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An outer-1-planar graph is a graph admitting a drawing in the plane so that all vertices appear in the outer region

of the drawing and every edge crosses at most one other edge. This paper establishes the local structure of outer-1-

planar graphs by proving that each outer-1-planar graph contains one of the seventeen fixed configurations, and the

list of those configurations is minimal in the sense that for each fixed configuration there exist outer-1-planar graphs

containing this configuration that do not contain any of another sixteen configurations. There are two interesting

applications of this structural theorem. First of all, we conclude that every (resp. maximal) outer-1-planar graph of

minimum degree at least 2 has an edge with the sum of the degrees of its two end-vertices being at most 9 (resp. 7),

and this upper bound is sharp. On the other hand, we show that the list 3-dynamic chromatic number of every

outer-1-planar graph is at most 6, and this upper bound is best possible.
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1 Introduction

A graph is 1-planar if it can be drawn in the plane such that each edge is crossed at most once. The

family of 1-planar graphs is among the most investigated graph families within the so-called “beyond

planar graphs”, see [DLM19, KLM17]. In this paper, we focus on a subclass of 1-planar graphs, in

particular, outer-1-planar graphs. A graph is said to be outer 1-planar if it has a drawing in the plane

so that all vertices appear in the outer region of the drawing and every edge crosses at most one other

edge; such a drawing is called an outer-1-plane graph and the outer region of the drawing is called the

outer boundary of G. An outer-1-planar graph is maximal if adding any edge (not multi-edge) to it

will disturb the outer-1-planarity. The concept of outer-1-planar graphs was first introduced by [Egg86]

who called them outerplanar graphs with edge crossing number one, and also investigated under the

notion of pseudo-outerplanar graphs, see [TZ14, Zha13, ZLW12]. Note that outer-1-planar graphs are

planar, see [ABB+16, ZLW12]. Various topics on outer-1-planar graphs including the recognition, see

[ABB+13, HEK+15], drawing, see [DE12, GLM15], structure, see [ZLLZ18, ZLW12] and coloring, see

[Che19, TZ14, Zha13, LZ20, Zha16, Zha17, ZL21a, Zha20], are explored.
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If G is a class of graphs such that each graph G ∈ G contains an edge uv with d(u) + d(v) ≤ C, where

C is a constant independent of G, then we say that G contains light edge, or G is an edge-light graph

class. An edge uv is of type (a,≤ b) if d(u) = a and d(v) ≤ b. Finding edge-light graph classes is an

interesting topic in the literature.

[Kot55] proved that each 3-connected planar graph contains an edge uv such that d(u)+d(v) ≤ 13 and

this bound is sharp. [FM07] showed that each 3-connected 1-planar graph contains an edge uv such that

max{d(u), d(v)} ≤ 20 and the bound 20 is sharp. [LS17] proved that each 3-connected 1-planar graph G

contains an edge uv of type (3,≤ 22), (4,≤ 13), (5,≤ 9), (6,≤ 8) or (7, 7) and thus d(u) + d(v) ≤ 25.

Replacing the 3-connectedness with a condition on the minimum degree, [Hv12] proved that each 1-

planar graph of minimum degree at least 4 contains an edge of type (4,≤ 13), (5,≤ 9), (6,≤ 8) or

(7, 7), where the bound 9, 8 and 7 in the last three types are sharp. Very recently, [BDHS20] showed that

each 1-planar graph of minimum degree at least 3 contains an edge uv such that max{d(u), d(v)} ≤ 29.

[NZ20] showed that each 1-planar graph of minimum degree at least 3 contains an edge of type (3,≤ 23),
(4,≤ 11), (5,≤ 9), (6,≤ 8) or (7, 7). It is not clear whether the bound 23 and 11 in the first two types

are sharp, and the authors conjectured that they may be improved to 20 and 10, respectively.

For subclasses of planar graphs, it is well known, see [WK99], that each outerplanar graph of minimum

degree at least 2 contains en edge uv such that d(u)+d(v) ≤ 6 and this bound is sharp. [ZLLZ18] proved

that (i) each outer-1-planar graph of minimum degree at least 2 has an edge uv such that d(u) + d(v) ≤ 9
and the bound is sharp; (ii) every maximal outer-1-planar graph G has an edge uv such that d(u)+d(v) ≤
7 and the bound is sharp.

The aim of this paper is to improve the above two results of [ZLLZ18] to a more detailed form, which

not only confirms the existence of such a light edge but also shows in which configuration it is contained

(see Theorem 4 in Section 2). Actually, our result implies that each outer-1-planar graph of minimum

degree at least 2 contains an edge of type (2,≤ 7) or (3, 3), and each maximal outer-1-planar graph

contains an edge of type (2,≤ 5) or (3, 3), and all bounds are sharp.

On the other hand, this structural theorem is applicable to an interesting problem the so-called list

3-dynamic coloring of graphs, which has many applications to the channel assignment problems, see

[ZB18, ZB20]. For the continuity of this paper, we introduce the list 3-dynamic coloring in Section 3,

where we give a sharp upper bound for the list 3-dynamic chromatic number of outer-1-planar graphs (see

Theorem 8 in Section 3).

2 Structural Theorem

If an outer-1-plane graph G is 2-connected, then we denote by v1, v2, . . . , v|G| the vertices in the outer

boundary of G consecutively in a clockwise order, and then let V [vi, vj ] = {vi, vi+1, . . . , vj} and

V(vi, vj) = V [vi, vj ]\{vi, vj} (we take modulo |G| for the subscripts). The subgraph of G induced

by V [vi, vj ] is denoted by G[vi, vj ].

If there is no edge between V(vi, vl) and V(vl, vi), where i < l, then we denote by Ĝ[vi, vl] the graph

derived from G[vi, vl] via adding an edge vivl if it does not originally exist in G. Clearly, Ĝ[vi, vl] is also

a 2-connnected outer-1-plane graph.

