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The connectivity and its generalizations have been well studied due to their impact on 
the fault tolerance and diagnosability of the interconnection networks. In this paper, 
we introduce a novel generalized connectivity, which combines the h-extra connectivity 
and r-component connectivity. Given a connected graph G = (V , E), for any h ≥ 0 and 
r ≥ 2, an h-extra r-component cut of G is a subset S ⊆ V such that there are at least r
components in G \ S and each component has at least h + 1 vertices; h-extra r-component 
connectivity of G , denoted as cκh

r (G), is the minimum size of any h-extra r-component cut 
of G . We determine the h-extra r-component connectivity of n-dimensional hypercube Q n , 
cκ1

r (Q n) = 2(r − 1)(n − r + 1) for r ∈ {2, 3, 4}.
© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Fault tolerance is one of the major problems in the research of interconnection networks. Usually, an interconnection 
network can be modeled by a connected graph. Each processor in the network is represented by a vertex in the graph; 
and the communication link between any two processors is represented by an edge between two corresponding vertices. 
The reliability and fault tolerance of an interconnection network are closely related with the connectivity of a graph. Given 
a connected graph G , a subset of vertices is called a cut of G if its removal disconnects G . The minimum size of a cut of 
G is the connectivity of G , denoted as κ(G). In a large interconnection network, faults occur in the processors frequently, 
which may induce disconnection of the network. The connectivity is a lower bound of the number of faulty processors to 
disconnect the network. While the minimum vertex-degree of the graph is an upper bound of the connectivity. This turns 
out that the connectivity is restricted by the disconnections with some isolated vertex and a large connected component. 
In this case, the “core” of the network is still connected. So it is more reasonable to estimate the connectivity or faulty 
tolerance of the network more precisely.

There are several generalizations of the classical connectivity of graphs. Chartrand et al. in [1] and Sampathkumar in 
[2] introduced independently the r-component connectivity of a connected graph G , which is the minimum size of a subset 
of vertices, called an r-component cut of G if exists, whose removing results in at least r components, denoted as cκr(G). 
The network is more disconnected in the sense that there are more components remained. Many researches have studied 
the r-component connectivity in kinds of networks for small r. For n-dimensional hypercube Q n , Hsu et al. [3] and Zhao 
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et al. [4] studied the cases for 2 ≤ r ≤ n + 1 and n + 2 ≤ r ≤ 2n − 4 respectively. In [5,6], Cheng et al. studied the r-
component connectivity of the n-dimensional hierarchical cubic and complete cubic networks for 2 ≤ r ≤ n + 1 respectively. 
Later, they gave the results of the generalized exchanged hypercubes in some special cases [7]. Chang et al. in [8,9] worked 
on the alternating group networks for r ∈ {3, 4}. There are also some works in the twisted cubes and dual cubes, please see 
[10,11]. Recently, the Cayley graph generated by trees were explored in [12,13]

Another popular generalization of connectivity of a connected graph G is proposed by Fàbrega and Fiol in [14], called 
the h-extra connectivity. It is the minimum size of a subset of vertices, called an h-extra cut of G if exists, whose removal 
disconnects G and each remaining component has at least h + 1 vertices, denoted as κh(G). There are many papers working 
on the h-extra connectivity in special networks, such as k-ary n-cube networks [15], BC networks [16], folded cubes [17], 
alternating group graphs [18], Split-Star networks [19], bubble-sort star graphs [20], balanced hypercubes [21,22], data 
center network DCell [23], DQcubes [24], enhanced hypercubes [25] and so on. From the intuition of h-extra connectivity, 
h-extra diagnosability was proposed in [26]. Many researchers work on the h-extra diagnosability of special networks, 
such as hypercubes [26,27], folded hypercubes [28,29], bubble-sort star graph networks [30], locally twisted cubes [31], 
crossed cubes [32] and (n, k)-star networks [33] etc. Moreover, the relations between the h-extra connectivity and h-extra 
diagnosability attracted much attention, please see [34–38].

