
Theoretical Computer Science 905 (2022) 18–30
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Fast algorithm of equitably partitioning degenerate graphs

into graphs with lower degeneracy ✩

Xin Zhang ∗, Huaqiang Zhang, Bei Niu, Bi Li ∗

School of Mathematics and Statistics, Xidian University, Xi’an, 710071, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 August 2021
Received in revised form 21 October 2021
Accepted 17 December 2021
Available online 22 December 2021
Communicated by D.-Z. Du

Keywords:
Network partition
Equitable coloring
Tree coloring
Degenerate graph
Cubic-time algorithm

A q-degenerate k-partition of a graph G is a collection (V 1, V 2, . . . , Vk) of k pairwise disjoint
subsets of V (G) such that V (G) = ⋃k

i=1 V i and each V i induces a q-degenerate subgraph.
Such a partition is called equitable if

∣∣|V i | − |V j |
∣∣ ≤ 1 for every 1 ≤ i < j ≤ k. Equitable

partition of graphs can model the problem of partitioning a large network into smaller sub-
modules based on some cardinal principles, and has many other applications in network
science and information science. In this work, we establish theoretical and algorithmic
results on equitably partitioning degenerate graphs into graphs with lower degeneracy.
Specifically, we show that every n-vertex d-degenerate graph with maximum degree at
most n/β has a q-degenerate k-partition (V 1, V 2, . . . , Vk) for every k ≥ αd so that each V i

has size at most �n/k� whenever q, α, and β satisfy a well-defined inequality, and such a
partition can be computed in cubic time.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Given a network with a huge number of nodes, we are interested in partitioning this network into smaller sub-modules
based on some cardinal principles. For the sake of safety, we may require that each smaller sub-module is sparse enough
so as to identify possible node failures or attacks quickly. For economic reasons, we also require that the sizes of every two
smaller sub-modules are almost the same and thus we may establish a common standard to manage all sub-modules. This
can be modeled by equitable partition or equitable coloring of graphs, which has many applications in network science and
information science.

From now on, we do not distinguish between network and graph and in most cases we use the language of graph theory
and assume every considering graph is finite and simple.

The degeneracy is a powerful parameter to measure how sparse a graph is. The degeneracy of a graph G is defined to be
the minimum integer d such that G is d-degenerate, i.e., every subgraph of G contains a vertex of degree at most d. A linear
time algorithm to compute the degeneracy of a graph is due to Matula and Beck [11].

An equitable k-partition of a graph G is a collection (V 1, V 2, . . . , Vk) of k pairwise disjoint subsets of V (G) such that
V (G) = ⋃k

i=1 V i and
∣∣|V i | − |V j |

∣∣ ≤ 1 for every 1 ≤ i < j ≤ k. An equitable k-partition (V 1, V 2, . . . , Vk) of a graph G is
q-degenerate if each V i induces a q-degenerate subgraph of G . In some occasions we may say equitable q-degenerate k-

✩ This paper is partially supported by National Natural Science Foundation of China (Nos. 11871055, 11701440).

* Corresponding authors.
E-mail addresses: xzhang@xidian.edu.cn (X. Zhang), hqzhangmath@stu.xidian.edu.cn (H. Zhang), beiniu@stu.xidian.edu.cn (B. Niu), libi@xidian.edu.cn

(B. Li).
https://doi.org/10.1016/j.tcs.2021.12.012
0304-3975/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2021.12.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2021.12.012&domain=pdf
mailto:xzhang@xidian.edu.cn
mailto:hqzhangmath@stu.xidian.edu.cn
mailto:beiniu@stu.xidian.edu.cn
mailto:libi@xidian.edu.cn
https://doi.org/10.1016/j.tcs.2021.12.012

X. Zhang, H. Zhang, B. Niu et al. Theoretical Computer Science 905 (2022) 18–30
Table 1
Values of q, α, β satisfying �(q, α, β) > 0.

q α β α β α β q α β α β α β

1

8 56 12 13 17 9

2

7 65 11 12 17 8
9 26 13 12 20 8 8 25 12 11 23 7
10 18 14 11 27 7 9 17 13 10 37 6
11 15 15 10 52 6 10 14 14 9

3

7 36 11 11 20 7

4

6 204 10 12 19 7
8 20 12 10 31 6 7 29 11 10 29 6
9 15 13 9 229 5 8 18 13 9 140 5
10 12 15 8 9 14 15 8

coloring instead of saying equitable q-degenerate k-partition, or in other words we do not distinguish between partition
and coloring. So the subset V i in an equitable k-partition (V 1, V 2, . . . , Vk) is sometimes called color class.

Equitable 0-degenerate coloring and equitable 1-degenerate coloring are also known as equitable proper coloring and
equitable tree coloring in the literature, which were introduced by Meyer [12] in 1973 and by Wu, Zhang, and Li [14] in
2013, respectively. A survey on equitable proper coloring is due to Lih [10] and the list version of equitable q-degenerate
coloring was investigated by many research groups including [2–4,9,15,17].

The class of planar graphs is well-established subclasses of 5-degenerate graphs. Nakprasit [13] showed that every planar
graph with maximum degree � at least 9 admits an equitable proper �-coloring, which improved the lower bound for �
of Zhang and Yap [19] from 13. Indeed, improving the lower bound 9 (best known until now) for � in this problem is
still interesting. For the equitable tree coloring of planar graphs, Esperet, Lemoine and Maffray [5] proved that every planar
graph has an equitable tree k-coloring for every k ≥ 4, answering a conjecture of Wu, Zhang and Li [14]. It is interesting to
determine whether every planar graph has an equitable tree 3-coloring (see [6,16] for some partial results). Recently, Kim,
Oum, and Zhang [6] showed that every planar graph has an equitable 2-degenerate k-coloring for every k ≥ 3, and has an
equitable 3-degenerate k-coloring for every k ≥ 2.

For degenerate graphs in general, Zhang et al. [18] proved that every d-degenerate graph with maximum degree �
has an equitable tree-k-coloring for every k ≥ (� + 1)/2 whenever � ≥ 9.818d. Kostochka and Nakprasit [7] proved that
every d-degenerate graph with maximum degree at most k has an equitable proper k-coloring if d ≥ 2 and k ≥ 14d + 1.
Kostochka, Nakprasit, and Pemmaraju [8] showed that every n-vertex d-degenerate graph G with maximum degree at most
n/15 admits an equitable proper k-coloring for every k ≥ 16d, and also proved that every d-degenerate graph with d ≥ 2
has a (d − 1)-degenerate k-partition for every k ≥ 3.

The aim of this paper is to establish new theoretical and algorithmic results on equitably partitioning degenerate graphs
into graphs with lower degeneracy by proving the following main theorem, where

�(q,α,β) =
(

2α(μ − 4)(μ − 6) − 10(μ − 3)2
)
(μ − 1)β − 3

(
α(μ − 6) − 3(μ − 1)(μ − 3)

)
(μ − 4)α

and

μ = (q + 1)α. (1.1)

Theorem 1.1. Let α, β, k, q be positive integers and let G be an n-vertex d-degenerate graph with maximum degree at most n/β . If
k ≥ αd and �(q, α, β) > 0, then G has a q-degenerate k-coloring with the size of each color classes being at most �n/k�, and this
coloring can be constructed in cubic time.