Given a vertex set V [vi, vj ] with i 6= j, if j = i + 1 (mod |G|) and vivj 6∈ E(G), then we call it a

non-edge, and if vkvk+1 ∈ E(G) for all i ≤ k < j, then we call it a path. If xy ∈ E(G) and x, y are not

two consecutive vertices in the outer boundary of G, then we call xy a chord. A chord that is crossed in

G is called a crossed chord. The set of chords xy with x, y ∈ V [vi, vj ] is denoted by C[vi, vj ]
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Fig. 1: Local structures in an outer-1-planar graph G with δ(G) ≥ 2

Lemma 1 [ZLW12, Claim 1] Let G be a 2-connected outer-1-plane graph and let vi, vj be vertices of

G. If each chord in C[vi, vj ] is not crossed and there is no edge between V(vi, vj) and V(vj , vi), then

V [vi, vj ] is either a path or a non-edge.

If G contains a configuration Gi as shown in Fig. 1 such that any hollow (resp. solid black) vertex has

the degree in G at least (resp. exactly) the number of edges incident with it there, and any solid grey vertex

has the degree in G as marked by Fig. 1, then we say that G contains Gi. For two vertices va, vb ∈ V (G),
saying G[va, vb] properly contains Gi, we mean that G[va, vb] contains Gi so that neither va nor vb
corresponds to a solid black or grey vertex in the picture of Gi.

Lemma 2 If G contains a path v1v2 . . . vn with n ≥ 5 such that vivi+1 is not a chord for each 1 ≤ i ≤
n− 1, and there are no chords vivj and vkvl such that 1 ≤ i < k < j < l ≤ n, then G[v1, vn] properly

contains G1, G2 or G4.

Proof: We prove it by induction on n.

Case 1. n = 5.

If C[v1, vn] = ∅, then d(v2) = d(v3) = 2 and G1 is properly contained in G[v1, vn]. Otherwise,

choose a chord vivj ∈ C[v1, vn] so that C[vi, vj ] = {vivj} and i < j. Now, if j − i ≥ 3, then d(vi+1) =
d(vi+2) = 2 andG[v1, vn] properly containsG1. If j−i = 2, then d(vi+1) = 2, and either i 6= 1 or j 6= n.

By symmetry, we assume the latter. If d(vj) = 3, then G[v1, vn] properly contains G2. If d(vj) = 4,

then by symmetry, we consider two subcases. First, if j = 3, then v3v5 ∈ E(G) and d(v4) = 2, which

implies the proper containment of G4. Second, if j = 4, then i = 2 and v1v4 ∈ E(G). This concludes

that d(v2) = 3 and G2 is properly contained in G[v1, vn].
Case 2. n ≥ 6.

Suppose that we have proved the lemma for every n′ with 5 ≤ n′ < n.
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We assume that there is a chord vivj ∈ C[v1, vn] so that j − i = 2, otherwise we can finish the proof as

in Case 1. Assume, without loss of generality, that j 6= n. If d(vj) = 3, then G[v1, vn] properly contains

G2. Hence we assume d(vj) ≥ 4. Therefore, there exists a chord vjvk with 1 ≤ k < i or j < k ≤ n.

If 1 ≤ k < i, then i 6= 1, which implies d(vi) ≥ 4, because otherwise d(vi) = 3 and thus G2 is

properly contained. Whereafter, there is a chord vivt with k ≤ t < i. Hence, there exists either a chord

vjvk with j < k ≤ n, or a chord vivt with 1 ≤ t < i. By symmetry, we assume the former.

If k − j ≥ 4, then G[vj , vk] properly contains G1, G2 or G4 by the induction hypothesis, and so does

G[v1, vn], since any vertex in V(vj , vk) has the same degree both in G[vj , vk] and G[v1, vn].
If k − j = 3, then either d(vj+1) = d(vj+2) = 2, or d(vj+1) = 2, d(vj+2) = 3 and vjvj+2 ∈ E(G),

or d(vj+1) = 3, d(vj+2) = 2 and vj+1vk ∈ E(G). In each case, we conclude that G[vj , vk] properly

contains G1 or G2, and so does G[v1, vn].
If k − j = 2, then d(vj+1) = 2. At this moment, if d(vj) = 4, then G4 is properly contained in

G[v1, vn]. Otherwise, there is a chord vjvs such that k < s ≤ n or 1 ≤ s < i. By symmetry, assume the

former. If s − k ≥ 2, then |V [vj , vs]| ≥ 5 and by the induction hypothesis, G[vj , vs] properly contains

G1, G2 or G4, and so does G[v1, vn]. If s − k = 1, then d(vk) = 3 and G2 is properly contained in

G[v1, vn]. ✷

Let G be a 2-connected outer-1-plane graph. By D1 and D2, we define two possible properties for the

drawing of G. They are stated as follows.

D1 If G contains G3, then the graph derived from G by adding a new edge between u and v in that picture

is still outer-1-planar;

D2 If G contains Gi for some 6 ≤ i ≤ 17, then the picture of Gi in Fig. 1 corresponds to a partial

drawing (up to inversion) of G in the plane.

Theorem 3 Let G be a 2-connected outer-1-plane graph and let v1, v2, . . . , vn (n = |G|) be its vertices

appearing in the outer boundary of G consecutively in that order.

(1) If n = 4, then G[v1, v4] properly contains G1 or G2, unless v1v3 crosses v2v4 and v1v2, v3v4 ∈
E(G);

(2) If n = 5, then G[v1, v5] properly contains one of the configurations among G1 − G4, G6, G8, G13

such that D1 and D2 hold unless V [v1, v5] is a path and v1v4, v2v5 ∈ E(G);

(3) If n ≥ 6, then G[v1, vn] properly contains one of the configurations among G1 − G17 such that D1

and D2 hold.

Proof: If no crossing appears in G, then v1v2 · · · vn is a path by the 2-connectedness of G, and thus

G[v1, vn] properly contains G1, G2 or G4 by Lemma 2 if n ≥ 5. On the other hand, if n = 4, then

G[v1, v4] properly contains G2 if v1v3 ∈ E(G) or v2v4 ∈ E(G), and G1 otherwise. Hence in the

following we assume that there is a pair of crossed chords vivj and vkvl with 1 ≤ i < k < j < l ≤ n,

Case 1. n = 4.

