
Theoretical Computer Science 878–879 (2021) 1–10
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Incidence coloring of Mycielskians with fast algorithm ✩

Huimin Bi, Xin Zhang ∗

School of Mathematics and Statistics, Xidian University, Xi’an, 710071, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 April 2021
Received in revised form 7 May 2021
Accepted 19 May 2021
Available online 24 May 2021
Communicated by D.-Z. Du

Keywords:
Incidence coloring
Mycielskian
Cubic-time algorithm
Frequency assignment problem

An incidence of a graph G is a vertex-edge pair (v, e) such that the vertex v is incident 
with the edge e. A proper incidence k-coloring of a graph is a coloring of its incidences 
involving k colors so that two incidences (u, e) and (w, f ) receive distinct colors if and 
only if u = w , or e = f , or uw ∈ {e, f }. In this paper, we present some idea of using the 
incidence coloring to model a kind of multi-frequency assignment problem, in which each 
transceiver can be simultaneously in both sending and receiving modes, and then establish 
some theoretical and algorithmic aspects of the incidence coloring.
Specifically, we conjecture that if G is the Mycielskian of some graph then it has a 
proper incidence (�(G) + 2)-coloring. Actually, our conjecture is motivated by the “(� + 2)

conjecture” of Brualdi and Quinn Massey in 1993, which states that every graph G has a 
proper incidence (�(G) + 2)-coloring, and was disproved in 1997 by Guiduli, who pointed 
out that the Paley graphs with large maximum degree are counterexamples (yet they are 
all known counterexamples to the “(� + 2) conjecture”, and are not Mycielskians of any 
graph).
To support our conjecture, we prove in this paper that if G is the Mycielskian of a graph 
H with |H| ≥ 3�(H) + 2, then we can construct a proper incidence (�(G) + 1)-coloring of 
G in cubic time, and if G is the Mycielskian of an incidence (�(H) + 1)-colorable graph 
H with |H| ≤ 2�(H), or the Mycielskian of an incidence (�(H) + 2)-colorable graph H
with |H| ≥ 2�(H) + 1, then G has a proper incidence (�(G) + 2)-coloring. The minimum 
positive integer k such that the Mycielskian of a cycle or a path has a proper incidence 
k-coloring is also determined.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The frequency assignment problem is an important problem that arises in the design of the wireless radio network 
consisting of a group of transceivers in space communicating with each other via the link between them [2,6,7,10,19]. In 
the standard model, each transceiver can be in either sending or receiving mode but not both at the same time, and it is 
required that adjacent transceivers are assigned distinct frequencies so as to avoid collisions of simultaneous transmissions 
over the same frequency [5,24,25]. This can be modeled by the proper vertex coloring of graphs, which becomes, however, 
invalid if each transceiver can be simultaneously in both sending and receiving modes (for example, this phenomenon may 
appear in the two-way radio network). So it is necessary to revise the model to adapt to such a situation.
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For two adjacent transceivers T1 and T2 in the wireless radio network, image that there are two directed links (T1, T2)

and (T2, T1) between them. If data transfers from T1 to T2 (imaging that T1 is in sending mode and T2 is in receiving 
mode), then a frequency F1,2 would be assigned to the link (T1, T2) from T1 to T2, and in the other direction, if data 
transfers from T2 to T1 (imaging that T1 is in receiving mode and T2 is in sending mode), then we assign another frequency 
F2,1 to the link (T2, T1) from T2 and T1. We call F1,2 (resp. F2,1) the sending frequency of T1 through (T1, T2) (resp. 
T2 through (T2, T1)), and thus the receiving frequency of T2 through (T1, T2) (resp. T1 through (T2, T1)). To avoid the 
communication interference, this wireless radio network shall naturally obey the following requirements:

(a) for each pair of adjacent transceivers T1 and T2, the sending frequency of T1 through (T1, T2) is different from the 
sending frequency of T2 through (T2, T1);

(b) for three distinct transceivers T1, T2, and T3 such that T1 is adjacent to both T2 and T3, the sending frequency of T1
through (T1, T2) is different from the sending frequency of T1 through (T1, T3);

(c) for three distinct transceivers T1, T2, and T3 such that T2 is adjacent to both T1 and T3, the receiving frequency of T2
through (T1, T2) is different from the sending frequency of T2 through (T2, T3).

Surprisingly, this can be modeled by the incidence coloring of graphs, which was initially introduced by Brualdi and Quinn 
Massey [4] in 1993.

In this paper, all graphs we consider are finite and simple. We denote the set of vertices and edges of G by V (G) and 
E(G), respectively, and the maximum degree of G by �(G). We use |G| and ‖G‖ to indicate |V (G)| and |E(G)|, and use 
Cn, Pn , and Kn to denote a cycle, a path, and a complete graph on n vertices, respectively. Throughout this paper, [k] denotes 
the set {1, 2, . . . , k}. For terminologies not given here, we refer the readers to [3].

