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The problem of partitioning a large complex network equitably into sparse modules 
with given rules can be modeled by the equitable list d-degenerate coloring of graphs. 
This paper establishes theoretical results on such a coloring based on a newly proposed 
conjecture which states that every graph G is equitably d-degenerate k-colorable and 
equitably d-degenerate k-choosable for every integer k ≥ (�(G) +1)/(d +1). This conjecture 
is strong as it implies the Hajnal-Szemerédi theorem on equitable coloring, the equitable 
list coloring conjecture (Kostochka, Pelsmajer, and West, 2003), the equitable vertex 
arboricity conjecture (Wu, Zhang, and Li, 2013), and the equitable list vertex arboricity 
conjecture (Zhang, 2016). In this paper, we confirm this unified conjecture for globally 
coupled networks, (d + 1)-degenerate graphs, graphs with bounded maximum average 
degree, and planar graphs with large maximum degree. The equitable d-degenerate k-
colorability part of this conjecture is also verified for interval graphs, generalizing a result 
of Niu, Li, and Zhang (2021).

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In computer science, it is valuable to consider the problem of partitioning a large complex network into small modules 
under some special conditions so that the number of modules is as small as possible and each module acts as a layer of the 
network. This helps us understand the complex network interactions in some sense.

While a network is being partitioned, we may be required to obey some requirements associated with the topological 
structure and the scale of the module. For example, we sometimes require that the difference between any two module 
scales is very small so as to maintain the entire complex network efficiently, and meanwhile desire that each module is 
sparse enough for security reasons. To measure how sparse a network is, the degeneracy is a powerful parameter, which is 
within a constant factor of other sparsity measures such as the arboricity. For instance, a network with degeneracy 0 is a 
collection of some independent nodes, and a network with degeneracy 1 is an acyclic network, which are mainly used by 
social networks and the World Wide Web etc [2].

This network partition problem can be modeled by a minimization problem in graph theory and established by the 
language of graph theory [6,7,25]. Precisely, if we consider the network as a graph G , then our task can be transferred 
to partition the vertex set of G into the smallest possible number of disjoint subsets so that the size of any two distinct 
subsets differ by at most a fixed constant and the graph induced by each subset has low degeneracy.
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From now on, we use standard graph theory notions and notations as in [5] and only consider finite graphs. A graph G
is d-degenerate if every subgraph of G contains a vertex of degree at most d. A d-degenerate k-coloring of a graph G is a 
partition of V (G) into k disjoint subsets V (Gi) with 1 ≤ i ≤ k so that

(A 1) V (Gi) induces a d-degenerate subgraph for each 1 ≤ i ≤ k.
A d-degenerate k-coloring of a graph G is equitable if we further require

(A 2)
∣∣|V (Gi)| − |V (G j)|

∣∣ ≤ 1 for every 1 ≤ i ≤ j ≤ k.
Note that (A 2) is equivalent to the following property

(A 2’) �|G|/k� ≤ |V (Gi)| ≤ �|G|/k� for each 1 ≤ i ≤ k.

The minimum k such that G has an equitable d-degenerate k-coloring is the equitable d-degenerate chromatic number of G . 
In the literature, equitable 0-degenerate coloring is known as equitable coloring [16] while equitable 1-degenerate coloring 
is known as equitable tree-coloring [14,21].

Returning to the background of network partition problems, in practice, sometimes there is a given rule on which kinds 
of sparse module a node may belong to. In such a case, we need to find an equitable partition acceptable under this rule, 
and this task can be modeled by equitable list d-degenerate coloring of graphs [15], where the definition on the equitability 
shall be rewritten so as to make the scale of each module is bounded above (note that an accepted partition by this given 
rule may not always satisfies (A 2)). The formal definition of equitable list d-degenerate coloring is given below.