Suppose that v1v3 crosses v2v4. If v1v2 6∈ E(G), then v2v3 ∈ E(G) by the 2-connectedness of

G. Therefore, G[v1, v4] properly contains G1 if v3v4 6∈ E(G), and G2 otherwise. Hence we assume

v1v2 ∈ E(G). By symmetry, it is also assumed that v3v4 ∈ E(G). This is in accordance with the

excluded case listed in (1).
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Case 2. n = 5.

By symmetry, we analyse three subcases as follows.

Subcase 2.1. v1v3 crosses v2v4.

By (1), Ĝ[v1, v4] properly contains G1 or G2 (and so does G[v1, v4]), unless v1v3 crosses v2v4 and

v1v2, v3v4 ∈ E(G), in which case we have d(v4) ≤ 4. Therefore, G[v1, v5] properly contains G3 if

v2v3 6∈ E(G), and G6 otherwise. Moreover, D1 and D2 hold.

Subcase 2.2. v1v3 crosses v2v5.

By the 2-connectedness of G, v3v4, v4v5 ∈ E(G).
If v2v3 6∈ E(G), then d(v3) = d(v4) = 2 if v3v5 6∈ E(G), and d(v3) = 3, d(v4) = 2 if v3v5 ∈ E(G).

Therefore, G[v1, vn] properly contain G1 in the former case, and G2 in the latter case.

If v2v3 ∈ E(G) and v1v2 6∈ E(G), then d(v2) = d(v4) = 2, d(v3) ≤ 4, and thus G3 is properly

contained in G[v1, vn]. We confirm that D1 holds by showing that G + v2v4 is still outer-1-planar. Ac-

tually, adjusting the order of the vertices in the outer boundary from v1, v2, v3, v4, v5 to v1, v3, v2, v4, v5,

we obtain an outer-1-planar drawing of the graph G+ v2v4.

If v1v2, v2v3 ∈ E(G), then G[v1, vn] properly contains G8 if v3v5 6∈ E(G), and G13 if v3v5 ∈ E(G).
Subcase 2.3. v1v4 crosses v2v5.

By the 2-connectedness of G, v2v3, v3v4 ∈ E(G).
If v4v5 6∈ E(G) (the case that v1v2 6∈ E(G) is symmetric), then d(v3) = d(v4) = 2 if v2v4 6∈ E(G),

and d(v3) = 2, d(v4) = 3 if v2v4 ∈ E(G). Therefore, G[v1, vn] properly contain G1 in the former case,

and G2 in the latter case.

If v1v2, v4v5 ∈ E(G), then we meet the excluded case mentioned in (2).

Case 3. n = 6.

If |V [vi, vl]| = 4, then by (1), Ĝ[vi, vl] properly contains G1 or G2 (and so does G[vi, vl]), unless

vivk, vjvl ∈ E(G), in which case we have d(vi), d(vl) ≤ 5. Since either i 6= 1 or l 6= 6, G[v1, v6]
properly contains G3 if vkvj 6∈ E(G), and G6 otherwise. Moreover, D1 and D2 hold trivially.

If |V [vi, vl]| = 5, then by (2), Ĝ[vi, vl] properly contains one of the configurations among G1 −
G4, G6, G8, G13 (and so does G[vi, vl]) such that D1 and D2 hold, unless V [vi, vl] is a path and k =
i + 1, j = l − 1, in which case we have d(vi), d(vl) ≤ 4. Since either i 6= 1 or l 6= 6, G[v1, v6] properly

contains G7 if vkvj 6∈ E(G), and G12 otherwise. Moreover, D2 holds.

If |V [vi, vl]| = 6, then i = 1 and l = 6. By symmetry, we analyse four subcases as follows.

Subcase 3.1. v1v3 crosses v2v6.

By (1), Ĝ[v3, v6] properly contains G1 or G2 (and so does G[v3, v6]), unless v3v5 crosses v4v6 and

v3v4, v5v6 ∈ E(G), in which case we have d(v3) ≤ 5. Hence G[v1, v6] properly contains G3 if v4v5 6∈
E(G), and G6 otherwise. Moreover, D1 and D2 hold trivially.

Subcase 3.2. v1v4 crosses v2v6.

By the 2-connectedness of G, v2v3, v3v4, v4v5, v5v6 ∈ E(G). If v1v2 6∈ E(G), then d(v2) = d(v3) =
2 if v2v4 6∈ E(G), and d(v2) = 3, d(v3) = 2 if v2v4 ∈ E(G). This implies that G[v1, v6] properly

contains G1 in the former case, and G2 in the latter case. Hence we assume v1v2 ∈ E(G). This implies

that G[v1, v6] properly contains G10 if v2v4, v4v6 6∈ E(G), G5 if |{v2v4, v4v6} ∩ E(G)| = 1, and G15 if

v2v4, v4v6 ∈ E(G). Moreover, D2 holds trivially.

Subcase 3.3. v1v4 crosses v3v6.

By the 2-connectedness of G, v1v2, v2v3, v4v5, v5v6 ∈ E(G). If v3v4 6∈ E(G), then d(v2) = d(v3) =
2 if v1v3 6∈ E(G), and d(v2) = 2, d(v3) = 3 if v1v3 ∈ E(G), which implies that G[v1, v6] properly

contains G1 in the former case, and G2 in the latter case. Hence we assume v3v4 ∈ E(G). This implies
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that G[v1, v6] properly contains G9 if v1v3, v4v6 6∈ E(G), G14 if |{v1v3, v4v6} ∩ E(G)| = 1, and G16 if

v1v3, v4v6 ∈ E(G). Moreover, D1 and D2 hold trivially.

Subcase 3.4. v1v5 crosses v2v6.

By (1), Ĝ[v2, v5] properly contains G1 or G2 (and so does G[v2, v5]), unless v2v4 crosses v3v5 and

v2v3, v4v5 ∈ E(G), in which case we have d(v2) ≤ 5. Hence G[v1, v6] properly contains G3 if v3v4 6∈
E(G), and G6 otherwise. Moreover, D1 and D2 hold trivially.