Before proving Theorem 1.1, we look back into the function �(q, α, β). Let

�(q) = min{α ∈N | ∃β ∈N, s.t. �(q,α,β) > 0},
�(q) = min{β ∈N | ∃α ∈N, s.t. �(q,α,β) > 0}.

Using MATLAB, one can check that

• �(1) = 8, �(2) = �(3) = 7, and �(q) = 6 for every q ≥ 4;
• �(1) = �(2) = 6 and �(q) = 5 for every q ≥ 3.

Hence we assume α ≥ 6 (thus μ ≥ 2α ≥ 12) and β ≥ 5 throughout this paper. Table 1 displays some values of q, α, and β
satisfying �(q, α, β) > 0.

Applying Theorem 1.1, we have the following.

Theorem 1.2. Let α, β, k, t, q be positive integers and let G be a kt-vertex d-degenerate graph with maximum degree at most kt/β . If
k ≥ αd and �(q, α, β) > 0, then G has an equitable q-degenerate k-coloring and this coloring can be constructed in cubic time.
19

X. Zhang, H. Zhang, B. Niu et al. Theoretical Computer Science 905 (2022) 18–30
According to Theorem 1.2 and the above table, the following result on equitable tree coloring of graphs is immediate.

Theorem 1.3. If G is an n-vertex d-degenerate graph with maximum degree at most n/56 (resp. n/6), then there is a cubic time
algorithm to construct an equitable tree k-coloring of G for every k ≥ 8d (resp. k ≥ 52d) that divides n.

Notations: The set of vertices and the maximum degree of G is denoted by V (G) and �(G), respectively. If G is a graph
and U is a subset of V (G), then deg(v, G) and deg(v, U) respectively denote the degree of v in G and in the subgraph of
G induced by U , i.e., the number of neighbors of v contained in V (G) and U . For two disjoint subsets U1 and U2 of V (G),
e(U , V) denotes the number of edges that have one end-vertex in U and the other in V . Other undefined notations follow
those from [1].
Organizations: We divide the proof of Theorem 1.1 into two separate parts according to the value of �n/k�. In Section 2, we
prove it for the case that �n/k� ≤ β(q + 1 − 1/α) by Proposition 2.2. In Sections 3 and 4, we assume �n/k� ≥ β(q + 1 − 1/α)

and prove the theorem for this case by Proposition 4.3.

2. The case when the size of each color class is small

Throughout this section, α, β, �, k, t, q are positive integers and G is an n-vertex d-degenerate graph with �(G) ≤ � ≤
n/β , (k − 1)t < n ≤ kt , and k ≥ αd. Note that (k − 1)t < n ≤ kt is equivalent to t = �n/k�.

A degenerate ordering v1, v2, · · · , vn of V (G) is a vertex sequence so that vi has at most d neighbors among
{v1, · · · , vi−1} for each 2 ≤ i ≤ n. One can see from Algorithm 1 that such a degenerate ordering can be found in O (n2)

time. In each algorithm of this paper, the sentence “break” means break out of the current for-iteration.

Algorithm 1: ORDERING(G).

Input: A d-degenerate graph G with V (G) = {v1, v2, . . . , vn};

1 G1 ← G;
2 for i = 1 to n do
3 for j = 1 to n − i + 1 do
4 if deg(v j , Gi) ≤ d then
5 Gi+1 ← Gi \ {v j};
6 w ← vn−i+1;
7 vn−i+1 ← v j ;
8 v j ← w;
9 break;

Output: A degenerate ordering v1, v2, · · · , vn of V (G).

Proposition 2.1. The running time of Algorithm 1 is O (n2). �
The main result of this section is as follows.

Proposition 2.2. If t ≤ β(q + 1 − 1/α), then Algorithm 2 is a cubic-time algorithm to color the vertices of G in a degenerate ordering
so that in each step, each color class induces a q-degenerate graph and contains at most t vertices.

Proof. Algorithm 2 starts with sorting the vertices of G into a degenerate ordering v1, v2, . . . , vn and then colors them
in this ordering. When the algorithm enters the i-th iteration of the second “for” of line 4, it is going to color vi in the
situation that (V 1, V 2, . . . , Vk) is already a partition of the vertex set {v1, . . . , vi−1} such that each V i has size at most t
and induces a q-degenerate subgraph.

Indeed, lines 5 to 13 reorder the partition (V 1, V 2, . . . , Vk) into (V 1
1 , . . . V 1

a−1, V
2
1 , . . . , V 2

b−1) so that vi has most q neigh-
bors in each of the first a − 1 subsets and has least q + 1 neighbors in each of the last b − 1 subsets.

If there is a subset V 1
j for some 1 ≤ j ≤ a − 1 satisfying |V 1

j | ≤ t − 1, then V 1
j ∪ {vi} is a subset of size at most t and

induces a q-degenerate subgraph. In this case, the for-iteration of line 20 changes nothing because the pointer η becomes 1
before it starts and thus the condition of line 21 is not satisfied. Hence line 28 finally outputs a partition of the vertex set
{v1, . . . , vi−1, vi} into k subsets such that each subset has size at most t and induces a q-degenerate subgraph.

On the other hand, if |V 1
j | = t for every 1 ≤ j ≤ a − 1, then the “for” interaction of line 15 changes nothing and the

algorithm enters line 20 with η = 0. In this case, the condition of line 21 is satisfied by some 1 ≤ j ≤ b − 1, because
otherwise |V 2

j | ≥ t for every 1 ≤ j ≤ b − 1 and thus | ⋃a−1
j=1 V 1

j ∪ ⋃b−1
j=1 V 2

j | ≥ (a + b − 2)t = kt ≥ n, a contradiction.

If the condition of line 23 is satisfied by some 1 ≤ 	 ≤ a − 1, then vi will be moved into V 1
	 by line 24, and the vertex

w ∈ V 1
	 with deg(w, V 2

j) ≤ q will be moved into V 2
j by line 25. Now the pointer η resumes 1, so the algorithm changes

nothing before coming to the last line. Since both V 1 ∪ {vi} \ {w} and V 2 ∪ {w} induce q-degenerate graphs and have sizes
	 j

20

X. Zhang, H. Zhang, B. Niu et al. Theoretical Computer Science 905 (2022) 18–30
Algorithm 2: MAIN-PROCEDURE-1(G, α, β, �, k, t, q).