In this paper, we combine the r-component connectivity and h-extra connectivity of a graph and propose a more general 
connectivity as follows:

Definition 1. Given a connected graph G = (V , E), for two integers r ≥ 2 and h ≥ 0, a subset S ⊆ V is called an h-extra 
r-component cut of G if there are at least r connected components in G \ S and each component has at least h + 1 vertices. 
The minimum size of any h-extra r-component cut of G , if exists, is the h-extra r-component connectivity of G , denoted as 
cκh

r (G).

From the definition, we get the following results immediately:

Lemma 1. Given a connected graph G = (V , E), for any integers h ≥ 0 and r ≥ 2, we have that:

• cκ0
2 (G) = κ(G);

• cκ0
r (G) = cκr(G);

• cκh
2 (G) = κh(G).

The rest part of the paper is organized as follows: in Section 2, some definitions and notations are introduced. Also, some 
previous results are displayed, which is useful for proving the main theorem later. In Section 3, the 1-extra r-component 
connectivity of Q n for r ∈ {2, 3, 4} is determined. An upper bound is displayed for 2 ≤ r ≤ n. Finally, we conclude the paper 
in Section 4.

2. Preliminary

Hypercubes are fundamental models for interconnection networks. The n-dimensional hypercube Q n = (V , E) is an undi-
rected graph, in which each vertex can be represented by an n-bit binary ({0, 1}) string and every two vertices are adjacent 
if and only if their corresponding strings differ in exactly one dimension. Note that Q n is a bipartite graph with one part 
containing exactly all vertices whose corresponding strings have odd number of 1s.
Notations: For any graph G = (V , E) and a vertex v ∈ V , the set of all neighbors of v is denoted as NG(v); and for 
any S ⊆ V , NG(S) = ∪v∈S NG(v) \ S is called the set of all neighbors of S . The subgraph induced by S is denoted as 
G[S]. Following Latifi in [39], we always express Q n as Q 0

n−1 � Q 1
n−1 where Q 0

n−1 and Q 1
n−1 are two (n − 1)-dimensional 

hypercubes of Q n induced by the vertices with the ith coordinates 0 and 1 respectively. Then there is a perfect matching 
between Q 0

n−1 and Q 1
n−1. The two ends of each matching edge differ exactly in the ith dimension.

First, let us justify the range of r, i.e. the maximum number of components, in Q n \ S for any cut S .

Lemma 2. For n ≥ 2, let S be a cut of Q n such that there are exactly r ≥ 2 connected components in Q n \ S. Then it satisfies that

1. r ≤ 2n−1;
2. r = 2n−1 can be attained when S is an independent set containing exactly 2n−1 vertices and all the r components in Q n \ S are 

trivial, i.e. they are all isolated vertices.

Proof. This is true for n = 2. We prove the lemma by induction on n. Suppose that the lemma is true for Q n−1.

1. Denote S0 = S ∩ Q 0
n−1 and S1 = S ∩ Q 1

n−1. Assume that there are exactly r0 (resp. r1) connected components in Q 0
n−1 \ S0

(resp. Q 1 \ S1). Then r0 ≤ 2n−2 (resp. r1 ≤ 2n−2). So r ≤ r0 + r1 ≤ 2n−1.
n−1
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Q 0
n−1

X0

Y0

Q 1
n−1

X1

Y1

Fig. 1. The ‘· · · · · · · · ·’ denotes that there is no edge between them; The ‘————’ denotes that there is a perfect matching between them.
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Fig. 2. For n = 4, T4 = {u, v, x, y,a′,b′, c′,d′} or T4 = {a,b, c,d, u′, v ′, x′, y′}.