Case 4. n ≥ 7.

Suppose that we have proved the lemma for every n′ with 6 ≤ n′ < n.

Claim A. If vivj crosses vkvl (1 ≤ i < k < j < l ≤ n), then G[v1, vn] properly contains at least

one of the configurations among G1 − G17 such that D1 and D2 hold, unless 4 ≤ |V [vi, vl]| ≤ 5,

k = i+ 1, j = l − 1, and vivk, vjvl ∈ E(G), in which case we say that vivj co-crosses vkvl in G.

Proof:

If max {|V [vi, vk]|, |V [vk, vj ]|, |V [vj , vl]|} ≥ 6, then we consider, without loss of generality, the case

that |V [vi, vk]| ≥ 6. Applying the induction hypothesis to Ĝ[vi, vk] (note that there is no edge between

V(vi, vk) and V(vk, vi)), we conclude that it properly contains one of the configurations among G1−G17

such that D1 and D2 hold, and so does G[v1, vn], since any vertex in V(vi, vk) has same degree both in

Ĝ[vi, vk] andG[v1, vn]. Hence, we are only care about the case max {|V [vi, vk]|, |V [vk, vj ]|, |V [vj , vl]|} ≤
5.

Subcase 4.1. max {|V [vi, vk]|, |V [vk, vj ]|, |V [vj , vl]|} = 5.

We only consider the case |V [vi, vk]| = 5, and the cases that |V [vk, vj ]| = 5 or |V [vj , vl]| = 5 can

be considered similarly. By (2), Ĝ[vi, vk] properly contains one of the configurations among G1 −
G4, G6, G8, G13 such that D1 and D2 hold (and so does G[vi, vk]) unless V [vi, vk] is a path such that

vivk−1, vi+1vk ∈ E(G). If d(vk) ≤ 7, then G[v1, vn] properly contains G7 if vi+1vk−1 6∈ E(G), and

G12 otherwise. It is easy to see that D2 holds now. Therefore, we assume that d(vk) ≥ 8. This im-

plies that j = k + 4 (note that |V [vk, vj ]| ≤ 5) and that vk is adjacent to vi, vk+1, vk+2, vk+3, vj , vl.

By (2), Ĝ[vk, vj ] properly contains one of the configurations among G1 −G4, G6, G8, G13 (and so does

G[vk, vj ]), since |V [vk, vj ]| = 5 and Ĝ[vk, vj ] cannot contain the excluded structure mentioned in (2).

Subcase 4.2. max {|V [vi, vk]|, |V [vk, vj ]|, |V [vj , vl]|} = 4.

We only consider the case |V [vi, vk]| = 4, and the cases that |V [vk, vj ]| = 4 or |V [vj , vl]| = 4 can

be considered similarly. By (1), Ĝ[vi, vk] properly contains G1 or G2, unless vivk−1 crosses vi+1vk and

vivi+1, vk−1vk ∈ E(G). Since |V [vk, vj ]| ≤ 4, d(vk) ≤ 7. Therefore, G[v1, vn] properly contains G3 if

vi+1vk−1 6∈ E(G), and G6 otherwise. Moreover, D1 and D2 hold.

Subcase 4.3. |V [vi, vk]| = 3, and |V [vk, vj ]|, |V [vj , vl]| ≤ 3.

By the 2-connectedness of G, V [vi, vk] is a path.

Assume first that |V [vk, vj ]| = 3. Clearly, V [vk, vj ] is also a path since G is 2-connected.

If exactly one from vivk and vkvj , say vivk, is an edge of G, then d(vi+1) = d(vk+1) = 2 and

d(vk) = 4, which implies the proper containment of G5 in G[v1, vn].

If vivk 6∈ E(G) and vkvj 6∈ E(G), then we look at |V [vj , vl]|. If |V [vj , vl]| = 3, then V [vj , vl] is a path

by the 2-connectedness of G, and thus G[v1, vn] properly contains G5 if vjvl ∈ E(G), and G11 otherwise.

If |V [vj , vl]| = 2, then G[v1, vn] properly contains G10 if vjvl ∈ E(G), and d(vj) = d(vj−1) = 2 if

vjvl 6∈ E(G), in which case G1 is properly contained in G[v1, vn]. In each case D2 holds.
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If vivk ∈ E(G) and vkvj ∈ E(G), then we also look at |V [vj , vl]|. If |V [vj , vl]| = 3, then V [vj , vl]
is a path by the 2-connectedness of G, and thus G[v1, vn] properly contains G17 if vjvl ∈ E(G), and

G5 otherwise. If |V [vj , vl]| = 2, then G[v1, vn] properly contains G15 if vjvl ∈ E(G), and d(vj) =
3, d(vj−1) = 2 if vjvl 6∈ E(G), in which case G2 is properly contained in G[v1, vn]. In each case D2

holds.

We assume now that |V [vk, vj ]| = 2.

If vkvj 6∈ E(G), then d(vi+1) = 2, d(vk) = 3 if vivk ∈ E(G), and d(vi+1) = d(vk) = 2 if

vivk 6∈ E(G). Therefore, G[v1, vn] properly contain G2 in the former case, and G1 in the latter case.

If vkvj ∈ E(G), then we look at |V [vj , vl]|.
If |V [vj , vl]| = 3, then V [vj , vl] is a path by the 2-connectedness of G. Therefore, G[v1, vn] properly

contains G9 if |{vivk, vjvl} ∩ E(G)| = 0, G14 if |{vivk, vjvl} ∩ E(G)| = 1, and G16 if |{vivk, vjvl} ∩
E(G)| = 2. In each case D2 holds.