Input: Positive integers α, β, �, k, t, q, and an n-vertex d-degenerate graph G such that �(G) ≤ � ≤ n/β , (k − 1)t < n ≤ kt , k ≥ αd, and
t ≤ β(q + 1 − 1/α);

1 ORD(G);
2 for i = 1 to k do
3 V i ← ∅;

4 for i = 1 to n do
5 a ← 1;
6 b ← 1;
7 for j = 1 to k do
8 if deg(vi , V j) ≤ q then
9 V 1

a ← V j ;
10 a ← a + 1;

11 if deg(vi , V j) ≥ q + 1 then
12 V 2

b ← V j ;
13 b ← b + 1;

14 η ← 0;
15 for j = 1 to a − 1 do
16 if |V 1

j | ≤ t − 1 then
17 V 1

j ← V 1
j ∪ {vi};

18 η ← 1;
19 break;

20 for j = 1 to b − 1 do
21 if |V 2

j | ≤ t − 1 and η = 0 then
22 for 	 = 1 to a − 1 do
23 if there is a vertex w ∈ V 1

	 such that deg(w, V 2
j) ≤ q then

24 V 1
	 ← V 1

	 ∪ {vi} \ {w};
25 V 2

j ← V 2
j ∪ {w} ;

26 η ← 1;
27 break;

28 (V 1, V 2, . . . , Vk) ← (V 1
1 , . . . V 1

a−1, V 2
1 , . . . , V 2

b−1);

Output: An equitable q-degenerate partition (V 1, V 2, . . . , Vk) of V (G).

at most t , line 28 finally partitions the vertex set {v1, . . . , vi−1, vi} into k subsets so that each subset has size at most t and
induces a q-degenerate subgraph.

Hence the remaining argument is dedicated to showing that there is a vertex w ∈ V 1
	 for some 1 ≤ 	 ≤ a − 1 such that

deg(w, V 2
j) ≤ q. Suppose, for a contradiction, that deg(w, V 2

j) ≥ q + 1 for every w ∈ V 1
	 and every 1 ≤ 	 ≤ a − 1. It follows

�(t − 1) ≥ �|V 2
j | ≥ e(

a−1⋃
	=1

V 1
	 , V 2

j) ≥ (a − 1)t(q + 1). (2.1)

Since

d ≥ deg(vi,

b−1⋃
j=1

V 2
j) ≥ (b − 1)(q + 1) = k(q + 1) − (a − 1)(q + 1),

we have

(a − 1)t(q + 1) ≥ kt(q + 1) − dt ≥ kt(q + 1) − kt/α ≥ n(q + 1 − 1/α) ≥ β�(q + 1 − 1/α). (2.2)

Combining (2.1) with (2.2), we deduce that t − 1 ≥ β(q + 1 − 1/α), a contradiction.
For the complexity, it costs O (n), O (a − 1), and O ((a − 1)(b − 1)t2) time to complete the for-iterations of lines 7, 15, and

20, respectively. This implies that the main for-iteration of line 4 runs in n(O (n) + O (a − 1) + O ((a − 1)(b − 1)t2) + O (1)) =
O (n3) time. Note that a and b are bounded by the constant k and t = �n/k�. Since line 1 can be done in O (n2) time by
Proposition 2.1 and the next two lines runs in O (k) time, the complexity of Algorithm 2 is at most O (n3). �
3. Partition the vertex set into disjoint subsets

Let α, β, �, k, t, q be positive integers. In this section we assume that G is an n-vertex d-degenerate graph with �(G) ≤
� ≤ n/β , (k − 1)t < n ≤ kt , k ≥ αd, and
21

X. Zhang, H. Zhang, B. Niu et al. Theoretical Computer Science 905 (2022) 18–30
t ≥ β(q + 1 − 1/α). (3.1)

Let

t = 3mω1 + 3m−1ω2 + · · · + ωm+1 (3.2)

and

	0 = 0, 	i = 3i−1ω1 + 3i−2ω2 + · · · + ωi, i = 1,2, · · · ,m + 1 (3.3)

where m is an integer and ω1, ω2, · · · , ωm+1 are integers chosen from {0, 1, 2} such that ω1 �= 0. Note that m and ωi ’s come
from the 3-ary representations of t , and can be computed in O (t) ≤ O (n) time. It is easy to see that

	m+1 = t, 	i = 3	i−1 + ωi, i = 1,2, · · · ,m + 1. (3.4)

Algorithm 3: PARTITION(G, α, β, �, k, t, q).

Input: Positive integers α, β, �, k, t, q, and an n-vertex d-degenerate graph G such that �(G) ≤ � ≤ nβ , (k − 1)t < n ≤ kt , k ≥ αd, and
t ≥ β(q + 1 − 1/α);

1 Compute m and 	i with 1 ≤ i ≤ m according to (3.2) and (3.3).
2 A0, H0 ← ∅;
3 for i = 1 to m do
4 for j = 1 to (i − 	i−1)k do

5 Find a vertex v that has maximum degree in G[
V (G) −Hi−1 − ⋃ j−1

a=1{vi
a}

]
;

6 vi
j ← v;

7 Ai ← Ai ∪ {vi
j};

8 Bi ← ∅;
9 Di ← Hi−1 ∪Ai ;

10 while there is a vertex v ∈ V (G) −Di so that deg(v, Di) ≥ (μ − 4)d do
11 Bi ← Bi ∪ {v};
12 Di ← Di ∪ {v};

13 Ci ← Ai ∪Bi ;
14 Hi ← Hi−1 ∪ Ci ;

15 Cm+1 ← V (G) − ⋃m
a=1 Ca ;

Output: Vertex sets H1, · · · , Hm and a partition of V (G) into m + 1 disjoint subsets C1, · · · , Cm, Cm+1.

Proposition 3.1. Algorithm 3 outputs vertex sets H1, · · · , Hm and a partition of V (G) into m + 1 disjoint subsets C1, · · · , Cm, Cm+1

in O (n3) time such that∣∣∣∣
i⋃

j=1

C j

∣∣∣∣ <
μ − 4

μ − 5
	ik (3.5)

for each 1 ≤ i ≤ m.

Proof. One can easily check that Algorithm 3 works. Since lines 5–7 run in O (n2) time and they would be carried out at
most

∑m
i=1(i − 	i−1)k = 	mk < n times throughout the algorithm, and the while-iteration of line 10 takes O (n2) time, the

for-iteration of line 3 runs in at most n · O (n2) + m · O (n2) ≤ O (n3) time. Note that m < log3 t < t ≤ n by (3.2), and the first
two lines and the last line of Algorithm 3 only run in O (n) time. Hence the complexity of Algorithm 3 is at most O (n3).

We now prove (3.5). Let Hi = G
[⋃i

j=1 C j
]

with 1 ≤ i ≤ m. According to the constructions of Ai ’s, Bi ’s, and Ci ’s, we have

|Hi| =
∣∣∣∣

i⋃
j=1

A j

∣∣∣∣ +
∣∣∣∣

i⋃
j=1

B j

∣∣∣∣ =
i∑

j=1

(j − 	 j−1)k +
∣∣∣∣

i⋃
j=1

B j

∣∣∣∣ = 	ik +
∣∣∣∣

i⋃
j=1

B j

∣∣∣∣ (3.6)

and

|E(Hi)| ≥ (μ − 4)d

∣∣∣∣
i⋃

j=1

B j

∣∣∣∣. (3.7)

Since Hi is d-degenerate, |E(Hi)| < d|Hi | and thus∣∣∣∣
i⋃

j=1

B j

∣∣∣∣ <
1

μ − 5
	ik
22

X. Zhang, H. Zhang, B. Niu et al. Theoretical Computer Science 905 (2022) 18–30
by (3.6) and (3.7). It follows

∣∣∣∣
i⋃

j=1

C j

∣∣∣∣ = |Hi| < μ − 4

μ − 5
	ik.

by (3.6). �
In the following arguments, we use the notations Ai , Bi , Ci , Hi , and vi

j based on the output of Algorithm 3. The next
two propositions will be useful for the proofs of the next section.