To each vertex v ∈ V (G), we assign a list of colors L(v), and call L a list assignment of G . If G has a d-degenerate coloring 
c such that

(B1) c(v) ∈ L(v) for each v ∈ V (G), and
(B2) |c−1(i)| ≤ �|G|/k� for each color i ∈ {c(v) | v ∈ V (G)},

then we call c an equitable d-degenerate L-coloring of G . If G admits an equitable d-degenerate L-coloring for every list 
assignment L such that |L(v)| = k for each v ∈ V (G), then G is equitably d-degenerate k-choosable, and the minimum k
such that G is equitably d-degenerate k-choosable is the equitable d-degenerate choosability of G . The equitable 0-degenerate 
choosability (also known as equitable list chromatic number) was first introduced by Kostochka, Pelsmajer, and West [13], 
and the equitable 1-degenerate choosability (also known as equitable list vertex arboricity) was first investigated by Zhang 
[22]. Recently, Drgas-Burchardt, Furmańczyk, and Sidorowicz [6,7] investigated the equitable d-degenerate choosability with 
d ≥ 2.

An equitably d-degenerate k-choosable graph may not be equitably d-degenerate k-colorable. An easy example supporting 
this conclusion is the complete bipartite graph K1,6, which is equitably 0-degenerate 3-choosable, and is not equitably 0-
degenerate 3-colorable. On the other hand, an equitably d-degenerate k-choosable graph may not be equitably d-degenerate 
(k + 1)-choosable. For example, K1,9 is equitably 0-degenerate 4-choosable, and is not equitably 0-degenerate 5-choosable. 
Recently, Kaul, Mudrock, and Pelsmajer [11] used the combination of probabilistic and algorithmic arguments to show that 
K11,17 is equitably 1-degenerate 3-choosable, and is not equitably 1-degenerate 4-choosable. Indeed, it is still interesting to 
check whether there are such examples with d ≥ 2.

The maximum average degree mad(G) of a graph G is defined by

max

{
2|E(H)|
|V (H)|

∣∣∣∣ ∅ �= H ⊆ G

}
.

Planar graphs are a well-established class of graphs with bounded maximum average degree (note that mad(G) < 6 for any 
planar graph G).

In 2013, Wu, Zhang, and Li [21] conjectured that the equitable 1-degenerate chromatic number of any planar graph G is 
bounded by a constant independent of G . Two years later, Esperet, Lemoine, and Maffray [9] confirmed it by proving that 
every planar graph is equitably 1-degenerate 4-colorable. Recently, Kim, Oum, and Zhang [12] showed that every planar 
graph is equitably 2-degenerate 3-colorable, and is equitably d-degenerate 2-colorable for every d ≥ 3. The list analogue of 
such kinds of results first appeared in [22], where the author proved that every planar graph G with maximum degree at 
least 8 is equitably 1-degenerate k-choosable for every k ≥ �(�(G) +1)/2�. Meanwhile, Zhang [22] put forward the following 
conjecture.

Conjecture 1.1. Every graph G is equitably 1-degenerate k-choosable for every k ≥ ��(G)+1
2 �.

Zhang [22] proved that this conjecture holds for many classes of graphs including complete graphs, 2-degenerate graphs, 
3-degenerate claw-free graphs with maximum degree at least 4, and planar graphs with maximum degree at least 8. Re-
cently, Kaul, Mudrock and Pelsmajer [11] confirmed it for powers of cycles.

Motivated by Conjecture 1.1, it is natural to ask whether we have similar properties for equitable d-degenerate choos-
ability. The following proposition is a start, and it generalizes a result of Niu, Li, and Zhang [17,18].
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Proposition 1.2. The globally coupled network with n nodes (i.e., complete graph Kn) is equitably d-degenerate k-colorable and eq-
uitably d-degenerate k-choosable for any nonnegative integer d and k ≥ � n

d+1 �, and Kn is not equitably d-degenerate k-colorable for 
any k < � n

d+1 �.