2. Since Q 0
n−1 is a bipartite graph, let X and Y be its two parts. Then |X | = |Y | = 2n−2. Let Xi = {ix|x ∈ X, i ∈ {0, 1}} and 

Yi = {iy|y ∈ Y , i ∈ {0, 1}}, where x ∈ X (resp. y ∈ Y ) is a (n − 1)-bit string. Then Q n can be decomposed as in Fig. 1. 
Let S = X0 ∪ Y1. Then S is an independent set containing exactly 2n−1 vertices and all the r components in Q n \ S are 
trivial. �

Given an h-extra cut S of Q n for h ≥ 1, from this lemma one sees that there are less than 2n−1 components in Q n \ S . 
But for n ≥ 3 and h = 1, there exists an 1-extra 2n−2-component cut Tn of Q n . In Q n \ Tn , there are exactly 2n−2 components 
and each component contains exactly two adjacent vertices. The construction of Tn can be done recursively: for n = 3, let 
C = {u, v, x, y} where u = (0, 0, 0), v = (0, 0, 1), x = (1, 1, 0) and y = (1, 1, 1). Then C̄ = V (Q n) \C is an 1-extra 2-component 
cut of Q 3 and the two components in Q 3 \ C̄ are the two subgraphs induced by {u, v} and {x, y} respectively. Symmetrically, 
one sees that C is also an 1-extra 2-component cut of Q 3 satisfying the required properties. It means that there are at least 
two choices, C or C̄ , of T3 and one sees that V (Q 3) = T3 ∪ T̄3. For n ≥ 4, let Tn−1 be an 1-extra 2n−3-component cut of 
Q 0

n−1 and T̄ ′
n−1 be an 1-extra 2n−3-component cut of Q 1

n−1. Note that there is no edge between Tn−1 and T̄ ′
n−1 in Q n . 

Then Tn = Tn−1 ∪ T̄ ′
n−1 and T̄n = V (Q n) \ Tn are two 1-extra 2n−2-component cuts of Q n satisfying the required properties 

respectively. Please see an example for n = 4 in Fig. 2. This shows that 1-extra r-component cut is well defined for any 
r ≤ 2n−2.

At the end of this section, we display some lemmas, which play an important role in the proof of our main results.

Lemma 3. [40] If |S| ≤ 2n − 3 for n ≥ 2, then Q n \ S is either connected or disconnected with exactly two connected components, one 
of which is trivial, i.e., an isolated vertex.

Lemma 4. [41,42] For any integer 1 ≤ t ≤ n + 1, the minimum number of vertices adjacent to t vertices in Q n is pn(t) = − t2

2 + (n −
1
2 )t + 1; For any integer n + 2 ≤ t ≤ 2n, the minimum number of vertices adjacent to t vertices in Q n is qn(t) = − t2

2 + (2n − 3
2 )t −

n2 + 2.

Lemma 5. [16] If |S| < 3n − 5 for n ≥ 4, then Q n \ S is either connected or disconnected with a large connected components, and 
remaining small components containing at most two vertices in total.
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Q 0
n−1

S0

Q 1
n−1

C1

C2

S1

Fig. 3. Q 0
n−1 \ S0 is connected. All neighbors of C1 and C2 are contained in S = S0 ∪ S1. So all their neighbors in Q 0

n−1 are contained in S0. So |V (C1)| +
|V (C2)| ≤ |S0|.

Lemma 6. [43] For n ≥ 5 and any T ⊆ V (Q n), if |T | ≥ 2n and |V (Q n) \ (T ∪ N Q n (T ))| ≥ |T |, then |N Q n (T )| ≥ qn(2n), where qn(2n)

is as defined in Lemma 4.

3. cκ1
r ( Q n) for r ∈ {2, 3, 4}

In this section, we focus on computing cκ1
r (Q n) for r ∈ {2, 3, 4}. For r = 2, from the result of Yang and Meng in [44,45], 

we get the following result:

Lemma 7. For n ≥ 4, cκh
2 (Q n) = κh(Q n) = (h + 1)n − h2+3h

2 for 0 ≤ h ≤ n − 4 and cκh
2 (Q n) = κh(Q n) = n(n−1)

2 for n − 3 ≤ h ≤ n. 
In particular, cκ1

2 (Q n) = κ1(Q n) = 2n − 2 for n ≥ 3.