Proposition 3.2. For 1 ≤ i ≤ m, if �i is the maximum degree of the graph G
[
V (G) \ ∪i

j=1C j
]
, then

	1� + (2 − 	1)�1 + (3 − 	2)�2 + · · · + (m+1 − 	m)�m ≤ 2� + 10

3
dt.

Proof. By the definitions of Ai and �i , we conclude

|E(G)| ≥
m∑

i=1

(i−	i−1)k∑
j=1

deg(vi
j, V (G) − (Hi−1 ∪ {vi

1, · · · , vi
j−1})

≥ 	1k�1 + (2 − 	1)k�2 + (3 − 	2)k�3 + · · · + (m − 	m−1)k�m.

Since G is d-degenerate, |E(G)| < dn ≤ dkt . Hence

	1�1 + (2 − 	1)�2 + (3 − 	2)�3 + · · · + (m − 	m−1)�m < dt. (3.8)

If i ≥ 3, then by (3.4) (note that ωi+1 ≤ 2, ωi ≥ 0 and 	i−1 ≥ 3)

	i+1 − 	i

	i − 	i−1
= 3	i + ωi+1 − 	i

3	i−1 + ωi − 	i−1
≤ 2(3	i−1 + ωi) + 2

2	i−1 + ωi
= 3 + 2 − ωi

2	i−1 + ωi
≤ 3 + 1

	i−1
≤ 10

3
.

Hence by (3.8), we have

10

3
dt >

10

3
	1�1 + 10

3
(2 − 	1)�2 + 10

3

(
(3 − 	2)�3 + · · · + (m − 	m−1)�m

)

≥ 10

3
	1�1 + 10

3
(2 − 	1)�2 + (4 − 	3)�3 + · · · + (m+1 − 	m)�m

= 	1� + (2 − 	1)�1 + (3 − 	2)�2 + (4 − 	3)�3 + · · · + (m+1 − 	m)�m

−
(

	1� + (2 − 13

3
	1)�1 + (3 − 13

3
	2 + 10

3
	1)�2

)

Now, it is sufficient to prove that

ξ := 	1� + (2 − 13

3
	1)�1 + (3 − 13

3
	2 + 10

3
	1)�2 ≤ 2�. (3.9)

Since 	1 = ω1, 	2 = 3	1 + ω2 = 3ω1 + ω2 and 	3 = 3	2 + ω3 = 9ω1 + 3ω2 + ω3 by (3.4),

3ξ = 3ω1� + (3ω2 − 4ω1)�1 + (3ω3 − 4ω2 − 2ω1)�2.

Recall that � ≥ �1 ≥ �2 and ωi ∈ {0, 1, 2}.
Suppose first that 3ω2 − 4ω1 ≥ 0. If 3ω3 − 4ω2 − 2ω1 ≥ 0, then 3ξ ≤ 3ω1� + (3ω2 − 4ω1)� + (3ω3 − 4ω2 − 2ω1)� =

(3ω3 − 3ω1 − ω2)� ≤ 6�. If 3ω3 − 4ω2 − 2ω1 < 0, then 3ξ ≤ 3ω1� + (3ω2 − 4ω1)� = (3ω2 − ω1)� ≤ 6�.
Suppose, on the other hand, that 3ω2 − 4ω1 < 0. If 3ω3 − 4ω2 − 2ω1 ≤ 0, then 3ξ ≤ 3ω1� ≤ 6�. If 3ω3 − 4ω2 − 2ω1 > 0,

then 3ξ ≤ 3ω1� + (3ω2 − 4ω1)�1 + (3ω3 − 4ω2 − 2ω1)�1 = 3ω1� + (3ω3 −ω2 − 6ω1)�1. If 3ω3 −ω2 − 6ω1 ≤ 0, we then
have 3ξ ≤ 3ω1� ≤ 6�. If 3ω3 − ω2 − 6ω1 ≥ 0, then 3ξ ≤ 3ω1� + (3ω3 − ω2 − 6ω1)� = (3ω3 − 3ω1 − ω2)� ≤ 6�.

Therefore, in each case we conclude that 3ξ ≤ 6�, and (3.9) holds. �
Let

Lθ =
{ ⌈

μ−3
μ−5 	θ

⌉
, 1 ≤ θ ≤ m;

t, θ = m + 1.
23

X. Zhang, H. Zhang, B. Niu et al. Theoretical Computer Science 905 (2022) 18–30
Proposition 3.3. For 2 ≤ θ ≤ m + 1, if α ≥ 6, then

Lθ−1

Lθ

≤ 1

2
.

Proof. Recall (3.4) that 	θ = 3	θ−1 + ωθ ≥ 3	θ−1 and 	m+1 = t .
If 2 ≤ θ ≤ m, then we consider two subcases. If 	θ−1 ≥ 2, then 	θ ≥ 6 and thus

Lθ−1

Lθ

=
⌈

μ−3
μ−5	θ−1

⌉
⌈

μ−3
μ−5 	θ

⌉ ≤
μ−3
μ−5	θ−1 + μ−6

μ−5
μ−3
μ−5 	θ

≤ 1

3
+ μ − 6

6(μ − 3)

= μ − 4

2μ − 6
<

1

2
.

If 	θ−1 = 1, then 	θ ≥ 3 and

Lθ−1

Lθ

=
⌈

μ−3
μ−5	θ−1

⌉
⌈

μ−3
μ−5 	θ

⌉ ≤
⌈

μ−3
μ−5

⌉
⌈

3 · μ−3
μ−5

⌉ ≤ 2

4
= 1

2
.

If θ = m + 1, then 	θ = t , 	m/t ≤ 1/3 and

Lθ−1

Lθ

=
⌈

μ−3
μ−5	θ−1

⌉
t

≤
μ−3
μ−5	m + 1

t
≤ μ − 3

3(μ − 5)
+ α

β(μ − 1)

<
μ − 3

3(μ − 5)
+

α
(

2α(μ − 4)(μ − 6) − 10(μ − 3)2
)

3(μ − 4)(μ − 6)α2 + 9α(μ − 4)(μ − 3)(μ − 1)

<
μ − 3

3(μ − 5)
+

α
(

2α(μ − 4)(μ − 6) − 10(μ − 4)(μ − 6)
)

3(μ − 4)(μ − 6)α2 + 9α(μ − 4)(μ − 6)(μ − 1)

= 1

3
+ 2

3(μ − 5)
+ 2α − 10

3α + 9(μ − 1)
<

1

3
+ 2

3(2α − 5)
+ 2α − 10

3α + 9(2α − 1)

= 1

3
+ 4

3
· α2 − 4α + 11

14α2 − 41α + 15
<

1

3
+ 4

3
· 1

8
= 1

2
.