Proof. The proof of the first part of this theorem will be presented in Section 2 (actually it is an immediate corollary 
from Theorems 2.3(1) and 2.3(3) of the next section) and now we prove the second part. Suppose for a contradiction 
that Kn has an equitable d-degenerate k-coloring c for some k < �n/(d + 1)�. It follows that every color class of c has at 
least �n/k� ≥ d + 1 vertices, and furthermore, this number should be exactly d + 1, because otherwise there would be a 
monochromatic Kd+2, which is not d-degenerate. This implies n = k(d + 1) and thus k = �n/(d + 1)�, a contradiction. �

Since �(Kn) = n − 1, we conjecture, motivated by Proposition 1.2, the following.

Conjecture 1.3. Let d be a nonnegative integer and let G be a graph.

(1) G is equitably d-degenerate k-colorable for every k ≥ ��(G)+1
d+1 �;

(2) G is equitably d-degenerate k-choosable for every k ≥ ��(G)+1
d+1 �.

In the case that d = 0, Conjecture 1.3(1) coincides with an old conjecture of Erdős [8], which was confirmed by Hajnal 
and Szemerédi [10] in 1970, and Conjecture 1.3(2) is known as Equitable List Coloring Conjecture, which was put forward by 
Kostochka, Pelsmajer and West [13] in 2003 and is still open. On the other hand, Conjecture 1.3(1) with d = 1 is known 
as Equitable Vertex Arboricity Conjecture [21], which was put forward in 2013 and has been confirmed for some classes of 
graphs including subcubic graphs [23], graphs G with �(G) ≥ (|G| − 1)/2 [19,26], 5-degenerate graphs [4] and IC-planar 
graphs with large maximum degree [24], and Conjecture 1.3(2) with d = 1 is exactly Conjecture 1.1. In this paper, we aim 
to confirm Conjecture 1.3 for certain classes of graphs.

The well-know Chen-Lih-Wu Conjecture [3] states that the only connected graphs with maximum degree at most r that 
are not equitably 0-degenerate r-colorable are Kr,r and Kr+1. Kostochka, Pelsmajer, and West [13] also conjectured that 
every connected graph G with maximum degree at least 3 is equitably 0-degenerate k-choosable for every k ≥ �(G) unless 
it is a complete graph or Kt,t for some odd t . Recently, Kaul, Mudrock, and Pelsmajer [11] conjectured that every connected 
graph G is equitably 1-degenerate k-choosable for every k ≥ �(G)/2 provided G is neither a cycle nor a complete graph of 
odd order. Motivated by those conjectures, it may be natural to consider whether we can address slightly smaller values 
of k than Conjecture 1.3, or specifically, whether we can replace (�(G) + 1)/(d + 1) with �(G)/(d + 1), sometimes with 
the connectedness condition and with some graphs forbidden. Theorem 3.5 is such a result and it is interesting to consider 
more in the future.

2. Complete graphs and interval graphs

Instead of proving Proposition 1.2 directly, we prove a stronger result for a larger class of graphs, called interval graphs. 
A graph G is an interval graph if each vertex u ∈ V (G) has a representation as an interval Iu such that uv ∈ E(G) if and 
only if Iu ∩ I v �= ∅. We use L(u) and R(u) to denote the left and the right endpoint of the interval Iu respectively for 
each u ∈ V (G). For any two vertices u, v ∈ V (G), if L(u) < L(v), or L(u) = L(v) and R(u) ≤ R(v), then we say u < v . The 
following proposition is straightforward.

Proposition 2.1 (Folklore). If G is an interval graph with three vertices such that u < v < w and uw ∈ E(G), then uv ∈ E(G).

We can say more than Proposition 2.1 by the following lemma, which describes the structure of interval graphs well.

Lemma 2.2. [20, Olariu] A graph is an interval graph if and only if it has a linear order < as defined above such that u < v < w and 
uw ∈ E(G) imply uv ∈ E(G) for any u, v, w ∈ V (G).