An incidence of a graph G is a pair (v, e) such that v ∈ V (G), e ∈ E(G), and v is incident with e. Two incidences (u, e)
and (w, f ) are adjacent if u = w , or e = f , or uw ∈ {e, f }. For a vertex u and an edge e = uw , the incidence (u, e) is called 
a strong incidence of u, and the incidence (w, e) is called a weak incidence of u. The set of incidences of G is denoted by 
I(G). A proper incidence k-coloring of a graph G is a mapping ϕ : I(G) −→ {1, 2, . . . , k} such that ϕ(u, e) �= ϕ(w, f ) if (u, e)
and (w, f ) are adjacent. The smallest integer k such that G admits a proper incidence k-coloring (or saying in other words 
that G is incidence k-colorable) is the incidence chromatic number of G , denoted by χi(G).

In the above mentioned multi-frequency assignment problem, we model each transceiver into a vertex of a graph G and 
then for each edge uv ∈ E(G) we assign two colors αu and αv to the incidence (u, uv) and (v, uv), respectively. Here αu

(resp. αv ) stands for the sending frequency of the transceiver u (resp. v) through the link from u to v (resp. from v to u). 
It is easy to see that a proper incidence k-coloring of the graph G just corresponds to a multi-frequency assignment of the 
network with k frequencies satisfying the requirements (a), (b), and (c). Therefore, it is interesting to do some necessary 
investigations into the theoretical and algorithmic aspects of the incidence coloring.

Now let us come back to graph theory. It is easy to see that χi(G) ≥ �(G) + 1 for every graph G (looking at the strong 
and weak incidences of a vertex with the maximum degree). The first result concerning the upper bound for χi (G) is due to 
Brualdi and Quinn Massey [4], who proved that χi(G) ≤ 2�(G) for every graph G . In 1997, Guiduli [9] improved this bound 
to �(G) + 20 log �(G) + 84, and showed that Paley graphs have incidence chromatic number at least �(G) + �(log �(G))

(by applying a result of Algor and Alon [1] on the star arboricity of graphs). This disproved the following conjecture of 
Brualdi and Quinn Massey [4].

Conjecture 1.1. [4] For every graph G, χi(G) ≤ �(G) + 2.

Although Conjecture 1.1 is false in general, finding graphs G with χi(G) ≤ �(G) + 2 is still interesting and this topic has 
attracted much interest in recent years. More specifically, χi(G) ≤ �(G) + 2 holds for the following classes of graphs:

(i) paths, cycles, trees, and complete graphs [4];
(ii) complete multipartite graphs [14];

(iii) graphs with maximum degree at most three [21];
(iv) square meshes, honeycomb meshes, and hexagonal meshes [13];
(v) toroidal grids [23];

(vi) pseudo-Halin graphs [16];
(vii) n-dimensional hypercubes [8,20];

(viii) squares of cycles [18];
(ix) partial 2-trees (and thus also outerplanar graphs) [12];
(x) graphs with maximum average degree less than 3 (and thus also planar graphs with girth at least 6) [11,15];

(xi) graphs with maximum average degree less than 10/3 and �(G) ≥ 8 (and thus also planar graphs with girth at lest 5
and �(G) ≥ 8) [15].

We refer the readers to a real-time online survey contributed by Éric Sopena [22] for more information about the recent 
progresses of the study of incidence colorings.
2



H. Bi and X. Zhang Theoretical Computer Science 878–879 (2021) 1–10
The Mycielskian M(G) of a graph G with V (G) = {v1, v2, . . . , vn} is a supergraph of G with

V (M(G)) = {v1, v2, . . . , vn, u1, u2, . . . , un, w}, and

E(M(G)) = E(G) ∪ {ui v j | i and j are integers such that vi v j ∈ E(G)} ∪ {wui | 1 ≤ i ≤ n}.
Sometimes we call M(G) the Mycielskian of G based on the ordering v1, v2, . . . , vn of V (G).

To our best knowledge, the only known counterexamples to Conjecture 1.1 are Paley graphs with large maximum degree 
[1,9], and they are not Mycielskians of any graph. This motivates us to conjecture the following.

Conjecture 1.2. If G is the Mycielskian of some graph, then χi(G) ≤ �(G) + 2.

This paper is organized as follows. In Section 2, we prove that if G is the Mycielskian of a graph H with �(H) ≤
(|H | − 2)/3 then we can construct a proper incidence (�(G) + 1)-coloring of G in cubic time. In Section 3, we show that if 
G is the Mycielskian of a graph H with �(H) ≥ (|H | − 1)/3 then we can give a reasonable upper bound for χi(G), the gap 
between which and the one in Conjecture 1.2 (i.e., �(G) + 2) is at most χi(H) − (�(H) + 1). This implies that Conjecture 1.2
satisfies if G is the Mycielskian of a graph H with χi(H) = �(H) + 1. In Section 4, we confirm Conjecture 1.2 if G is the 
Mycielskian of a cycle or a path, by determining the incidence chromatic numbers of M(Cn) and M(Pn).