Note that t ≥ β(μ − 1)/α by (3.1) and

β(μ − 1) >
3(μ − 4)(μ − 6)α2 + 9α(μ − 4)(μ − 3)(μ − 1)

2α(μ − 4)(μ − 6) − 10(μ − 3)2
,

derived from �(q, α, β) > 0. �
4. The case when the size of each color class is large

In this section, we continue to prove Theorem 1.1 algorithmically for the case t ≥ β(q + 1 − 1/α). We follow all assump-
tions and notations of Section 3.

Proposition 4.1. Algorithm 4 outputs a q-degenerate coloring of G[C1] with k color classes V 1, V 2, . . . , Vk in O (n3) time such that

|V i | ≤
⌈μ − 3

μ − 5
	1

⌉
(4.1)

for each 1 ≤ i ≤ k.

Proof. To show the correctness of Algorithm 4, it is sufficient to show that for each 1 ≤ i ≤ c1, there is an integer 1 ≤ j ≤ k
such that deg(v1

i , V j) ≤ q and |V j | < �μ−3
μ−5 	1�. This is equivalent to say that in the i-th stage of the for-iteration of line 4,

lines 7 and 8 are executed exactly once, and thus v1
i would be added to some color class V j such that V j ∪ {v1

i } induces a
q-degenerate graph and has size at most �μ−3

	1�, as desired.
μ−5

24

X. Zhang, H. Zhang, B. Niu et al. Theoretical Computer Science 905 (2022) 18–30
Algorithm 4: COLORING-C1(G, α, β, �, k, t, q).

Input: Positive integers α, β, �, k, t, q, and an n-vertex d-degenerate graph G such that �(G) ≤ � ≤ n/β , (k − 1)t < n ≤ kt , k ≥ αd, and
t ≥ β(q + 1 − 1/α);

1 PARTITION(G, α, β, �, k, t, q);
2 ORDERING(G[C1]);
/* Let v1

1, v1
2, . . . , v1

c1
be the ordering of C1 outputted by line 2. */

3 (V 1, V 2, . . . , Vk) ← (∅, ∅, . . . , ∅);
4 for i = 1 to c1 do
5 for j = 1 to k do
6 if deg(v1

i , V j) ≤ q and |V j | < � μ−3
μ−5 	1� then

7 V j ← V j ∪ {v1
i };

8 break ;

Output: A q-degenerate coloring (V 1, V 2, . . . , Vk) of G[C1] such that |V i | ≤ � μ−3
μ−5 	1� for each i ∈ [k].

Suppose for a contradiction that for each vertex v1
i with 1 ≤ i ≤ c1 and each integer 1 ≤ j ≤ k, either deg(v1

i , V j) ≥ q + 1

or |V j| ≥ �μ−3
μ−5 	1�. Since v1

i has at most d neighbors among
⋃i−1

k=1{v1
i } by line 2 of Algorithm 4,∣∣∣∣

{
V j

∣∣∣∣ deg(v1
i , V j) ≥ q + 1

}∣∣∣∣ ≤ d

q + 1
.

It follows that∣∣∣∣
{

V j

∣∣∣∣ |V j| ≥
⌈μ − 3

μ − 5
	1

⌉}∣∣∣∣ ≥ k − d

q + 1
,

and thus∣∣∣∣
k⋃

j=1

V j

∣∣∣∣ ≥
(

μ − 3

μ − 5
	1

)(
k − d

q + 1

)

>

(
μ − 4

μ − 5
	1

)(
μ

μ − 1

(
k − d

q + 1

))

=
(

μ − 4

μ − 5
	1

)(
μk − αd

μ − 1

)

≥
(

μ − 4

μ − 5
	1

)(
μk − k

μ − 1

)

= μ − 4

μ − 5
	1k. (4.2)

On the other hand, by Proposition 3.1,∣∣∣∣
k⋃

j=1

V j

∣∣∣∣ ≤ |C1| < μ − 4

μ − 5
	1k,

contradicting (4.2).
For the complexity, the running time of the for-iteration of line 4 is at most

c1

∣∣∣∣
k⋃

j=1

V j

∣∣∣∣ ≤ c1
μ − 4

μ − 5
	1k ≤ n

μ − 4

μ − 5
kt <

μ − 4

μ − 5
n(n + t) ≤ 2(μ − 4)

μ − 5
n2 = O (n2)

Furthermore, line 1 runs in O (n3) time by Proposition 3.1, line 2 can be done in O (n2) time by Proposition 2.1, and line 3
uses constant time. Hence the complexity of Algorithm 4 is O (n3). �

The idea of proving Theorem 1.1 for the case t ≥ β(q + 1 − 1/α) is to color C1, C2, . . . , Cm and Cm+1 in this ordering
based on certain principles. Specifically, let Q i be the subgraph of G induced by

⋃i
j=1 C j . Algorithm 4 already constructs

a q-degenerate k-coloring of Q 1 so that each color class has size at most L1. The next step is extending this coloring to
a q-degenerate k-coloring of Q 2 so that each color class has size at most L2, and then we repeat this idea recursively.
Rephrased, once we have q-degenerate k-colored Q i−1 for some 2 ≤ i ≤ m + 1 so that each color class has size at most Li−1,
25

X. Zhang, H. Zhang, B. Niu et al. Theoretical Computer Science 905 (2022) 18–30
our next goal is to k-color the vertices of Ci in a degenerate ordering so that each color class of Q i induces a q-degenerate
subgraph and has size at most Li , and no vertex in Q i−1 is recolored. We win if Q m+1 is colored based on this principle.

A partial q-degenerate coloring (V 1, V 2, . . . , Vk) of G is a q-degenerate coloring of a subgraph G ′ of G such that
⋃k

i=1 V i =
V (G ′). Algorithm 5 constructs a digraph D on the vertex set {V 1, V 2, . . . , Vk}, where V i ’s are color classes of a partial
q-degenerate coloring of G . In particular, we conclude the following.

Proposition 4.2. Algorithm 5 constructs in O (n2) time the adjacency matrix of a digraph D on the class classes V 1, V 2, . . . , Vk of a
partial q-degenerate k-coloring of G, and meanwhile outputs a set of vertices xij such that V j ∪ {xij} induces a q-degenerate subgraph
of G. �

Let D be the digraph constructed by Algorithm 5. For two disjoint vertex sets S, T ⊆ V (D), an (S, T)-path of D is a
directed path from some vertex X ∈ S to some vertex Y ∈ T . If S owns one single vertex, i.e., S = {X}, then we write
(X, T)-path instead of ({X}, T)-path. Similarly, if both S and T are single, i.e., S = {X} and T = {Y }, then we use (X, Y)-
path instead of ({X}, {Y })-path. If u is a vertex of G outside of

⋃k
i=1 V i , then a (u, S)-path is a (U , S)-path of D such that

U ∈ V (D) and deg(u, U) ≤ q.