Theorem 2.3. Every interval graph G on n vertices is

(1): equitably d-degenerate k-choosable for every k ≥ ⌈ n
d+1

⌉
and d ≥ 0;

(2): equitably d-degenerate k-choosable for every k ≥ ⌈
�(G)

d

⌉
and d ≥ 1;

(3): equitably d-degenerate k-colorable for every k ≥ ⌈
�(G)+1

d+1

⌉
and d ≥ 0.

Proof. Sort vertices of G by v1 < v2 < · · · < vn such that < is a linear order satisfying Lemma 2.2 and assume that n =
pk + q, where p, q are nonnegative integers and 0 ≤ q < k. We color v1, v2, . . . , vn in this order so that
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c(vik+ j) = min

{
α | α ∈ L(vik+ j) \

j−1⋃
�=1

{c(vik+�)}
}

for every pair of integers i and j with 0 ≤ i ≤ p and 1 ≤ j ≤ k, where L is a k-uniform list assignment of G if we consider 
choosability, or denotes {1, 2, . . . , k} if we consider colorability. Since c(vik+ j1 ) �= c(vik+ j2 ) if j1 �= j2, the number of vertices 
among {v1, v2, . . . , vn} in a same color is at most{

p if q = 0,

p + 1 otherwise,

which is exactly the value of �n/k�. On the other hand, if L(vi) = {1, 2, . . . , k} for each 1 ≤ i ≤ n, then the size of any color 
class of c is at least p = �n/k�. It is sufficient to prove that the vertices in each color class induce a d-degenerate subgraph.

If k ≥ �n/(d +1)�, then �n/k� ≤ d +1, which implies |c−1(i)| ≤ d +1 for each color i ∈ ∪n
j=1{c(vi)} and thus c−1(i) induces 

a d-degenerate graph. This proves (1).
We now prove (2) and (3) together. Let vαik+βi with 1 ≤ i ≤ s, 0 ≤ α1 < α2 < · · · < αs ≤ p and 0 ≤ βi < k be s arbitrary 

vertices colored by a fixed color γ (note that there may be more than s vertices colored by γ under the coloring c) and 
we just need to show that those s vertices induce a graph H with minimum degree at most d. This result is trivial for 
s ≤ d + 1 so we assume that s ≥ d + 2. Suppose, to the contrary, that δ(H) ≥ d + 1. This implies that vα1k+β1 has at least 
d + 1 neighbors among {vαik+βi | 2 ≤ i ≤ s}. In particular, vα1k+β1 vαsk+βs ∈ E(G), which implies vα1k+β1 v j ∈ E(G) for any 
α1k + β1 + 1 ≤ j ≤ αsk + βs by Proposition 2.1. It follows that

deg(vα1k+β1) ≥ (αs − α1)k + (βs − β1)

≥ (s − 1)k + (βs − β1)

≥ (d + 1)k + (βs − β1) (2.1)

While proving (2), we have βs −β1 ≥ 1 −k. So (2.1) implies (d +1)k +(1 −k) ≤ deg(vα1k+β1 ) ≤ �(G) ≤ dk, a contradiction. 
While proving (3), we have β1 = β2 = · · · = βs by the definition of the coloring c. So (2.1) implies (d + 1)k ≤ deg(vα1k+β1 ) ≤
�(G) ≤ (d + 1)k − 1, a contradiction. �

Since complete graphs are clearly interval graphs, Proposition 1.2 is an immediate corollary from Theorems 2.3(1) and 
2.3(3). Furthermore, Theorem 2.3(3) implies Conjecture 1.3(1) for all interval graphs.

To end this section, we remark that we did not use any property of interval graphs while proving Theorem 2.3(1). This 
actually means that the result in Theorem 2.3(1) holds for all n-vertex graphs.