For r = 3, before showing the main result, we prove that any two independent edges in Q n have at least 4n −8 neighbors.

Lemma 8. For n ≥ 3, let u1 v1, u2 v2 ∈ E(Q n) and N Q n ({u1, v1}) ∩ {u2, v2}) = ∅. Then |N Q n ({u1, v1}) ∪ N Q n ({u2, v2})| =
|N Q n ({u1, v1, u2, v2})| ≥ 4n − 8.

Proof. There are no odd cycles in Q n since Q n is a bipartite graph. So u1, v1 (resp. u2, v2) have no common neighbors in 
Q n; And u1 (resp. v1) cannot have common neighbors with both u2 and v2 otherwise there will exist a cycle of length 5 in 
Q n . So at most 2 pairs of the 4 vertices can have common neighbors and the number is at most 4 since any pair of vertices 
in Q n can have at most 2 common neighbors. |N Q n ({u1, v1, u2, v2})| ≥ 4n − 2 ∗ 2 − 4 ≥ 4n − 8 since in the induced subgraph 
of {u1, v1, u2, v2}, there are exactly 2 edges. �
Theorem 1. cκ1

3 (Q n) = 4n − 8 for n ≥ 7.

Proof. Let u = (0, 0, 0, ..., 0, 0), v = (0, 0, 0, ..., 0, 1) and x = (1, 1, 0, ..., 0, 0), y = (1, 1, 0, ..., 0, 1). Let F = N Q n ({u, v}) ∪
N Q n ({x, y}). Then |F | = 4n − 8. There are at least three components in Q n \ F , two of which are Q n[{u, v}] and Q n[{x, y}], 
because 2n − (4n − 8) − 4 > 0 for n ≥ 7. One sees that F does not contain the neighborhood of any vertex w in Q n \
F \ {u, v, x, y} since |N Q n (w) ∩ F | ≤ 4 by its bipartite property and that Q n \ F contains at least three components. There 
are exactly one edge in these two components respectively. Moreover, there is no isolated vertex in Q n \ F since the 
neighborhood of any vertex is not contained in F . So cκ1

3 (Q n) ≤ 4n − 8 for n ≥ 7.
Next, we prove that cκ1

3 (Q n) ≥ 4n − 8 for n ≥ 7. Suppose that S is an 1-extra 3-component cut of Q n and |S| ≤ 4n − 9. 
Let C1, C2, ..., Cl be the connected components in Q n \ S , where l ≥ 3 and 2 ≤ |V (C1)| ≤ |V (C2)| ≤ ... ≤ |V (Cl)|.

Denote S0 = S ∩ Q 0
n−1 and S1 = S ∩ Q 1

n−1. Then S = S0 ∪ S1 and |S| = |S0| + |S1| ≤ 4n − 9. W. l. o. g, let |S0| ≤ |S1|. Then 
|S0| ≤ 2n − 5 = 2(n − 1) − 3. From Lemma 3, we consider the following two cases:

• Case 1) Q 0
n−1 \ S0 is connected. Then Q 1

n−1 \ S1 is disconnected with at least l components, two of which are C1 and C2. 
See in Fig. 3. So 4 ≤ |V (C1)| + |V (C2)| ≤ |S0| ≤ 2n − 5. Note that N Q n (V (C1)) ∩ V (C2) = ∅ and N Q n (V (C2)) ∩ V (C1) =
∅. So S ≥ |N Q n (V (C1)) ∪ N Q n (V (C2))| = |N Q n (V (C1) ∪ V (C2))|. Let |V (C1) ∪ V (C2)| = t . Then 4 ≤ t ≤ 2n − 5. From 
Lemma 4, |N Q n (V (C1) ∪ V (C2))| ≥ pn(t) for 4 ≤ t ≤ n + 1 and |N Q n (V (C1) ∪ V (C2))| ≥ qn(t) for n + 2 ≤ t ≤ 2n − 5, 
where pn(t) and qn(t) are both quadratic functions with t . So the minimum value of pn(t) for 4 ≤ t ≤ n + 1 and qn(t)
for n + 2 ≤ t ≤ 2n − 5 is min{pn(4), pn(n + 1), qn(n + 2), qn(2n − 5)} = pn(4) for n ≥ 7 by some simple computations; 
and the minimum value attains only when t = 4. So |N Q n (V (C1) ∪ V (C2))| ≥ pn(4) = 4n − 9 for n ≥ 7 and the equality 
holds only when |V (C1)| + |V (C2)| = 4. In this case C1 and C2 are both components with exactly one edge respectively. 
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Let u1 v1 (resp. u2 v2) be the unique edge in C1 (resp. C2). Then u1, v1 have no common neighbor, because there 
is no triangle in Q n . So |N Q n (V (C1)| = |N Q n (u1, v1)| = 2n − 2. Similarly, |N Q n (V (C2)| = 2n − 2. If u1 and u2 have a 
common neighbor, then u1 and v2 have no common neighbors since otherwise there is a cycle of length 5 in Q n , 
contradiction with its bipartiteness. Let u be a common neighbor of u1 and u2 if exists. Then the corresponding strings 
of u and u1 (resp. u2) differ in exactly one dimension. So u1 and u2 differs in exactly two dimensions. So they have 
two common neighbors. In this case, one sees similarly that v1 and u2, v2 have at most two common neighbors in 
total. So |N Q n (V (C1)) ∩ N Q n (V (C2))| ≤ 4. This implies that |N Q n (V (C1)) ∪ N Q n (V (C2))| ≥ 4n − 8. So |S| ≥ 4n − 8. It is a 
contradiction.

• Case 2) Q 0
n−1 \ S0 is disconnected with exactly two connected components, one of which is an isolated vertex, denoted 

as w0. Let C0 be the other component not containing w0. In this case, |S0| ≥ n − 1. Let w1 be the unique neighbor of 
w0 in Q 1

n−1. Then w1 /∈ S1 and w0 and w1 are in the same connected component of Q n \ S .
If Q 1

n−1 \ S1 is connected, then there are at most two connected components in Q n \ S . It is a contradiction. So Q 1
n−1 \ S1

is disconnected. Suppose there are j (≥ 2) connected components in Q 1
n−1 \ S1.

– If there exist two components in Q 1
n−1 \ S1 which are also components of Q n \ S , then the theorem can be proved as 

in case 1.
– At most one component in Q 1

n−1 \ S1 is also a component of Q n \ S . Since Q n − S has at least 3 components and 
w0 and C0 can be in at most 2 components. So there are exactly 3 components in Q n − S . One containing C0, one 
containing w0 and another one is also a component of Q 1

n−1 \ S1. We use C1 to denote the component containing 
w0 and C2 to denote the component not containing w0 and C0. Then N Q 0

n−1
(V (C1) ∪ V (C2) − {w0, w1}) ⊂ S0. So 

|V (C1)| + |V (C2)| ≤ 2n − 5 + 2 = 2n − 3. Since S is a 1-extra 3-component cut, C1, C2 both have at least 2 vertices. 
So 4 ≤ |V (C1)| + |V (C2)|. Similar calculation as in case 1) can get that |N Q n (V (C1) ∪ V (C2))| ≥ min{pn(4), pn(n +
1), qn(n + 2), qn(2n − 3)} ≥ pn(4) = 4n − 9 for n ≥ 7; and the minimum value attains only when t = 4. So |S| ≥ 4n − 9
and the equality attains only when S = N Q n (V (C1) ∪ V (C2)) and |V (C1)| = |V (C2)| = 2. But by Lemma 8 this implies 
|S| ≥ 4n − 8. It is a contradiction. �

Before we prove the result for r = 4, let us prove an upper bound of cκ1
r for 2 ≤ r ≤ n.