2. Mycielskians of sparse graphs

A proper incidence k-coloring ϕ of a graph G is amicable if there are k distinct vertices y1, y2, . . . , yk such that the color 
i does not appear in any strong incidence of yi for each 1 ≤ i ≤ k. We call the vertex set {y1, y2, . . . , yk} an amicable set of 
the coloring ϕ .

Let � be a positive integer and let G be a graph such that �(G) ≤ �. By the well-known Vizing’s theorem, we can give 
a coloring φ with color set {1, 2, . . . , � + 1} on the edges of G so that adjacent edges receive distinct colors. Based on φ, 
we construct a (2� + 2)-coloring ϕ on I(G) as follows. If φ(uv) = i, then color the incidences (u, uv) and (v, uv) so that 
{ϕ(u, uv), ϕ(v, uv)} = {i, i′} (sets are unordered throughout this paper).

Proposition 2.1. ϕ is a proper incidence (2� + 2)-coloring of G.

Proof. If (u, e) and (w, f ) are two adjacent incidences, then either e = f or e and f are adjacent. If e = f , then

{ϕ(u, e),ϕ(w, f )} = {φ(e),φ(e)′}.
If e and f are adjacent, then φ(e) �= φ( f ). This implies

{ϕ(u, e)} ∩ {ϕ(w, f )} ⊆ {φ(e),φ(e)′} ∩ {φ( f ),φ( f )′} = ∅.

Hence ϕ(u, e) �= ϕ(w, f ) in each case and thus ϕ is a proper incidence (2� + 2)-coloring. �
In the following, a Vizing-based incidence coloring of G is a proper incidence (2� + 2)-coloring of G using col-

ors from {1, 2, . . . , � + 1, 1′, 2′, . . . , (� + 1)′} such that for each edge uv ∈ E(G), {ϕ(u, uv), ϕ(v, uv)} = {i, i′} for some 
i ∈ {1, 2, . . . , � + 1}. Proposition 2.1 guarantees that every graph G has a Vizing-based incidence coloring.

Lemma 2.2. Let � be a positive integer and let G be a graph such that |G| ≥ 2� + 2 and �(G) ≤ �. If ϕ is a Vizing-based incidence 
coloring of G and S is a set of 2� + 2 vertices of G, then there is a set E of edges (E may be empty) such that exchanging the colors of 
(u, uv) and (v, uv) for each uv ∈ E results in an amicable Vizing-based incidence coloring of G with amicable set S.

Proof. We prove it by applying induction on ‖G‖. If ‖G‖ = 1, then G has only two incidences and the desired conclusion 
follows. We may henceforth assume ‖G‖ ≥ 2.

Let uv be an edge of G and let G ′ = G −uv . Without loss of generality, assume ϕ(u, uv) = j and ϕ(v, uv) = j′ . Restricting 
the coloring ϕ to G ′ , we obtain a Vizing-based incidence coloring φ of G ′ . Since ‖G ′‖ < ‖G‖, |G ′| = |G| ≥ 2� + 2 and 
�(G ′) ≤ �(G) ≤ �, by the induction hypothesis, there is a set E ′ ⊆ E(G ′) such that φ can be modified, via exchanging 
the colors of (u, uv) and (v, uv) for each uv ∈ E ′ , into an amicable Vizing-based incidence coloring ϕ′ of G ′ so that S =
{y1, y2, . . . , y2�+2} is an amicable set of ϕ′ , and the color i or i′ does not appear in any strong incidence of yi for each 
1 ≤ i ≤ � + 1 or � + 2 ≤ i ≤ 2� + 2, respectively.

We can extend ϕ′ to a Vizing-based incidence coloring of G in two possible ways. The first way is to color (u, uv)

and (v, uv) with j and j′ , respectively, and we denote such an extended incidence coloring of G by ϕ1. The second way 
is to color (u, uv) and (v, uv) with j′ and j, respectively, and we denote this extended incidence coloring of G by ϕ2. 
If S ∩ {u, v} = ∅, or S ∩ {u, v} = {u} and u �= y j , or S ∩ {u, v} = {v} and v �= y�+ j+1, or S ∩ {u, v} = {u, v}, u �= y j , and 
v �= y�+ j+1, then ϕ1 is amicable Vizing-based incidence coloring of G so that S is an amicable set of ϕ1. Since ϕ1(u, uv) =
3
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ϕ(u, uv) and ϕ1(v, uv) = ϕ(v, vu), in this case the set E ′ acts as the desired set E satisfying the lemma. On the other hand, 
if S ∩ {u, v} = {u} and u = y j , or S ∩ {u, v} = {v} and v = y�+ j+1, or S ∩ {u, v} = {u, v} and u = y j , or S ∩ {u, v} = {u, v}
and v = y�+ j+1, then ϕ2 is an amicable Vizing-based incidence coloring of G so that S is an amicable set of ϕ2, and in this 
case E ′ ∪ {uv} is the desired set E satisfying the lemma, since ϕ2(u, uv) = ϕ(v, uv) and ϕ2(v, uv) = ϕ(u, vu). �

Based on the proof of Lemma 2.2, for any given parameters G, S , and � satisfying the conditions of Lemma 2.2, we 
can release Algorithm 1 that outputs an amicable Vizing-based incidence coloring of G using colors from {1, 2, . . . , � +
1, 1′, 2′, . . . , (� + 1)′} such that S is an amicable set of this coloring. Using the algorithm of Misra and Gries [17], one can 
construct in O (mn) time a proper edge coloring of G using � + 1 colors and thus line 1 in Algorithm 1 can be done in 
O (mn) time, where n = |G| and m = ‖G‖. It is easy to see that lines 2–8 of Algorithm 1 take O (m) time. Since m ≤ O (n2), 
Algorithm 1 is indeed a polynomial-time algorithm, with running time O (mn) + O (m) = O (mn) ≤ O (n3).

Algorithm 1: Construct Amicable Vizing-Based Incidence Coloring CAVBIC(G, S, �).

Input: An integer �, a graph G with |G| ≥ 2� + 2 and �(G) ≤ �, and a set S = {y1, y2, . . . , y2�+2} of 2� + 2 vertices of G;
Output: An amicable Vizing-based incidence coloring φ of G using colors from {1, 2, . . . , � + 1, 1′, 2′, . . . , (� + 1)′} such that S is an amicable set 

of this coloring.

1 Construct a proper edge coloring ϕ of G using � + 1 colors;
/* edges of G are e1 = u1 v1, e2 = u2 v2, . . . , em = um vm, where m = ‖G‖. */

2 for i = 1 to m do
3 if S ∩ {ui , vi} = ∅ or S ∩ {ui , vi} = {ui} and ui �= yϕ(ei ) or S ∩ {ui , vi} = {vi} and vi �= y�+ϕ(ei )+1 or S ∩ {ui , vi} = {ui , vi}, ui �= yϕ(ei), and 

vi �= y�+ϕ(ei )+1 , then
4 φ(ui , ei) ← ϕ(ei);
5 φ(vi , ei) ← ϕ(ei)

′;
6 else
7 φ(ui , ei) ← ϕ(ei)

′;
8 φ(vi , ei) ← ϕ(ei).

Algorithm 2: Incidence Color the Mycielskian ICM(G, �).

Input: An integer �, a graph G with |G| ≥ 3� + 2 and �(G) ≤ �;
Output: A proper incidence coloring of M(G) using |G| + 1 colors.

/* vertices of G are v1, v2, . . . , vn, where n = |G|. */
1 CAVBIC(G , {v1, v2, . . . , v2�+2}, �);
/* coloring outputted from Line 1 is denoted by ϕ. */

2 for i = 1 to n do
3 � ← 1;
4 for j = 1 to n do
5 if vi v j ∈ E(G), then
6 ϕ(vi , u j vi) ← �′′;
7 ϕ(u j , u j vi) ← ϕ(v j , vi v j);
8 � ← � + 1;

9 ϕ(ui , wui) ← (� + 1)′′;
10 if 1 ≤ i ≤ � + 1, then
11 ϕ(w, wui) ← i;

12 if � + 2 ≤ i ≤ 2� + 2, then
13 ϕ(w, wui) ← (i − � − 1)′;
14 if 2� + 3 ≤ i ≤ 3� + 2, then
15 ϕ(w, wui) ← (i − 2� − 2)′′;
16 if 3� + 3 ≤ i ≤ n, then
17 ϕ(w, wui) ← i − 2� − 1.

While constructing a proper incidence coloring of M(G), we distinguish the incidences of M(G) by five types as follows:

Type 1 incidences of G;
Type 2 incidences (vi, u j vi) with 1 ≤ i �= j ≤ n;
Type 3 incidences (u j, u j vi) with 1 ≤ i �= j ≤ n;
Type 4 incidences (ui, wui) with 1 ≤ i ≤ n;
Type 5 incidences (w, wui) with 1 ≤ i ≤ n.
4
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Theorem 2.3. If G is a graph such that |G| ≥ 3� + 2 and �(G) ≤ �, where � is a positive integer, then χi(M(G)) ≤ |G| + 1.

Proof. It is sufficient to show that Algorithm 2 returns a proper incidence coloring ϕ of M(G). Since line 1 outputs a proper 
incidence coloring of G , any two adjacent Type 1 incidences receive different colors.