Proposition 2.4. Every graph G on n vertices is equitably d-degenerate k-choosable for every k ≥ ⌈ n
d+1

⌉
and d ≥ 0. �

3. Technical lemmas

In this section we prove technical lemmas that will be applied in the next two sections. To begin with, we present two 
algorithms that will be involved in the next proofs.

In the first algorithm Gap-Filling, we have four inputs. The first one is a graph H , and the second to the fourth ones are 
three positive integers s, i, and j with i ≤ j. While applying Gap-Filling in the following arguments, we always choose the 
input graph H to be s-degenerate to guarantee that we can really find a required vertex by line 4 during each iteration.

Gap-Filling (H, s, i, j)
1 S ′ ← ∅
2 if i ≤ j
3 then for � ← i to j
4 do find a vertex x� ∈ V (H) of degree at most s
5 H ← H \ {x�}
6 S ′ ← S ′ ∪ {x�}
7 else quite

In the second algorithm Color-Extension, we still have four inputs. The first one is a graph G , each of whose vertex v
is assigned a k-uniform list L(v), and thus we make the function L : V (G) → {L(v) : v ∈ V (G)} to be its second input. The 
third input of Color-Extension is a set {x1, x2, . . . , xk} of k distinct vertices of G . The last input of Color-Extension is an 
equitable d-degenerate L-coloring ϕ of the graph G − {x1, x2, . . . , xk}.
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Color-Extension (G, L, {x1, x2, . . . , xk}, ϕ)

1 for i ← 1 to k
� H stands for the graph G − {x1, x2, . . . , xk}.
� Cd

H (v) is the set of colors under ϕ that are used at most d times among all neighbors of v in H .
2 do find a color αk+1−i ∈ L(xk+1−i) ∩ Cd

H (xk+1−i) \ ⋃k
j=k+2−i{α j}

3 color xk+1−i with αk+1−i

Lemma 3.1. Let d be a nonnegative integer and let S be a set of distinct vertices x1, . . . , xk of G so that G − S is equitably d-degenerate 
k-choosable (resp. k-colorable). If

|N(xi) \ S| ≤ (d + 1)i − 1 (3.1)

for every 1 ≤ i ≤ k, then G is equitably d-degenerate k-choosable (resp. k-colorable).

Proof. It is sufficient to prove that Color-Extension (G, L, S, ϕ) extends the equitable d-degenerate L-coloring ϕ of G − S
to G whenever every vertex v of G is assigned a k-uniform list L(v). According to the algorithm, we color xk, xk−1, · · · , x1 in 
this order with αk, αk−1, · · · , α1, respectively. Suppose now that xk+1−i (1 ≤ i ≤ k) is being colored. Since |N(xk+1−i) \ S| ≤
(d + 1)(k + 1 − i) − 1, there is at least one color, say αk+1−i , in L(xk+1−i) \ ⋃k

j=k+2−i{α j} (note that this set has at least 
k + 1 − i elements) such that αk+1−i is used at most d times among all neighbors of v besides those in S . Hence line 2 
of the algorithm Color-Extension applies in each iteration, and moreover, executing line 3 results in a d-degenerate (list) 
coloring. Denote by φ the extended d-degenerate (list) coloring of G when the algorithm finishes.

If we consider colorability, then ϕ is a d-degenerate coloring such that the sizes of every two color classes differ by at 
most one, and so is φ, because xk, xk−1, · · · , x1 receive different colors. On the other hand, if we consider choosability, then 
by the same reason, each color of φ appears on at most �(|G| −k)/k� +1 = �|G|/k� vertices, and thus φ is still equitable. �

In [1], Bollobás and Thomason gave the formal definition of monotone properties of graphs. A property P of graphs is an 
infinite class of graphs which is closed under isomorphism. A property P is monotone if every subgraph of every member 
of P is also in P .

If G is not equitably d-degenerate k-choosable (resp. k-colorable) but any proper subgraph of G is equitably d-degenerate 
k-choosable (resp. k-colorable), then we call G an equitably d-degenerate k-choosable-critical (resp. equitably d-degenerate k-
colorable-critical) graph. The following observations are straightforward.