Theorem 2. For n ≥ 5 and 2 ≤ r ≤ n
2 , cκ1

r (Q n) ≤ 2(r − 1)(n − r + 1).

Proof. To prove the theorem, it is sufficient to find an 1-extra r-component cut of Q n with size at most 2(r − 1)(n − r + 1). 
Let ui be the vertex with only the ith coordinate 1 for i = 1, 2, . . . , r − 1. Let vi be the vertex with only two coordinates 
the ith and the nth 1s for i = 1, 2, . . . , r − 1. Then ui vi ∈ E(Q n). For any i, j ∈ {1, 2, . . . , r − 1} and i = j, ui and u j have 
exactly two different coordinates, the ith and the jth, so they have exactly two common neighbors, (0, 0, . . . , 0, 0) and the 
vertex with the ith and the jth coordinates 1s, all others 0s; similarly, vi and v j have exactly two common neighbors, 
(0, 0, . . . , 0, 1) and the one with the {i, j, n}th coordinates 1s, all others 0s for any i, j ∈ {1, 2, . . . , r − 1} and i = j. Let S =
∪i∈{1,2,...r−1}N Q n ({ui, vi}). Then |S| = (r − 1)(2n − 2) − 4C2

r−1 = 2(r − 1)(n − r + 1) and S does not contain the neighborhood 
of any vertex in Q n for r ≤ n

2 . One sees that S is an 1-extra r-component cut of Q n , with components Ci = Q n[{ui, vi}]
for i = 1, 2, . . . , r − 1 and components in Q n \ (S ∪i=1,2,...,n−1 Ci), which contains no isolated vertex and is not empty from 
simple counts. This proves the theorem. �

Finally, in the following theorem, we prove that the upper bound in Theorem 2 is attained for r = 4.

Theorem 3. cκ1
4 (Q n) = 6n − 18 for n ≥ 9.

Proof. From Theorem 2, it is sufficient to prove that cκ1
4 (Q n) ≥ 6n − 18. Suppose that S is an 1-extra 4-component cut of 

Q n and |S| ≤ 6n − 19. Let C1, C2, ..., Cl be the connected components in Q n \ S , where l ≥ 4 and 2 ≤ |V (C1)| ≤ |V (C2)| ≤
· · · ≤ |V (Cl)|. Denote S0 = S ∩ Q 0

n−1 and S1 = S ∩ Q 1
n−1. Then S = S0 ∪ S1 and |S| = |S0| + |S1| ≤ 6n − 19. W. l. o. g, let 

|S0| ≤ |S1|. Then |S0| ≤ 3n − 10 = 3(n − 1) − 7. From Lemma 5, we consider the following four cases:

• Q 0
n−1 \ S0 is connected. Then Q 1

n−1 \ S1 is disconnected with at least l components, three of which are C1, C2 and C3. 
So 6 ≤ |V (C1)| + |V (C2)| + |V (C3)| ≤ |S0| ≤ 3n − 10. Note that the neighborhood of any one of V (C1), V (C2) and V (C3)

is disjoint with the other two components. So S ≥ | ∪3
j=1 N Q n (V (C j))| = |N Q n (∪3