Algorithm 5: CONSTRUCT-D(V 1, V 2, . . . , Vk, W).

Input: A partial q-degenerate coloring (V 1, V 2, . . . , Vk) of G and a subset W ⊆ ⋃k
i=1 V i ;

1 for i = 1 to k do
2 M[i, i] ← 0;
3 for j = 1 to k and j �= i do
4 M[i, j] ← 0;
5 while there is a vertex z ∈ V i \ W such that deg(z, V j) ≤ q do
6 M[i, j] ← 1;
7 xij ← z;
8 break;

Output: A digraph D with adjacent matrix M, vertex set {V 1, V 2, . . . , Vk}, and V i V j being a directed edge if and only if M[i, j] = 1, and a set of
vertices xij such that xij ∈ V i \ W and deg(xij , V j) ≤ q.

Algorithm 6: SWITCHING-WITNESS(V 1, V 2, . . . , Vk, W , u, θ).

Input: A q-degenerate coloring (V 1, V 2, . . . , Vk) of a subgraph G ′ of G , a subset W ⊆ V (G ′), a vertex u ∈ V (G \ G ′), and an integer θ such that
|V i | ≤ Lθ for each i ∈ [k];

1 CONSTRUCT-D(V 1, V 2, . . . , Vk, W);
2 Y0 ← ∅;
3 for i = 1 to k do
4 if |V i | < Lθ then
5 Y0 ← Y0 ∪ {V i};
6 Find a (u, Y0)-path P in D using breadth-first search;
/* Assume P = V s1 V s2 . . . V sr . */

7 V s1 ← V s1 ∪ {u} \ {xs1 s2 };
8 for i = 2 to r − 1 do
9 V si ← V si ∪ {xsi−1 si } \ {xsi si+1 };

10 V sr ← V sr ∪ {xsr−1 sr };

Output: A q-degenerate coloring (V 1, V 2, . . . , Vk) of G ′ + u such that |V i | ≤ Lθ for each i ∈ [k].

The following is the main result of this section.

Proposition 4.3. Algorithm 7 outputs in O (n3) time a q-degenerate partition (V 1, V 2, . . . , Vk) of G such that |V i| ≤ t for each i ∈ [k].

Proof. Its first line partitions V (G) into m + 1 disjoint subsets C1, · · · , Cm, Cm+1, where Ci = Ai ∪ Bi for each 1 ≤ i ≤ m
and Ai, Bi are defined by Algorithm 3. Our goal is to show that for each 2 ≤ i ≤ m + 1, if the vertices of

⋃i−1
	=1 C	 have

been q-degenerate k-colored so that the size of each color class is at most Li−1, then lines 4 to 7 of Algorithm 7 extend
this q-degenerate k-coloring to a q-degenerate k-coloring of G[⋃i

	=1 C] so that the size of each color class is at most Li

by coloring the vertices vi
1, v

i
2, . . . , v

i
ci

of Ci in a degenerate ordering. If so, then G[⋃m+1
	=1 C], which is G itself, admits

a q-degenerate k-coloring so that the size of each color class is at most Lm+1 = t , as desired. Note that the second line
of Algorithm 7 guarantees that G[C1] has a q-degenerate k-coloring so that the size of each color class is at most L1 by
Algorithm 4, and thus the condition of the base case i = 2 of the above recursion satisfies.
26

X. Zhang, H. Zhang, B. Niu et al. Theoretical Computer Science 905 (2022) 18–30
Algorithm 7: MAIN-PROCEDURE-2(G, α, β, �, k, t, q).

Input: Positive integers α, β, �, k, t, q, and a d-degenerate n-vertex graph G such that �(G) ≤ � ≤ n/β , (k − 1)t < n ≤ kt , k ≥ αd, and
t ≥ β(q + 1 − 1/α);

1 PARTITION(G, α, β, �, k, t, q);
2 COLORING-C1(G, α, β, �, k, t, q);
3 for i = 2 to m + 1 do
4 ORDERING(G[Ci]);

/* The output ordering of Ci is assumed to be vi
1, vi

2, . . . , vi
ci
. */

5 W ← ⋃i−1
j=1 C j ;

6 for j = 1 to ci do
7 SWITCHING-WITNESS(V 1, V 2, . . . , Vk, W , vi

j , i);

Output: A q-degenerate partition (V 1, V 2, . . . , Vk) of G such that |V i | ≤ t for each i ∈ [k].

It is sufficient to prove the correctness of line 7 of Algorithm 7 and thus we look back into Algorithm 6, inputting vi
j

and i into u and θ there, respectively. For convenience, in the following arguments, we still use u to represent the vertex vi
j

being colored, where 2 ≤ i ≤ m and 1 ≤ j ≤ ci are fixed, and use G ′ to represent the colored subgraph of G before coloring
u. At this stage, the coloring (V 1, V 2, . . . , Vk) inputted into Algorithm 6 is actually a q-degenerate k-coloring of G ′ . We use
c to denote this coloring below.

The first line of Algorithm 6 constructs a digraph on the color classes of c in O (n2) time by Proposition 4.2. Lines 2 to 5
take O (k) = O (1) time to define Y0 to be a set of color classes of c with sizes less than Li . Since | ⋃i

	=1 C	| < μ−4
μ−5 	ik < Lik

for each 1 ≤ i ≤ m by Proposition 3.1, and | ⋃m+1
	=1 C	| = n ≤ kt = Lm+1k, there is always a color class containing less than Li

vertices when the vertex u is being colored, and thus Y0 �= ∅. The fundamental part of Algorithm 6 is its line 6. We first
assume in advance that this line works (i.e., the (u, Y0)-path in D exists) and prove it later. We now analysis its complexity.
Indeed, searching for the (u, Y0)-path can be divided into two stages. The first stage is finding a set S of vertices X ∈ V (D)

such that deg(u, X) ≤ q, which costs at most O (n) time. The second stage is searching for an (S, Y0)-path using breadth-
first search. Since D owns k vertices and k is actually a constant independent of n, this stage costs O (1) time. Hence line 6
of Algorithm 6 can be done in O (n) time. Additionally, One can see that another lines of Algorithm 6 run in O (1) time.

Therefore, we conclude that if line 6 of Algorithm 6 works, then line 7 of Algorithm 7 works too, and it takes O (n2)

time. In this case, the complexity of Algorithm 7 is O (n3), since line 4 of Algorithm 7 takes O (n2) time by Proposition 2.1,
the for-iteration of line 6 costs

∑m+1
i=2 O (cin2) ≤ O (n3) time, and the first two lines of Algorithm 7 take O (n3) time by

Propositions 3.1 and 4.1.
Now we pay attention to showing that the (u, Y0)-path in D exists, and thus line 6 of Algorithm 6 works, as desired.
By Yi (i ≥ 1), we denote the set of color classes of G ′ such that
(i) Yi ∩ ⋃i−1

j=0 Y j = ∅, and
(ii) for any color class Mi ∈ Yi there exists a color class Mi−1 ∈ Yi−1 so that Mi Mi−1 ∈ E(D).
Let Y = ⋃

Y j and let y = |Y|. It is sufficient to prove that there exists one color class M j ∈ Y j ∈ Y containing at most q
neighbor of u, which implies the existence of an (u, Y0)-path by the definition of Yi . We facilitate a contradictory argument
as follows.