Observation 3.2. Let P be a monotone property. If there is a graph G ∈ P which is not equitable d-degenerate k-choosable (resp. 
k-colorable), then in P there is also an equitable d-degenerate k-choosable-critical (resp. k-colorable-critical) graph.

Observation 3.3. If P1 and P2 are two monotone properties such that P1 ⊂ P2 , and G is an equitably d-degenerate k-choosable-
critical (resp., k-colorable-critical) graph in P1 , then G is also an equitably d-degenerate k-choosable-critical (resp., k-colorable-
critical) graph in P2 .

In the following, if P is a monotone property, then instead of saying that G is an equitably d-degenerate k-choosable-
critical (resp., k-colorable-critical) graph in P , we say that G is an equitably d-degenerate k-choosable-critical (resp., k-
colorable-critical) graph in the class of graphs which are defined by P .

Lemma 3.4. Let k, �, d and i be nonnegative integers. If k ≥ max{�/(d + 1), 2} and G is an equitably d-degenerate k-choosable-
critical (resp., k-colorable-critical) graph in the class of (d + i)-degenerate graphs with maximum degree at most �, then i ≥ 2.

Proof. Suppose for a contradiction that i ≤ 1. Since G is (d + 1)-degenerate (note that if i = 0 then G is d-degenerate, and 
d-degeneracy implies (d +1)-degeneracy), there is an edge uv with deg(u) ≤ d +1. Label u, v as x1, xk respectively and then 
execute Gap-Filling (G \ {x1, xk}, d + 1, 2, k − 1). This results in a set S = {x1, · · · , xk}.

Since |N(x1) \ S| ≤ deg(u) − 1 ≤ d, |N(xi) \ S| ≤ d + 1 < 2d + 1 ≤ (d + 1)i − 1 for each 2 ≤ i ≤ k − 1, and |N(xk) \ S| ≤
� − 1 ≤ (d + 1)k − 1, S satisfies the condition (3.1). This implies that the equitable d-degenerate L-coloring ϕ of G − S can 
be extended to that of G by Lemma 3.1 (actually by executing Color-Extension (G, L, S, ϕ)) whenever every vertex v of G
is assigned a k-uniform list L(v), a contradiction. �

By Lemma 3.4, we have the following theorem, verifying Conjecture 1.3 for (d + 1)-degenerate graphs.

Theorem 3.5. Every (d + 1)-degenerate graph G is equitably d-degenerate k-choosable and equitably d-degenerate k-colorable for 
every nonnegative integer d and k ≥ max

{��(G) �, 2}
. �
d+1
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The following lemma will be frequently used in the next sections.

Lemma 3.6. Let k, � and d be nonnegative integers. If k ≥ (� + 1)/(d + 1) and G is an equitably d-degenerate k-choosable-critical 
(resp., k-colorable-critical) graph in the class of (2d +1)-degenerate graphs with maximum degree at most �, then the following holds.

(1): If k ≥ 2, then δ(G) ≥ d + 2.
(2): If k ≥ 3 and uv is an edge with deg(u) = d + 2, then deg(v) ≥ (d + 1)(k − 1) + 1.
(3): If k ≥ 4 and uv is an edge with deg(u) ≤ (d + 1)(k − 1) + 1 and deg(v) = d + 2, then deg(w) ≥ (d + 1)(k − 2) + 1 for any 

other neighbor w of u besides v.
(4): If k ≥ 4 and uv is an edge with deg(u) ≤ (d + 1)(k − 2) and deg(v) = d + 3, then deg(w) ≥ (d + 1)(k − 1) + 1 for any other 

neighbor w of v besides u.
(5): If k ≥ 3 and uv w is a triangle with deg(u) = d + 2, then min{deg(v), deg(w)} ≥ (d + 1)(k − 1) + 2.
(6): If k ≥ 4 and uv w is a triangle with deg(u) = d + 3, then min{deg(v), deg(w)} ≤ (d + 1)(k − 2) + 1 implies max{deg(v),

deg(w)} ≥ (d + 1)(k − 1) + 2.