If |V [vj , vl]| = 2, then we consider two subcases. If vjvl 6∈ E(G), then d(vi+1) = d(vj) = 2 and

d(vk) ≤ 4, which implies that G[v1, vn] properly contains G3. Adjusting the order of the vertices in

the boundary of G from v1, . . . , vk−1, vk, vj , vj+1, . . . , vn to v1, . . . vk−1, vj , vk, vj+1, . . . , vn, we obtain

an outer-1-planar drawing of G + vi+1vj , and thus D1 holds. If vjvl ∈ E(G), then G[v1, vn] properly

contains G13 if vivk ∈ E(G), and G8 otherwise. In each case D2 holds.

Subcase 4.4. |V [vj , vl]| = 3, and |V [vi, vk]|, |V [vk, vj ]| ≤ 3.

This is a symmetric case of Subcase 4.3, so we omit the proof here.

Subcase 4.5. |V [vi, vk]| = |V [vj , vl]| = 2, and |V [vk, vj ]| ≤ 3.

If vivk, vjvl ∈ E(G), then vivj co-crosses vkvl, as desired. Hence in the following we assume

|{vivk, vjvl} ∩ E(G)| ≤ 1. By symmetry, we assume that vivk 6∈ E(G).
If |V [vk, vj ]| = 3, then by the 2-connectedness of G, V [vk, vj ] is a path. If vkvj ∈ E(G), then

d(vk+1) = 2, d(vk) = 3 and thus G2 is properly contained in G[v1, vn]. If vkvj 6∈ E(G), then d(vk) =
d(vk+1) = 2 and thus G1 is properly contained in G[v1, vn].

If |V [vk, vj ]| = 2, then vkvj ∈ E(G) by the 2-connectedness of G. If vjvl ∈ E(G), then d(vk) = 2,

d(vj) = 3 and thus G2 is properly contained in G[v1, vn]. If vjvl 6∈ E(G), then d(vk) = d(vj) = 2 and

thus G1 is properly contained in G[v1, vn]. ✷

We now come back to the proof for Case 4. By Claim A, we assume that vivj co-crosses vkvl in G,

as otherwise we have done the proof. Since n ≥ 7, either l 6= n or i 6= 1. We assume the former by

symmetry. If d(vl) ≤ 7 , then G3 or G6 or G7 or G12 is properly contained in G[v1, vn], and D1, D2

hold. Hence we assume d(vl) ≥ 8. Under this condition, there is a chord vlvt ∈ E(G) with l < t ≤ n or

1 ≤ t < i. If 1 ≤ t < i, then i 6= 1 and thus d(vi) ≥ 8, as otherwise G3 or G6 or G7 or G12 is properly

contained in G[v1, vn], and D1, D2 hold. So, there is a chord vsvi with t ≤ s < i (note that vlvt can be

crossed at most once).

Consequently, we have to consider the following subcases to complete the proof: (1) there is a chord

vlvt ∈ E(G) with l < t ≤ n; (2) there is a chord vsvi with t ≤ s < i. We assume the former by

symmetry, and meanwhile, assume that t− l is as large as possible.

If vlvt crosses vavb with l < a < t, then by Claim A, vlvt co-crosses vavb, as otherwise we have

finished the proof. This implies that a = l + 1 and b = t + 1. Since d(vl) ≥ 8, there is another chord

vlvs with 1 ≤ s < i or b < s ≤ n. Without loss of generality, assume the latter. By Claim A, vlvs is not

crossed (note that vlvs cannot be co-crossed by another edge). If 6 ≤ |V [vl, vs]| < n, then applying the

induction hypotheses to the graph G[vl, vs] (note that there is no edge between V(vl, vs) and V(vs, vl)),
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we conclude that it properly contains one of the configurations amongG1−G17 such that D1 and D2 hold,

and so does G[v1, vn]. If |V [vl, vs]| = 5, then by (2), G[vl, vs] properly contains one of the configurations

among G1 −G4, G6, G8, G13 such that D1 and D2 hold, because the exclude structure mentioned in (2)

cannot appear in G[vl, vs].
On the other hand, suppose that vlvt is not crossed. If |V [vl, vt]| ≥ 6, then applying the induction

hypotheses to the graph G[vl, vt], we conclude that it properly contains one of the configurations among

G1 −G17 such that D1 and D2 hold, and so does G[v1, vn]. Hence we assume |V [vl, vt]| ≤ 5,

If there is a chord vlvs with 1 ≤ s < i, then vlvs is not crossed by Claim A (note that vlvs cannot

be co-crossed by another edge). If |V [vs, vl]| ≥ 6, then applying the induction hypotheses to the graph

G[vs, vl], we conclude that it properly contains one of the configurations among G1 −G17 such that D1

and D2 hold, and so does G[v1, vn]. If |V [vs, vl]| = 5, then by (2), G[vs, vl] properly contains one of the

configurations among G1 − G4, G6, G8, G13 such that D1 and D2 hold, because the exclude structure

mentioned in (2) cannot appear in G[vs, vl]. Therefore, we assume that there is no such a chord vlvs with

1 ≤ s < i.

Since |V [vl, vt]| ≤ 5 and t is an integer such that t− l is as large as possible, d(vl) ≤ 7, contradicting

the assumption d(vl) ≥ 8.

This ends the proof of (3). ✷

An end-block of a connected graph G of minimum degree at least 2 is a 2-connected subgraph con-

taining exactly one cut-vertex of G if G has cut-vertices (i.e, G is not 2-connected), or G itself if G is

2-connected.

Theorem 4 Each outer-1-plane graphG with δ(G) ≥ 2 contains at least one of the configurations among

G1 −G17 such that D1 and D2 hold.

Proof: Theorem 3(3) implies this result for the case that G is 2-connected and |G| ≥ 6. If G is not

2-connected or |G| ≤ 5, then let H be an end-block of G. Let v1, v2, . . . , vn be the vertices of H with a

clockwise sequence in the drawing, where n = |H | and only v1 may be a cut-vertex. Since δ(G) ≥ 2,

n ≥ 3.

If n ≥ 6, then by Theorem 3(3), one of the configurations among G1 − G17 is properly contained in

K[v1, vn] such that D1 and D2 hold. Hence G contains one of the configurations among G1 −G17 such

that D1 and D2 hold.

