as follows.

Suppose, for a contradiction, that every color class of Y contains at least q + 1 neighbors of u. Note that every vertex 
v ∈ V (G ′) \ W not in any color class of Y has at least q + 1 neighbors in every color class of Y, because otherwise the color 
class containing v would be included in Y by line 1 of Algorithm 6 and the definition of Y.

We first claim that y is upper-bounded. Actually, there are less than (μ − 4)d neighbors of u in W (otherwise u would 
had already been selected for Bi−1 and thus u ∈ Ci−1, see Lines 8 to 14 of Algorithm 3), and in Ci there are at most d
neighbors of u that are already colored (recall that the vertices of Ci are being colored in a degenerate ordering). Therefore, 
among the neighbors of u, less than (μ − 3)d are colored under c. This implies that there are less than (μ − 3)d/(q + 1)

color classes that contain at least q + 1 neighbors of u. Hence

y <
μ − 3

q + 1
d,

y

d
<

μ − 3

q + 1
. (4.3)

Let S be the set of vertices w such that there exists a color class of Y containing w , and let T be the set of colored 
vertices in Ci that do not belong to S . By the d-degeneracy of G and by the above analysis, we have

d(|S| + |T |) > e(T ,S) ≥ (q + 1)y|T |,
which implies(

(q + 1)y − d
)|T | < d|S|. (4.4)

By the definition of Y0, every color class of Y0 contains less than Li vertices and every other color class of c contains 
exactly Li vertices (note that every color class of c has at most Li vertices by Algorithms 6 and 7). Since no vertex in W
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would be recolored when coloring vertices of Ci (see Algorithms 5 and 6), every color class of c has at most Li−1 vertices 
in W . So

|S| ≤ yLi, |T | ≥ (k − y)Li − (k − y)Li−1 = (k − y)(Li − Li−1) ≥ (αd − y)(Li − Li−1),

which imply by (4.4) that(
(q + 1)y − d

)
(αd − y)(Li − Li−1) < dyLi .

Write γ = y/d. We deduce from Proposition 3.3 and the above inequality that

f (γ ) := (q + 1)γ 2 − (μ − 1)γ + α > 0.

Since

f
(μ − 3

q + 1

)
= 6

q + 1
− α < 0, f

( α

μ − 3

)
= μ

( 6
q+1 − α

)
(μ − 3)2

< 0,

we conclude by (4.3) that

y

d
= γ <

α

μ − 3
. (4.5)

We count the number ζc of vertices that have already been colored under c. Actually, among the k color classes, there 
are only |Y0| ≤ y color classes containing less than Li vertices. Therefore, ζc ≥ (k − y)Li . Since k ≥ αd and y < αd/(μ − 3)

by (4.5),

ζc ≥ μ − 4

μ − 3
kLi = μ − 4

μ − 3
k
⌈μ − 3

μ − 5
	i

⌉
≥ μ − 4

μ − 5
	ik.

On the other hand, it is trivial that

ζc ≤
∣∣∣∣

i⋃
j=1

C j

∣∣∣∣ <
μ − 4

μ − 5
	ik

by (3.5). They contradict each other by Proposition 3.1 when 2 ≤ i ≤ m.
Hence there remains only one case: i = m + 1.
Recall that we are now coloring a vertex u ∈ Cm+1 and c is the partial coloring of G already constructed with the 

property that every color class of c contains at most Lm+1 = t vertices. Since |V (G) − {u}| < n ≤ kt , there is at least one 
color class in c that contains less than t vertices. This implies that Y0 �= ∅.