If two Type 2 incidences (v j1 , u j1 vi1 ) and (v j2 , u j2 vi2 ) are adjacent, then j1 = j2, and thus

ϕ(v j1 , u j1 vi1) �= ϕ(v j2 , u j2 vi2)

by lines 4–8.
If two Type 3 incidences (u j1 , u j1 vi1 ) and (u j2 , u j2 vi2 ) are adjacent, then j1 = j2. It follows that

ϕ(u j1 , u j1 vi1) = ϕ(v j1 , vi1 v j1) �= ϕ(v j2 , vi2 v j2) = ϕ(u j2 , u j2 vi2)

by lines 1 and 7.
If (u j1 , u j1 vi1 ) is a Type 3 incidence adjacent to a Type 1 incidence (v j2 , vi2 v j2 ), then i1 = j2. This implies

ϕ(u j1 , u j1 vi1) = ϕ(v j1 , vi1 v j1) �= ϕ(vi1 , vi2 vi1) = ϕ(v j2 , vi2 v j2)

by lines 1 and 7.
Since the color set used by Type 2 incidences is a subset of {1′′, 2′′, . . . , �′′} by line 6, and the color set used by Type 1

or Type 3 incidences is chosen from {1, 2, . . . , � + 1, 1′, 2′, . . . , (� + 1)′} by lines 1 and 7, every Type 2 incidence is colored 
with a color different from the color of any Type 1 or Type 3 incidence.

One can see from line 9 that all Type 4 incidences are colored with (� + 1)′′ . Lines 10–17 imply that any two Type
5 incidences receive different colors, and moreover, the color set used by Type 5 incidences is a subset of {1, 2, . . . , � +
1, 1′, 2′, . . . , (� + 1)′, 1′′, 2′′, . . . , �′′} ∪ S , where S = ∅ if |G| ≤ 3� + 2, or S = {� + 2, . . . , |G| − 2� − 1} if |G| ≥ 3� + 3. 
Therefore, the color of a Type 4 incidence is different from the color of its every adjacent incidence.

Let

J (vi) = {ϕ(vi, vi v�) | vi v� ∈ E(G)}
and

J (ui) = {ϕ(ui, ui v�) | ui v� ∈ E(M(G))}.
By the definition of M(G), and by lines 1 and 7,

J (vi) = J (ui) ⊆ {1,2, . . . ,� + 1,1′,2′, . . . , (� + 1)′}
for every 1 ≤ i ≤ n. Since line 1 outputs an amicable Vizing-based incidence coloring ϕ of G using colors from {1, 2, . . . , � +
1, 1′, 2′, . . . , (� + 1)′} such that {v1, v2, . . . , v2�+2} is an amicable set of ϕ , i /∈ J (vi) = J (ui) if 1 ≤ i ≤ � + 1 and (i − � −
1)′ /∈ J (vi) = J (ui) if � + 2 ≤ i ≤ 2� + 2. Moreover, it is clear that (i − 2� − 2)′′ /∈ J (ui) if 2� + 3 ≤ i ≤ 3� + 2, and 
i − 2� − 1 /∈ J (ui) if 3� + 3 ≤ i ≤ n.

Since any Type 1 or Type 2 incidence is not adjacent to any Type 5 incidence, the final task is to check that if a Type 3
incidence is adjacent to a Type 5 incidence then they receive different colors. If (ui, ui v j1 ) is a Type 3 incidence adjacent to 
a Type 5 incidence (w, wu�), then � = i. Lines 10 to 17 guarantee that

ϕ(w, wu�) = ϕ(w, wui) /∈ J (ui) ⊇ ϕ(ui, ui v j1),

implying

ϕ(w, wu�) �= ϕ(ui, ui v j1),

as desired. �
We claim that Algorithm 2 is a cubic-time algorithm. Actually, for a graph G having n vertices and m edges, line 1 takes 

O (mn) time by the complexity of Algorithm 1. Since lines 3 and 9–17 can be done in O (1) time, and lines 4–8 take O (n)

time, lines 2–17 can be populated in O (n2) time. Hence the running time of Algorithm 2 is O (mn) + O (n2) ≤ O (n3).

Theorem 2.4. If G is a graph such that |G| ≥ 3�(G) + 2, then χi(M(G)) = �(M(G)) + 1, and a proper incidence (�(M(G) + 1)-
coloring can be constructed in cubic time.

Proof. Taking � = �(G) into Theorem 2.3, we can construct a proper incidence (|G| +1)-coloring ϕ of M(G) by Algorithm 2
in cubic time. It follows that

|G| + 1 ≥ χi(M(G)) ≥ �(M(G)) + 1 = max{2�(G), |G|} + 1 = |G| + 1.

This implies that χi(M(G)) = �(M(G)) + 1 and ϕ is a proper incidence (�(M(G) + 1)-coloring of M(G). �

5



H. Bi and X. Zhang Theoretical Computer Science 878–879 (2021) 1–10
3. Mycielskians of dense graphs

Lemma 3.1. For every graph G, there is an ordering v1, v2, . . . , vn of V (G) and a proper incidence coloring of G using χi(G) colors so 
that the color i does not appear in any strong incidence of vi for each 1 ≤ i ≤ �(G) + 1.