If n = 5, then by Theorem 3(2), H [v1, vn] properly contains (and thus G contains) one configuration

among G1−G4, G6, G8, G13 such that D1 and D2 hold unless V [v1, v5] is a path and v1v4, v2v5 ∈ E(G),
in which case d(v5) ≤ 3 and thus G7 or G12 is contained in G such that D2 holds.

If n = 4, then by Theorem 3(1), H [v1, vn] properly contains (and thus G contains) G1 or G2 unless

v1v3 crosses v2v4 and v1v2, v3v4 ∈ E(G), in which case d(v4) ≤ 3 and thus G3 or G6 is contained in G.

Clearly, D1 and D2 hold.

If n = 3, then by the 2-connectedness of H , v1v2, v2v3, v3v1 ∈ E(H) and d(v2) = d(v3) = 2. This

implies that G contains G1. ✷

In the following, we first use Theorem 4 to deduce the theorem that was recently proved in [ZLLZ18].

Corollary 5 (1) Each outer-1-planar graph G with δ(G) ≥ 2 has an edge uv such that d(u)+d(v) ≤ 9;

(2) Each maximal outer-1-planar graph G has an edge uv such that d(u) + d(v) ≤ 7.
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Fig. 2: The construction of special outer-1-planar graphs

Proof: (1) Since each configuration Gi with i 6= 6 in Fig. 1 contains an edge uv with d(u) = 2 and

d(v) ≤ 7, and the configuration G6 contains an edge uv with d(u) = d(v) = 3, by Theorem 4, G

contains an edge uv such that d(u) + d(v) ≤ 9.

(2) If G is a maximal outer-1-planar graph, then it is easy to see that δ(G) ≥ 2. If G contains G3 in

Fig. 1, then by D1, G+ uv is outer-1-planar, contradicting the maximality of G. Hence by Theorem 4, G

contains one of the configurations among G1, G2, G4 − G17, in each of which configuration there is an

edge uv with either d(u) = 2 and d(v) ≤ 5, or d(u) = d(v) = 3. Hence G contains an edge uv such that

d(u) + d(v) ≤ 7. ✷

The following is another immediate corollary from Theorem 4, which will be used in Section 3 to prove

an interesting result on the list 3-dynamic coloring of outer-1-planar graphs.

Corollary 6 Each outer-1-planar graph contains one of the following configurations:

(1) a vertex of degree at most 1;

(2) two adjacent vertices of degree 2;

(3) a triangle incident with a vertex of degree 2;

(4) the configuration Gi as in Fig. 1, where i ∈ {3, 6, 7, 8, 9, 10, 11}. �

To end this section, we show that the list of the configurations in Theorem 4 is minimal in the sense

that for each configuration Gi with 1 ≤ i ≤ 17, there are outer-1-planar graphs containing Gi that do not

have any of another sixteen configurations.

Trivially, a cycle contains G1 and does not contain Gi for any 2 ≤ i ≤ 17. We now look at the left

picture in Fig. 2. Into each of the shadowed areas, we embed the configurations G∗
i with 2 ≤ i ≤ 17 so

that x and y are end vertices (we do not care about the direction of the embedding of the configuration,

although some configuration, say G14 for example, is not symmetric in its drawing), and denote the

resulting graph by Hi. Here, G∗
i with 2 ≤ i ≤ 5 is shown as in Fig. 2, and G∗

i with 6 ≤ i ≤ 17
corresponds to Gi in Fig. 1. It is easy to check that the graph Hi with 2 ≤ i ≤ 17 is an outer-1-planar
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Fig. 3: An outer-1-planar graph with 3-dynamic chromatic number 6

graph that contains Gi and does not contain Gj with j 6= i. This also implies the sharpness of Corollary

5.

3 List 3-Dynamic Coloring

A proper k-coloring c of a graph G is a function from its vertex set V (G) to {1, 2, . . . , k} such that

c(u) 6= c(v) if u is adjacent to v. An r-dynamic k-coloring of a graph G is a proper k-coloring such

that for any vertex v, there are at least min{r, d(v)} distinct colors appearing on the neighbors of v.

The minimum integer k so that G has a proper k-coloring or an r-dynamic k-coloring is the chromatic

number or r-dynamic chromatic number of G, denoted by χ(G) or χr(G), respectively. Clearly, χr(G) ≥
χ1(G) = χ(G), where r ≥ 1.

The notion of r-dynamic coloring was introduced by [Mon01], newly studied by [JKSW16, KMW15,

KUAD20, ZB18], and also investigated under the notion of r-hued coloring, see [CFL+20, CLL+18,

LMPV21, MHKX18, SFC+14, SL18, SLW16, ZCML17]. As starting cases of r-dynamic coloring, the

2-dynamic coloring (known as dynamic coloring in literature), see [Ali11, AGJ09, AGJ14b, AGJ14a,

BS12, CFL+12, KLO16, LMRW18, MLGM16, MMSL06], and the 3-dynamic coloring, see [AKK+18,

KP18, LL17], have been considered. The list analogue of dynamic coloring was introduced by [AGJ09],

and investigated by many authors including [Esp10, GKMS21, KLP13, KP18, KP11, LL17, ZCML17,

ZL21b, ZB20].

Suppose that a set L(v) of colors, called a list of v, is assigned to each vertex v ∈ V (G). An r-dynamic

L-coloring of G is an r-dynamic coloring c so that c(v) ∈ L(v) for every v ∈ V (G). A graph G is

r-dynamic k-choosable if G has an r-dynamic L-coloring whenever |L(v)| = k for every v ∈ V (G). The

minimum integer k for which G is r-dynamic k-choosable is the list r-dynamic chromatic number of G,

denoted by chr(G). It is obvious that chr(G) ≥ χr(G).
In this section, we apply the structural theorem obtained in Section 2 (precisely, Corollary 6) to prove

that the list 3-dynamic chromatic number of every outer-1-planar graph is at most 6, and moreover, this

upper bound 6 is sharp because of the existence of an outer-1-planar graph with 3-dynamic chromatic

number 6, see Theorem 7.