j=1 V (C j))|. Let T = V (C1 ∪ C2 ∪ C3) and 
|T | = t . Then 6 ≤ t ≤ 3n − 10. For n ≥ 9, from Lemma 4 and 6, |N Q n (T )| ≥ pn(t) for 6 ≤ t ≤ n + 1 and |N Q n (T )| ≥ qn(t)
for n + 2 ≤ t ≤ 2n; and for 3n − 10 ≥ t > 2n, N Q n (T ) > qn(2n) since |V (Q n) \ (T ∪ N Q n (T ))| ≥ 2n − (3n − 10) − (6n −
19) > 3n − 10 ≥ |T |. The minimum value of pn(t) for 6 ≤ t ≤ n + 1 and qn(t) for n + 2 ≤ t ≤ 2n is min{pn(6), pn(n +
1), qn(n + 2), qn(2n)} = pn(6) = 6n − 20 for n ≥ 9 by some simple computations; and the minimum value attains only 
when t = 6. Moreover, |N Q n (T )| > 6n − 19 for 3n − 10 ≥ t > 6 and n ≥ 9 from similar calculations. Then t = 6 since 
6n − 19 ≥ |S| ≥ |N Q n (T )|. In this case C1, C2 and C3 are all components with exactly one edge respectively. As proved 
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in Lemma 8, one can prove similarly that any three independent edges have at least 6n − 18 neighbors. This implies 
that | ∪3

j=1 N Q n (V (C j))| ≥ 6n − 18. It is a contradiction.

• Q 0
n−1 \ S0 is disconnected with exactly two connected components, one of which contains exactly one vertex, denoted 

as w0. Then there are at least three components C ′
1, C

′
2, C

′
3 in Q 1

n−1 \ S1 such that N Q 0
n−1

(V (C ′
1 ∪ C ′

2 ∪ C ′
3)) ⊆ S0 ∪ {w0}. 

So |V (C ′
1 ∪ C ′

2 ∪ C ′
3)| ≤ 3n − 9. Moreover, the three components including C ′

1, C
′
2, C

′
3 separately in the subgraph induced 

by vertices in C ′
1 ∪ C ′

2 ∪ C ′
3 ∪ {w0} are also three components in Q n \ S . Then from the same discussion as the first case 

one gets the contradiction.
• Q 0

n−1 \ S0 is disconnected with exactly three connected components, two of which are isolated vertices, denoted as 
w0

1 and w0
2. Then there are at least three components D1, D2, D3 in Q 1

n−1 \ S1 such that N Q 0
n−1

(V (D1 ∪ D2 ∪ D3)) ⊆
S0 ∪ {w0

1, w
0
2}. So |V (D1 ∪ D2 ∪ D3)| ≤ 3n − 8. Moreover, the three components including D1, D2, D3 separately in the 

subgraph induced by vertices in D1 ∪ D2 ∪ D3 ∪ {w0
1, w

0
2} are also three components in Q n \ S . Then from the same 

discussion as the first case one gets the contradiction.
• Q 0

n−1 \ S0 is disconnected with two connected components, one of which contains exactly one edge, denoted as w0
3 w0

4.
– If w0

3 w0
4 is also a component, denoted as C , in Q n \ S , then there are at least two components F1, F2 in Q 1

n−1 \ S1, 
which are also two components in Q n \ S . So |V (F1 ∪ F2)| ≤ |S0| ≤ 3n −10. Then there are three components C, F1, F2
in Q n \ S with at most 3n − 8 vertices. From the same discussion as the first case one gets the contradiction.

– Otherwise w0
3 w0

4 is not a component in Q n \ S . Then there are at least three components D ′
1, D ′

2, D
′
3 in Q 1

n−1 \ S1

such that N Q 0
n−1

(V (D ′
1 ∪ D ′

2 ∪ D ′
3)) ⊆ S0 ∪ {w0

3, w
0
4}. We arrive the same situation as the third case above.

The theorem is proved. �
4. Perspectives

We propose the following conjecture for the h-extra r-component connectivity of hypercubes, which are proved to be 
true for 2 ≤ r ≤ 4 in this paper:

Conjecture 4. For 2 ≤ r ≤ n, cκ1
r (Q n) = 2(r − 1)(n − r + 1).
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