Proof. Let u ∈ V (G) such that N(u) = {y1, y2, . . . , y�(G)} and let ϕ be a proper incidence coloring of G using χi(G) colors. 
Since ϕ is proper, ϕ(u, yiu) �= ϕ(u, y ju) for each i �= j. Hence by redistributing the colors of ϕ , we can construct a new 
proper incidence coloring φ of G using χi(G) colors such that φ(u, yiu) = i for each 1 ≤ i ≤ �(G). Since (u, yiu) is a weak 
incidence of yi , the color i would not appear in any strong incidence of yi under φ for each 1 ≤ i ≤ �(G). One can also 
see that the color �(G) + 1 does not appear in any strong incidence of u, therefore, y1, y2, . . . , y�(G), u, . . . is the desired 
ordering of V (G) and φ is the desired proper incidence coloring of G . �
Theorem 3.2. If G is a graph such that |G| ≤ 3�(G) + 1, then

χi(M(G)) ≤
{
χi(G) + |G| − �(G) if |G| ≥ 2�(G) + 2,

χi(G) + �(G) + 1 otherwise.

Proof. According to Lemma 3.1, there is an ordering v1, v2, . . . , vn of V (G) and a proper incidence χi(G)-coloring ϕ of G
such that the color i does not appear in any strong incidence of vi for each 1 ≤ i ≤ �(G) + 1. Let M(G) be the Mycielskian 
of G based on the ordering v1, v2, . . . , vn . Note that ϕ constructs a proper coloring of the Type 1 incidences of M(G). We 
extend ϕ to an incidence coloring (still denoted by ϕ) of M(G) as follows.

For each i ∈ [n], if the neighbors of vi among {u1, . . . , un} are {u j1 , . . . , u js }, then let ϕ(vi, u j� vi) = �′′ for each � ∈ [s]. 
For each pair i, j ∈ [n] such that u j is adjacent to vi in M(G), let ϕ(u j, u j vi) = ϕ(v j, vi v j), and for each j ∈ [n], let 
ϕ(u j, wu j) = (�(G) + 1)′′ . For each j ∈ [n], let

ϕ(w, wu j) =

⎧⎪⎨
⎪⎩

j if 1 ≤ j ≤ �(G) + 1,

( j − �(G) − 1)′′ if �(G) + 2 ≤ j ≤ 2�(G) + 1

( j − 2�(G) − 1)′ if j ≥ 2�(G) + 2

By similar arguments as that in the proof of Theorem 2.3, one can show that every two adjacent incidences of M(G)

receive different colors under ϕ , and thus ϕ is a proper incidence coloring.
By the construction of ϕ , the set of colors used by Type 1 and Type 3 incidences is

S1&3 = {1,2, . . . ,χi(G)},
the one used by Type 2 incidences is a subset of

S2 = {1′′,2′′, . . . ,�(G)′′},
and the one used by Type 4 incidences is

S4 = {(�(G) + 1)′′}.
If |G| ≥ 2�(G) + 2, then Type 5 incidences involve the set of colors

S5 = {1,2, . . . ,�(G) + 1,1′′,2′′, . . . ,�(G)′′,1′, . . . , (|G| − 2�(G) − 1)′}
⊆ S1&3 ∪ S2 ∪ {1′, . . . , (|G| − 2�(G) − 1)′}.

This implies χi(M(G)) ≤ χi(G) + �(G) + 1 + (|G| − 2�(G) − 1) = χi(G) + |G| − �(G).
On the other hand, if |G| ≤ 2�(G) + 1, then the set of colors used by Type 5 incidences is a subset of S1&3 ∪ S2, which 

implies χi(M(G)) ≤ χi(G) + �(G) + 1. �
We show the sharpness of the two bounds in Theorem 3.2. First, let G be a graph with 2�(G) + 2 ≤ |G| ≤ 3�(G) + 1 and 

χi(G) = �(G) + 1. By Theorem 3.2, χi(M(G)) ≤ χi(G) + |G| − �(G) = |G| + 1. On the other hand, χi(M(G)) ≥ �(M(G)) +
1 = max{2�(G), |G|} + 1 = |G| + 1. Hence χi(M(G)) = |G| + 1 = χi(G) + |G| − �(G). Second, if G is P2, then it satisfies 
|G| ≤ 2�(G) + 1 and M(G) = C5, and thus χi(M(G)) = 4 = 2 + 1 + 1 = χi(G) + �(G) + 1.

To end this section, we prove the following theorem, which can be seen as an interesting corollary of Theorem 3.2, and 
a powerful evidence supporting our Conjecture 1.2.

Theorem 3.3. Let G be a graph such that |G| ≤ 3�(G) + 1, then
6
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(1) If |G| ≥ 2�(G) + 1 and χi(G) = �(G) + 1, then χi(M(G)) = �(M(G)) + 1.
(2) If |G| ≥ 2�(G) + 1 and χi(G) = �(G) + 2, or |G| ≤ 2�(G) and χi(G) = �(G) + 1, then χi(M(G)) ≤ �(M(G)) + 2.

Proof. If |G| ≥ 2�(G) + 2, then �(M(G)) = max{2�(G), |G|} = |G|. By Theorem 3.2,

�(M(G)) + 1 ≤ χi(M(G)) ≤ χi(G) + |G| − �(G) =
{

�(M(G)) + 1 if χi(G) = �(G) + 1,

�(M(G)) + 2 if χi(G) = �(G) + 2.