Suppose, for a contradiction, that every color class of Y contains at least q + 1 neighbors of u. Note that every vertex
v ∈ V (G ′) \ W not in any color class of Y has at least q + 1 neighbors in every color class of Y, because otherwise the color
class containing v would be included in Y by line 1 of Algorithm 6 and the definition of Y.

We first claim that y is upper-bounded. Actually, there are less than (μ − 4)d neighbors of u in W (otherwise u would
had already been selected for Bi−1 and thus u ∈ Ci−1, see Lines 8 to 14 of Algorithm 3), and in Ci there are at most d
neighbors of u that are already colored (recall that the vertices of Ci are being colored in a degenerate ordering). Therefore,
among the neighbors of u, less than (μ − 3)d are colored under c. This implies that there are less than (μ − 3)d/(q + 1)

color classes that contain at least q + 1 neighbors of u. Hence

y <
μ − 3

q + 1
d,

y

d
<

μ − 3

q + 1
. (4.3)

Let S be the set of vertices w such that there exists a color class of Y containing w , and let T be the set of colored
vertices in Ci that do not belong to S . By the d-degeneracy of G and by the above analysis, we have

d(|S| + |T |) > e(T ,S) ≥ (q + 1)y|T |,
which implies(

(q + 1)y − d
)|T | < d|S|. (4.4)

By the definition of Y0, every color class of Y0 contains less than Li vertices and every other color class of c contains
exactly Li vertices (note that every color class of c has at most Li vertices by Algorithms 6 and 7). Since no vertex in W
27

X. Zhang, H. Zhang, B. Niu et al. Theoretical Computer Science 905 (2022) 18–30
would be recolored when coloring vertices of Ci (see Algorithms 5 and 6), every color class of c has at most Li−1 vertices
in W . So

|S| ≤ yLi, |T | ≥ (k − y)Li − (k − y)Li−1 = (k − y)(Li − Li−1) ≥ (αd − y)(Li − Li−1),

which imply by (4.4) that(
(q + 1)y − d

)
(αd − y)(Li − Li−1) < dyLi .

Write γ = y/d. We deduce from Proposition 3.3 and the above inequality that

f (γ) := (q + 1)γ 2 − (μ − 1)γ + α > 0.

Since

f
(μ − 3

q + 1

)
= 6

q + 1
− α < 0, f

(α

μ − 3

)
= μ

(6
q+1 − α

)
(μ − 3)2

< 0,

we conclude by (4.3) that

y

d
= γ <

α

μ − 3
. (4.5)

We count the number ζc of vertices that have already been colored under c. Actually, among the k color classes, there
are only |Y0| ≤ y color classes containing less than Li vertices. Therefore, ζc ≥ (k − y)Li . Since k ≥ αd and y < αd/(μ − 3)

by (4.5),

ζc ≥ μ − 4

μ − 3
kLi = μ − 4

μ − 3
k
⌈μ − 3

μ − 5
	i

⌉
≥ μ − 4

μ − 5
	ik.

On the other hand, it is trivial that

ζc ≤
∣∣∣∣

i⋃
j=1

C j

∣∣∣∣ <
μ − 4

μ − 5
	ik

by (3.5). They contradict each other by Proposition 3.1 when 2 ≤ i ≤ m.
Hence there remains only one case: i = m + 1.
Recall that we are now coloring a vertex u ∈ Cm+1 and c is the partial coloring of G already constructed with the

property that every color class of c contains at most Lm+1 = t vertices. Since |V (G) − {u}| < n ≤ kt , there is at least one
color class in c that contains less than t vertices. This implies that Y0 �= ∅.

Let M be a color class of Y0. For 1 ≤ j ≤ m, let Z j = M ∩ C j and z j = |Z j|. Since no vertex in
⋃ j

	=1 C	 would be
recolored while coloring vertices of C j+1 and every color class of the subgraph induced by

⋃ j
	=1 C	 contains at most L j

vertices,

j∑
s=1

zs ≤ L j, 1 ≤ j ≤ m. (4.6)

.
Let U be the set of colored vertices in Cm+1 that are adjacent to some vertex in M.
For 1 ≤ j ≤ m, recall that � j is the maximum degree of the graph G

[
V (G) \ ∪ j

	=1C	

]
. It is easy to see that

|U | ≤ z1� + z2�1 + · · · + zm+1�m (4.7)

Since kt/β ≥ n/β ≥ � ≥ �1 ≥ · · · ≥ �m , by (4.6), (4.7) and Proposition 3.2, we have

|U | ≤ L1� + (L2 − L1)�1 + · · · + (Lm+1 − Lm)�m

=
⌈μ − 3

μ − 5
	1

⌉
� +

(⌈μ − 3

μ − 5
	2

⌉
−

⌈μ − 3

μ − 5
	1

⌉)
�1 + · · · +

(
t −

⌈μ − 3

μ − 5
	m

⌉)
�m

=
⌈μ − 3

μ − 5
	1

⌉
(� − �1) +

⌈μ − 3

μ − 5
	2

⌉
(�1 − �2) + · · · +

⌈μ − 3

μ − 5
	m

⌉
(�m−1 − �m) + t�m

≤
(μ − 3

μ − 5
	1 + μ − 6

μ − 5

)
(� − �1) +

(μ − 3

μ − 5
	2 + μ − 6

μ − 5

)
(�1 − �2)

+ · · · +
(μ − 3

	m + μ − 6)
(�m−1 − �m) + t�m
μ − 5 μ − 5

28

X. Zhang, H. Zhang, B. Niu et al. Theoretical Computer Science 905 (2022) 18–30
<
μ − 6

μ − 5
� + μ − 3

μ − 5

(
	1� + (2 − 	1)�1 + (3 − 	2)�2 + · · · + (m+1 − 	m)�m

)

≤ μ − 6

μ − 5
� + μ − 3

μ − 5

(
2� + 10

3
dt

)
= 3μ − 12

μ − 5
� + 10μ − 30

3μ − 15
dt

≤ 1

μ − 5

(3μ − 12

β
k + 10μ − 30

3
d
)

t. (4.8)

On the other hand, recall that any vertex v ∈ Cm+1 in some color class outside of Y has at least q + 1 neighbors in every
color class (e.g., M) of Y. Therefore, all vertices containing in the (k − y) color classes outside of Y are neighbors of M.
By the definition of Y0, we also know that each of those (k − y) color classes of c contains exactly Lm+1 vertices. Since
no vertex in W = ⋃m