Theorem 7 There exists an outer-1-planar graph with 3-dynamic chromatic number 6.

Proof: Look at the outer-1-planar graph G in Fig. 3. We claim that its 3-dynamic chromatic number is

exactly 6. Since v3 has degree 3 and v2, v4, v5 are its neighbors, those four vertices have distinct colors in

any 3-dynamic coloring G. Without loss of generalization, assume that v2, v3, v4 and v5 are colored with
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1,2,3 and 4, respectively. It is clear that v6 cannot be colored by 2 or 3 (otherwise two neighbors of v5,

which has degree 3, are monochromatic), and also cannot be colored by 1 (otherwise two neighbors of v7,

which has degree 3, are monochromatic). Therefore, we assume that v6 is colored with 5 (note that the

color 4 is forbidden on v6 since it is adjacent to v5 that has color 4). At this stage, the colors 1, 2, 3, 4 and

5 are forbidden on v7 (otherwise two adjacent vertices receive a same color, or a vertex of degree 3 has

two monochromatic neighbors). Hence we have to color v7 with 6, and then color v1 with 3. This implies

that the 3-dynamic chromatic number of G is exactly 6. ✷

Theorem 8 If G is an outer-1-planar graph, then ch3(G) ≤ 6.

Proof: Let G be a counterexample to the theorem statement with the smallest number of vertices. It

follows that there exists a list assignment L of size 6 such that G has no 3-dynamic L-coloring and any

proper subgraph of G is 3-dynamic L-colorable. Clearly, G is connected. In what follows, we prove a

series of propositions contradicting Corollary 6 to complete the proof.

(1) δ(G) ≥ 2.

Suppose, to the contrary, that there is an edge uv with d(u) = 1. By the minimality of G, the graph

G′ = G− u has a 3-dynamic L-coloring c. It is easy to see that d(v) ≥ 2, because otherwise G is exactly

K2 that is 3-dynamic L-colorable, a contradiction. If d(v) ≥ 4, then v has degree at least 3 in G′ and

thus v is incident with at least three distinct colors in c. In this case we color u from its list with a color

different from c(v), and then obtain a 3-dynamic L-coloring of G, a contradiction. If d(v) ≤ 3, then color

u from its list with a color that is different from the colors used on v and its neighbor(s) in G′. This also

constructs a 3-dynamic L-coloring of G, a contradiction.

(2) G does not contain two adjacent vertices of degree 2.

Suppose, to the contrary, that there is an edge uv with d(u) = d(v) = 2. By the minimality of G, the

graph G′ = G−{u, v} has a 3-dynamic L-coloring c. By x and y, we denote the other neighbor of u and

v besides v and u, respectively.

Assume first that d(x) ≥ 4, then color u with c(u) ∈ L(u)\{c(x), c(y)}. If d(y) ≥ 4, then color v with

c(v) ∈ L(v)\{c(x), c(u), c(y)}. If d(y) ≤ 3, then color v from its list with a color that is different from

c(x), c(u), c(y) and the colors (at most two) used on the neighbor(s) of y in G′. In each case, at most five

colors are forbidden and we have six available colors for v. Hence we obtain a 3-dynamic L-coloring of

G, a contradiction.

Second, assume that d(x) ≤ 3, and by symmetry, that d(y) ≤ 3. Coloring u with a color c(u) from its

list that is different from c(x), c(y) and the colors (at most two) used on the neighbor(s) of x in G′, and

then coloring v from its list with a color that is different from c(x), c(y), c(u) and the colors (at most two)

used on the neighbor(s) of y in G′, we construct a 3-dynamic L-coloring of G, a contradiction.

(3) G does not contain a triangle xuyx in G with d(u) = 2.

Suppose, to the contrary, that G contains a triangle xuyx with d(u) = 2. By the minimality of G,

G′ = G−{u} has a 3-dynamic L-coloring c. By (2), d(x) ≥ 3 and d(y) ≥ 3. Assume first that d(x) ≥ 4.

If d(y) ≥ 4, then color u from its list with a color different from c(x) and c(y). If d(y) = 3, then color
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u from its list with a color different from c(x), c(y) and c(y1), where y1 is the third neighbor of y other

than x and u. In each case, we obtain a 3-dynamic L-coloring of G, a contradiction. Second, assume that

d(x) = 3, and by symmetry, that d(y) = 3. Let x1 be the neighbor of x other than u and y, and let y1 be

the neighbor of y other than u and x. We color u with c(u) ∈ L(u)\{c(x), c(y), c(x1), c(y1)}, and then

obtain a 3-dynamic L-coloring of G, a contradiction. Note that c(x) 6= c(y) since xy ∈ E(G′).

(4) G does not contain the configuration G3.

Suppose, to the contrary, that G contains a copy of G3 as in Fig. 1. By the minimality of G, G′ = G−
{u} has a 3-dynamic L-coloring c. By (2), we have d(x) ≥ 3 and d(y) ≥ 3. Assume first that d(x) ≥ 4.

If d(y) ≥ 4, then color u from its list with a color different from c(x) and c(y). If d(y) = 3, then color u

from its list with a color different from c(x), c(y), c(v) and c(y1), where y1 is the third neighbor of y other

than v and u. In each case, we obtain a 3-dynamic L-coloring of G, a contradiction. Second, assume that

d(x) = 3, and by symmetry, that d(y) = 3. Let x1 be the neighbor of x other than u and v, and let y1 be

the neighbor of y other than u and v. We color u with c(u) ∈ L(u)\{c(x), c(y), c(x1), c(y1), c(v)}, and

then obtain a 3-dynamic L-coloring of G, a contradiction. Note that c(x) 6= c(y) since x and y are the

only two neighbors of v in G′.

(5) G does not contain the configuration G6.