If |G| = 2�(G) + 1, then �(M(G)) = max{2�(G), |G|} = |G|. By Theorem 3.2,

�(M(G)) + 1 ≤ χi(M(G)) ≤ χi(G) + �(G) + 1 =
{

�(M(G)) + 1 if χi(G) = �(G) + 1,

�(M(G)) + 2 if χi(G) = �(G) + 2.

If |G| ≤ 2�(G) and χi(G) = �(G) + 1, then �(M(G)) = max{2�(G), |G|} = 2�(G), and thus

χi(M(G)) ≤ χi(G) + �(G) + 1 = 2�(G) + 2 = �(M(G)) + 2

by Theorem 3.2. �
4. Applications

Combining Theorems 2.4 and 3.3, we are easy to conclude that Conjecture 1.2 satisfies if G is not a graph with

(1) 2�(G) + 1 ≤ |G| ≤ 3�(G) + 1 and χi(G) ≥ �(G) + 3, or
(2) |G| ≤ 2�(G) and χi(G) ≥ �(G) + 2.

In this section, we apply Theorems 2.4 and 3.2 to determine the incidence chromatic number of the Mycielskian of a cycle 
or a path.

4.1. Mycielskians of cycles

Lemma 4.1 (Folklore).

χi(Cn) =
{

3 if n ≡ 0 mod 3,

4 otherwise.

Lemma 4.2. M(C4) is not incidence 5-colorable.

Proof. Suppose for a contradiction that ϕ is a proper incidence 5-coloring of M(C4). It follows that

(a) the weak incidences of every vertex of degree 4 are colored with a same color under ϕ .

Without loss of generality, assume ϕ(v2, v1 v2) = 1, ϕ(v2, v2 v3) = 2, ϕ(v2, u1 v2) = 3, ϕ(v2, u3 v2) = 4, and thus 
ϕ(v1, v1 v2) = ϕ(v3, v2 v3) = ϕ(u1, u1 v2) = ϕ(u3, u3 v2) = 5 by (a). Since (v2, v1 v2) is a weak incidence of v1 colored 
with 1 and v1 has degree 4, ϕ(v4, v1 v4) = ϕ(u2, u2 v1) = ϕ(u4, u4 v1) = 1 by (a). Similarly, ϕ(v4, v3 v4) = ϕ(u2, u2 v3) =
ϕ(u4, u4 v3) = 2 by (a), and thus ϕ(u3, u3 v4) = 3. It follows by (a) that ϕ(v3, v3 v4) = ϕ(u1, u1 v4) = ϕ(v1, v1 v4) = 3, 
which implies ϕ(v3, u2 v3) = 4 and ϕ(v3, u4 v3) = 1. This contradicts the fact that ϕ(v3, u4 v3) �= ϕ(u4, u4 v1) = 1 (note that 
(v3, u4 v3) and (u4, u4 v1) are adjacent). �
Lemma 4.3. M(C3) is not incidence 5-colorable.

Proof. Suppose for a contradiction that ϕ is a proper incidence 5-coloring of M(C3). It follows that

(a) the weak incidences of every vertex of degree 4 are colored with a same color under ϕ;
(b) the weak incidences of every vertex of degree 3 are colored with at most two colors under ϕ .

Without loss of generality, assume ϕ(v2, v1 v2) = 1, ϕ(v2, v2 v3) = 2, ϕ(v2, u1 v2) = 3, ϕ(v2, u3 v2) = 4, and thus 
ϕ(v1, v1 v2) = ϕ(v3, v2 v3) = ϕ(u1, u1 v2) = ϕ(u3, u3 v2) = 5 by (a). Since (v2, v1 v2) is a weak incidence of v1 colored 
with 1 and v1 has degree 4, ϕ(v3, v1 v3) = ϕ(u2, u2 v1) = ϕ(u3, u3 v1) = 1 by (a). Similarly, ϕ(v1, v1 v3) = ϕ(u1, u1 v3) =
ϕ(u2, u2 v3) = 2 by (a). This implies ϕ(u1, u1 w) ∈ {1, 4}, ϕ(u2, u2 w) ∈ {3, 4, 5}, and ϕ(u3, u3 w) ∈ {2, 3}. If ϕ(u2, u2 w) = 5, 
7
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Fig. 1. Incidence coloring of M(Cn) for n ∈ {3,4,5,7}.

then |{ϕ(u1, u1 w), ϕ(u2, u2 w), ϕ(u3, u3 w)}| = 3, contradicting (b). Hence ϕ(u2, u2 w) ∈ {3, 4}. By the symmetry of 3 and 4, 
we may assume ϕ(u2, u2 w) = 3. It follows that ϕ(v1, u2 v1) = ϕ(v3, u2 v3) = 4 and ϕ(v1, u3 v1) = ϕ(v3, u1 v3) = 3, which 
implies ϕ(u3, u3 w) = 2 and thus |{ϕ(u1, u1 w), ϕ(u2, u2 w), ϕ(u3, u3 w)}| = 3, contradicting (b). �
Theorem 4.4.