Let M be a color class of Y0. For 1 ≤ j ≤ m, let Z j = M ∩ C j and z j = |Z j|. Since no vertex in 
⋃ j

	=1 C	 would be 
recolored while coloring vertices of C j+1 and every color class of the subgraph induced by 

⋃ j
	=1 C	 contains at most L j

vertices,

j∑
s=1

zs ≤ L j, 1 ≤ j ≤ m. (4.6)

.
Let U be the set of colored vertices in Cm+1 that are adjacent to some vertex in M.
For 1 ≤ j ≤ m, recall that � j is the maximum degree of the graph G

[
V (G) \ ∪ j

	=1C	

]
. It is easy to see that

|U | ≤ z1� + z2�1 + · · · + zm+1�m (4.7)

Since kt/β ≥ n/β ≥ � ≥ �1 ≥ · · · ≥ �m , by (4.6), (4.7) and Proposition 3.2, we have

|U | ≤ L1� + (L2 − L1)�1 + · · · + (Lm+1 − Lm)�m

=
⌈μ − 3

μ − 5
	1

⌉
� +

(⌈μ − 3

μ − 5
	2

⌉
−

⌈μ − 3

μ − 5
	1

⌉)
�1 + · · · +

(
t −

⌈μ − 3

μ − 5
	m

⌉)
�m

=
⌈μ − 3

μ − 5
	1

⌉
(� − �1) +

⌈μ − 3

μ − 5
	2

⌉
(�1 − �2) + · · · +

⌈μ − 3

μ − 5
	m

⌉
(�m−1 − �m) + t�m

≤
(μ − 3

μ − 5
	1 + μ − 6

μ − 5

)
(� − �1) +

(μ − 3

μ − 5
	2 + μ − 6

μ − 5

)
(�1 − �2)

+ · · · +
(μ − 3

	m + μ − 6)
(�m−1 − �m) + t�m
μ − 5 μ − 5
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<
μ − 6

μ − 5
� + μ − 3

μ − 5

(
	1� + (	2 − 	1)�1 + (	3 − 	2)�2 + · · · + (	m+1 − 	m)�m

)

≤ μ − 6

μ − 5
� + μ − 3

μ − 5

(
2� + 10

3
dt

)
= 3μ − 12

μ − 5
� + 10μ − 30

3μ − 15
dt

≤ 1

μ − 5

(3μ − 12

β
k + 10μ − 30

3
d
)

t. (4.8)

On the other hand, recall that any vertex v ∈ Cm+1 in some color class outside of Y has at least q + 1 neighbors in every 
color class (e.g., M) of Y. Therefore, all vertices containing in the (k − y) color classes outside of Y are neighbors of M. 
By the definition of Y0, we also know that each of those (k − y) color classes of c contains exactly Lm+1 vertices. Since 
no vertex in W = ⋃m

	=1 C	 would be recolored while coloring Cm+1, every color class of c has at most Lm vertices in W . 
Therefore,

|U | ≥ (k − y)(Lm+1 − Lm) = (k − y)
(

t −
⌈μ − 3

μ − 5
	m

⌉)

≥ (k − y)
(

1 − μ − 3

μ − 5

	m

t
− μ − 6

μ − 5

1

t

)
t

≥ (k − y)
(

1 − μ − 3

3μ − 15
− μ − 6

μ − 5

α

(μ − 1)β

)
t

≥ μ − 6

μ − 5

(
k − α

μ − 3
d
)(2

3
− α

(μ − 1)β

)
t (4.9)

by (3.1), (3.4), and (4.5).
Combining (4.9) with (4.8), we immediately conclude

(μ − 6)
(

k − α

μ − 3
d
)(2

3
− α

(μ − 1)β

)
≤ 3μ − 12

β
k + 10μ − 30

3
d

which implies

k

d
≤

10μ−30
3 + 2α(μ−6)

3(μ−3)
− α2(μ−6)

(μ−1)(μ−3)β

2μ−12
3 − α(μ−6)

(μ−1)β
− 3μ−12

β

(4.10)

=
(

10(μ − 3)2 + 2α(μ − 6)
)
(μ − 1)β − 3α2(μ − 6)

(μ − 3)
(

2(μ − 6)(μ − 1)β − 3α(μ − 6) − 9(μ − 4)(μ − 1)
) . (4.11)

Note that the denominators in (4.10) and (4.11) are positive if �(q, α, β) > 0.
Since k ≥ αd, we deduce from (4.11) that(

2α(μ − 4)(μ − 6) − 10(μ − 3)2
)
(μ − 1)β ≤ 3(μ − 4)(μ − 6)α2 + 9α(μ − 4)(μ − 3)(μ − 1).

This contradicts the assumption that �(q, α, β) > 0. �
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