Suppose, to the contrary, that G contains a copy of G6 as in Fig. 1. By the minimality of G, G′ = G−
{u} has a 3-dynamicL-coloring c. By (3), we have d(x) ≥ 3 and d(y) ≥ 3. Assume first that d(x) ≥ 4. If

d(y) ≥ 4, then color u from its list with a color different from c(x), c(y) and c(v). If d(y) = 3, then color

u from its list with a color different from c(x), c(y), c(v) and c(y1), where y1 is the third neighbor of y

other than v and u. In each case, we obtain a 3-dynamicL-coloring of G, a contradiction. Second, assume

that d(x) = 3, and by symmetry, that d(y) = 3. Let x1 be the neighbor of x other than u and v, and let y1
be the neighbor of y other than u and v. We color u with c(u) ∈ L(u)\{c(x), c(y), c(x1), c(y1), c(v)},

and then obtain a 3-dynamic L-coloring of G, a contradiction. Note that c(x), c(y) and c(v) are pairwise

different since v has only two neighbors x and y in G′.

(6) G does not have a chordless quadrilateral vuwxv such that d(v) = d(w) = 3, d(u) = 2, v, u, w

appear in the outer boundary of G consecutively in that order, and G−{u}+vw is outer-1-planar.

This directly implies that G does not contain the configuration G7 or G10.

If such a quadrilateral exists, then G−{u}+ vw has a 3-dynamic L-coloring c by the minimality of G.

By choosing a color for u from L(u)\{c(x), c(v), c(w), c(v1), c(w1)}, we obtain a 3-dynamicL-coloring

of G, where v1 is the neighbor of v other than u, x and w1 is the neighbor of w other than u, x (possibly

v1 = w1).

(7) G does not contain the configuration G8.

Suppose, to the contrary, that G contains a copy of G8 as in Fig. 1. By the minimality of G, G′ = G−
{u,w} has a 3-dynamicL-coloring c. By (2) and (3), d(x) ≥ 3 and d(y) ≥ 3. By (6), d(x) ≥ 4. If d(y) ≥
4, then color w with c(w) ∈ L(w)\{c(x), c(y), c(v)} and u with c(u) ∈ L(u)\{c(x), c(y), c(w), c(v)}. If

d(y) = 3, then color w with c(w) ∈ L(w)\{c(x), c(y), c(v), c(y1)} and u with c(u) ∈ L(u)\{c(x), c(y),
c(w), c(v)}, where y1 is the third neighbor of y other than v and w. In each case, we obtain a 3-dynamic

L-coloring of G, a contradiction.
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(8) G does not contain the configuration G9.

Suppose, to the contrary, that G contains a copy of G9 as in Fig. 1. By the minimality of G, G′ = G−
{u,w} has a 3-dynamicL-coloring c. By (2), d(x) ≥ 3 and d(y) ≥ 3. By (6), d(x) ≥ 4. If d(y) ≥ 4, then

color w with c(w) ∈ L(w)\{c(x), c(y), c(v), c(z)} and u with c(u) ∈ L(u)\{c(x), c(y), c(w), c(v)}. If

d(y) = 3, then color w with c(w) ∈ L(w)\{c(x), c(y), c(v), c(y1), c(z)} and u with c(u) ∈ L(u)\{c(x),
c(y), c(w), c(v)}, where y1 is the third neighbor of y other than z and w. In each case, we obtain a

3-dynamic L-coloring of G, a contradiction.

(9) G does not contain the configuration G11.

Suppose, to the contrary, that G contains a copy of G11 as in Fig. 1. By (2), d(x) ≥ 3 and d(y) ≥ 3. By

the minimality of G, G′ = G − {u, v, a} has a 3-dynamic L-coloring c. If d(x) ≥ 4 and d(y) ≥ 4, then

color u, v and a in this order with c(u) ∈ L(u)\{c(x), c(y), c(z), c(w)}, c(v) ∈ L(v)\{c(x), c(y), c(u),
c(w)} and c(a) ∈ L(a)\{c(x), c(y), c(u), c(v)}, respectively. If d(x) ≥ 4 and d(y) = 3 (the case when

d(x) = 3 and d(y) ≥ 4 is similar), then color u, a and v in this order with c(u) ∈ L(u)\{c(x), c(y), c(z),
c(w)}, c(a) ∈ L(a)\{c(w), c(y), c(y1), c(u), c(x)} and c(v) ∈ L(v)\{c(x), c(y), c(u), c(w), c(a)}, re-

spectively, where y1 is the third neighbor of y other than w and a. In each case, we obtain a 3-dynamic

L-coloring of G, a contradiction. Hence in the following, we assume that d(x) = d(y) = 3.

Let x1 be the third neighbor of x other than v and z, and let y1 be the third neighbor of y other than w

and a. By the minimality of G, G′ = G − {u, v, a} has a 3-dynamic L-coloring c. Color v with c(v) ∈
L(v)\{c(x), c(x1), c(z), c(w), c(y)} and a with c(a) ∈ L(a)\{c(v), c(y), c(y1), c(w), c(x)}. If there is

a color available for u that is different from the colors used on x, z, w, v, a and y, then use it to color u

and we immediately obtain a 3-dynamic L-coloring of G, a contradiction. So, the worst case here is the

colors on x, z, w, v, a and y are rainbow, say 1, 2, 3, 4, 5 and 6, and moreover, L(u) = {1, 2, 3, 4, 5, 6}.

At this stage, we color u with 2 (resp. 5) and then try to recolor z (resp. a). If it is possible to re-

color z (resp.a) with a color different from 1, 2, 3, 4, 6 (resp.1, 3, 4, 5, 6), and different from the color

on x1 (resp. y1), then we obtain a 3-dynamic L-coloring of G, a contradiction. So, the difficult case

is that L(z) = {1, 2, 3, 4, 6, c(x1)} and L(a) = {1, 3, 4, 5, 6, c(y1)}, where 3 6∈ {c(x1), c(y1)}. We

now recolor z and a with 3, and recolor w, v and u in this order with c(w) ∈ L(w)\{1, 3, 6, c(y1)},

c(v) ∈ L(v)\{1, 3, 6, c(w), c(x1)} and c(u) ∈ L(u)\{1, 3, 6, c(v), c(w)}, respectively. It is easy to see

that the resulting coloring of G is a 3-dynamic L-coloring, a contradiction. ✷
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