χi(M(Cn)) =

⎧⎪⎨
⎪⎩

n + 3 if n = 3,

n + 2 if n = 4,

n + 1 if n ≥ 5,

=
{

�(M(Cn)) + 2 if 3 ≤ n ≤ 4,

�(M(Cn)) + 1 if n ≥ 5.

Proof. Note that

�(M(Cn)) = max{2�(Cn),n} =
{

n if n ≥ 4,

4 if n = 3.

If n ≥ 8, then n ≥ 3�(Cn) + 2, implying χi(M(Cn)) = �(M(Cn)) + 1 = n + 1 by Theorem 2.4.
If n = 7, then χi(M(Cn)) ≤ 8 = n + 1, since Fig. 1(d) gives a proper incidence 8-coloring of M(C7). In the other direction, 

χi(M(Cn)) ≥ �(M(Cn)) + 1 = n + 1. Hence χi(M(Cn)) = n + 1 = �(M(Cn)) + 1.
If n = 6, then 2�(Cn) + 2 = n ≤ 3�(Cn) + 1, implying

n + 1 = �(M(Cn)) + 1 ≤ χi(M(Cn)) ≤ χi(Cn) + n − �(Cn) = 3 + n − 2 = n + 1

by Lemma 4.1 and Theorem 3.2. Hence χi(M(Cn)) = n + 1 = �(M(Cn)) + 1.
If n = 5, then χi(M(Cn)) ≤ 6 = n + 1, since Fig. 1(c) gives a proper incidence 6-coloring of M(C5). In the other direction, 

χi(M(Cn)) ≥ �(M(Cn)) + 1 = n + 1. Hence χi(M(Cn)) = n + 1 = �(M(Cn)) + 1.
If n = 4, then χi(M(Cn)) ≤ 6 = n + 2, since Fig. 1(b) gives a proper incidence 6-coloring of M(C4). In the other direction, 

χi(M(Cn)) ≥ 6 = n + 2 by Lemma 4.2. Hence χi(M(Cn)) = n + 2 = �(M(Cn)) + 2.
If n = 3, then χi(M(Cn)) ≤ 6 = n + 3, since Fig. 1(a) gives a proper incidence 6-coloring of M(C3). In the other direction, 

χi(M(C3)) ≥ 6 = n + 3 by Lemma 4.3. Hence χi(M(Cn)) = n + 3 = �(M(Cn)) + 2. �

8
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Fig. 2. Incidence coloring of M(Pn) for n ∈ {3,4}.

4.2. Mycielskians of paths

Lemma 4.5 (Folkflore). χi(Pn) = min{n, 3} for every n ≥ 2.

Theorem 4.6.

χi(M(Pn)) =
{

n + 2 if 2 ≤ n ≤ 3,

n + 1 if n ≥ 4,
=

{
�(M(Pn)) + 2 if n = 2,

�(M(Pn)) + 1 if n ≥ 3.

Proof. Note that

�(M(Pn)) = max{2�(Pn),n} =
{

n if n ≥ 4 or n = 2,

4 if n = 3,

and M(P2) = C5.
If n ≥ 8, then n ≥ 3�(Pn) + 2, implying χi(M(Pn)) = �(M(Pn)) + 1 = n + 1 by Theorem 2.4.
If n = 6 or 7, then 2�(Pn) + 2 ≤ n ≤ 3�(Pn) + 1, implying

n + 1 = �(M(Pn)) + 1 ≤ χi(M(Pn)) ≤ χi(Pn) + n − �(Pn) = 3 + n − 2 = n + 1

by Lemma 4.5 and Theorem 3.2. Hence χi(M(Pn)) = n + 1 = �(M(Pn)) + 1.
If n = 5, then n = 2�(Pn) + 1, implying

n + 1 = �(M(Pn)) + 1 ≤ χi(M(Pn)) ≤ χi(Pn) + �(Pn) + 1 = 3 + 2 + 1 = n + 1

by Lemma 4.5 and Theorem 3.2. Hence χi(M(Pn)) = n + 1 = �(M(Pn)) + 1.
If n = 4, then χi(M(Pn)) ≤ 5 = n + 1, since Fig. 2(b) gives a proper incidence 5-coloring of M(P4). In the other direction, 

χi(M(Pn)) ≥ �(M(Pn)) + 1 = n + 1. Hence χi(M(Pn)) = n + 1 = �(M(Pn)) + 1.
If n = 3, then χi(M(Pn)) ≤ 5 = n + 2, since Fig. 2(a) gives a proper incidence 5-coloring of M(P3). In the other direction, 

χi(M(Pn)) ≥ �(M(Pn)) + 1 = n + 2. Hence χi(M(Pn)) = n + 2 = �(M(Pn)) + 1.
If n = 2, then χi(M(Pn)) = χi(C5) = 4 = n + 2 = �(M(Pn)) + 2 by Lemma 4.1. �
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