	=1 C	 would be recolored while coloring Cm+1, every color class of c has at most Lm vertices in W .
Therefore,

|U | ≥ (k − y)(Lm+1 − Lm) = (k − y)
(

t −
⌈μ − 3

μ − 5
	m

⌉)

≥ (k − y)
(

1 − μ − 3

μ − 5

	m

t
− μ − 6

μ − 5

1

t

)
t

≥ (k − y)
(

1 − μ − 3

3μ − 15
− μ − 6

μ − 5

α

(μ − 1)β

)
t

≥ μ − 6

μ − 5

(
k − α

μ − 3
d
)(2

3
− α

(μ − 1)β

)
t (4.9)

by (3.1), (3.4), and (4.5).
Combining (4.9) with (4.8), we immediately conclude

(μ − 6)
(

k − α

μ − 3
d
)(2

3
− α

(μ − 1)β

)
≤ 3μ − 12

β
k + 10μ − 30

3
d

which implies

k

d
≤

10μ−30
3 + 2α(μ−6)

3(μ−3)
− α2(μ−6)

(μ−1)(μ−3)β

2μ−12
3 − α(μ−6)

(μ−1)β
− 3μ−12

β

(4.10)

=
(

10(μ − 3)2 + 2α(μ − 6)
)
(μ − 1)β − 3α2(μ − 6)

(μ − 3)
(

2(μ − 6)(μ − 1)β − 3α(μ − 6) − 9(μ − 4)(μ − 1)
) . (4.11)

Note that the denominators in (4.10) and (4.11) are positive if �(q, α, β) > 0.
Since k ≥ αd, we deduce from (4.11) that(

2α(μ − 4)(μ − 6) − 10(μ − 3)2
)
(μ − 1)β ≤ 3(μ − 4)(μ − 6)α2 + 9α(μ − 4)(μ − 3)(μ − 1).

This contradicts the assumption that �(q, α, β) > 0. �
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] R. Diestel, Graph Theory, Springer Berlin Heidelberg, Berlin, Heidelberg, 2017.
[2] E. Drgas-Burchardt, J. Dybizbański, H. Furmańczyk, E. Sidorowicz, Equitable list vertex colourability and arboricity of grids, Filomat 32 (18) (2018)

6353–6374.
[3] E. Drgas-Burchardt, H. Furmańczyk, E. Sidorowicz, Equitable d-degenerate choosability of graphs, in: Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), in: LNCS, vol. 12126, 2020, pp. 251–263.
[4] E. Drgas-Burchardt, H. Furmańczyk, E. Sidorowicz, Equitable improper choosability of graphs, Theor. Comput. Sci. 844 (2020) 34–45.
[5] L. Esperet, L. Lemoine, F. Maffray, Equitable partition of graphs into induced forests, Discrete Math. 338 (8) (2015) 1481–1483.
[6] R. Kim, S.-I. Oum, X. Zhang, Equitable partition of planar graphs, Discrete Math. 344 (6) (2021) #112351.
[7] A. Kostochka, K. Nakprasit, Equitable colourings of d-degenerate graphs, Comb. Probab. Comput. 12 (1) (2003) 53–60.
[8] A. Kostochka, K. Nakprasit, S. Pemmaraju, On equitable coloring of d-degenerate graphs, SIAM J. Discrete Math. 19 (1) (2005) 83–95.
[9] Y. Li, X. Zhang, Equitable list tree-coloring of bounded treewidth graphs, Theor. Comput. Sci. 855 (2021) 61–67.
29

http://refhub.elsevier.com/S0304-3975(21)00718-0/bib55DA48F7BF1EB7A5F6BF95FEB5B6F0A4s1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bibC629493C565A36E91F7CB95BA163B3CAs1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bibC629493C565A36E91F7CB95BA163B3CAs1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bibC1E0F0696440865B0B33D7468E7EFB07s1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bibC1E0F0696440865B0B33D7468E7EFB07s1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bibE48C9F2ABD10AAA2F91DE0DCD46266D1s1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bib52AFF92213A59F8628A40D1B4F2CF8FAs1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bib8B23CB46283652F23C7595EF536082CBs1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bibB7DA9C7EACBBD17DA75B8BB5CC1DF5CEs1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bibC31F843324F232D726D0BCA0FBB33BAEs1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bibA396B362948C33323880B871DC0E86F0s1

X. Zhang, H. Zhang, B. Niu et al. Theoretical Computer Science 905 (2022) 18–30
[10] K.-W. Lih, Equitable Coloring of Graphs, Springer New York, New York, NY, 2013, pp. 1199–1248.
[11] D.W. Matula, L.L. Beck, Smallest-last ordering and clustering and graph coloring algorithms, J. ACM 30 (3) (July 1983) 417–427.
[12] W. Meyer, Equitable coloring, Am. Math. Mon. 80 (1973) 920–922.
[13] K. Nakprasit, Equitable colorings of planar graphs with maximum degree at least nine, Discrete Math. 312 (5) (2012) 1019–1024.
[14] J.-L. Wu, X. Zhang, H. Li, Equitable vertex arboricity of graphs, Discrete Math. 313 (23) (2013) 2696–2701.
[15] H. Zhang, X. Zhang, Theoretical aspects of equitable partition of networks into sparse modules, Theor. Comput. Sci. 871 (2021) 51–61.
[16] X. Zhang, Equitable vertex arboricity of planar graphs, Taiwan. J. Math. 19 (1) (2015) 123–131.
[17] X. Zhang, Equitable list point arboricity of graphs, Filomat 30 (2) (2016) 373–378.
[18] X. Zhang, B. Niu, Y. Li, B. Li, Equitable vertex arboricity conjecture holds for graphs with low degeneracy, Acta Math. Sin. Engl. Ser. 37 (8) (2021)

1293–1302.
[19] Y. Zhang, H.-P. Yap, Equitable colourings of planar graphs, J. Comb. Math. Comb. Comput. 27 (1998) 97–105.
30

http://refhub.elsevier.com/S0304-3975(21)00718-0/bibDE0E12BE056439B53B129635E49DE415s1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bib2612E25B49B16773941CCA46B1D2F5BBs1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bib8525463C9C0B13F57AD79612AA1A0C1As1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bib79DCFBCE072F2B2828190ED225747F27s1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bib6130FE8C378779414F4E862E955205E9s1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bib9C37E4057437AE9223353DBCBEC4A291s1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bib0FDDB78164F7C3715C709B46571B1D48s1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bib2BFA63432E054CE80666DF665614EC3Ds1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bib9B1F85F1A2675DFE989C97D264E1F985s1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bib9B1F85F1A2675DFE989C97D264E1F985s1
http://refhub.elsevier.com/S0304-3975(21)00718-0/bib9C7D1BA2258F63C696CF8FC602C66808s1

	Fast algorithm of equitably partitioning degenerate graphs into graphs with lower degeneracy
	1 Introduction
	2 The case when the size of each color class is small
	3 Partition the vertex set into disjoint subsets
	4 The case when the size of each color class is large
	Declaration of competing interest
	References