Proof. (1) Suppose, to the contrary, that G has a vertex u of degree at most d + 1. Let v be a neighbor of u. Label u, v
as x1, xk respectively and then execute Gap-Filling (G \ {x1, xk}, 2d + 1, 2, k − 1). This results in a set S = {x1, · · · , xk}, 
satisfying the condition (3.1); i.e., |N(x1) \ S| ≤ deg(u) − 1 ≤ d, |N(xi) \ S| ≤ 2d + 1 ≤ (d + 1)i − 1 for each 2 ≤ i ≤ k − 1, and 
|N(xk) \ S| < �(G) ≤ (d + 1)k − 1. Hence Color-Extension (G, L, S, ϕ) extends the equitable d-degenerate L-coloring ϕ of 
G − S (which exists since G is critical) to G by Lemma 3.1 whenever every vertex v of G is assigned a k-uniform list L(v), 
a contradiction.

(2) Suppose for a contradiction deg(v) ≤ (d + 1)(k − 1). Label u, v , and a vertex in N(u) \ {v} as x1, xk−1, and xk
respectively, and execute Gap-Filling (G \ {x1, xk−1, xk}, 2d + 1, 2, k − 2). This results in a set S = {x1, · · · , xk−1, xk}. Since 
|N(x1) \ S| ≤ deg(u) − 2 = d, |N(xi) \ S| ≤ 2d + 1 ≤ (d + 1)i − 1 for each 2 ≤ i ≤ k − 2, |N(xk−1) \ S| ≤ deg(v) − 1 ≤ (d + 1)(k −
1) − 1, and |N(xk) \ S| < �(G) ≤ (d + 1)k − 1, S satisfies the condition (3.1). Hence Color-Extension (G, L, S, ϕ) extends the 
equitable d-degenerate L-coloring ϕ of G − S to G by Lemma 3.1 whenever every vertex v of G is assigned a k-uniform list 
L(v), a contradiction.

(3) Suppose for a contradiction that deg(w) ≤ (d + 1)(k − 2). Label v , w , u, and a vertex in N(v) \ {u, w} as x1, 
xk−2, xk−1, and xk respectively, and execute Gap-Filling (G \ {x1, xk−2, xk−1, xk}, 2d + 1, 2, k − 3). This results in a set 
S = {x1, · · · , xk−2, xk−1, xk}. Since |N(x1) \ S| ≤ deg(v) − 2 = d, |N(xi) \ S| ≤ 2d + 1 ≤ (d + 1)i − 1 for each 2 ≤ i ≤ k − 3, 
|N(xk−2) \ S| ≤ deg(w) − 1 ≤ (d + 1)(k − 2) − 1, |N(xk−1) \ S| ≤ deg(u) − 2 ≤ (d + 1)(k − 1) − 1, and |N(xk) \ S| < �(G) ≤
(d +1)k −1, S satisfies the condition (3.1). Hence Color-Extension (G, L, S, ϕ) extends the equitable d-degenerate L-coloring 
ϕ of G − S to G by Lemma 3.1 whenever every vertex v of G is assigned a k-uniform list L(v), a contradiction.

(4) Suppose for a contradiction that deg(w) ≤ (d + 1)(k − 1). Label v , u, w , and a vertex in N(v) \ {u, w} as x1, 
xk−2, xk−1, and xk respectively, and execute Gap-Filling (G \ {x1, xk−2, xk−1, xk}, 2d + 1, 2, k − 3). This results in a set 
S = {x1, · · · , xk−2, xk−1, xk}. Since |N(x1) \ S| ≤ deg(v) − 3 = d, |N(xi) \ S| ≤ 2d + 1 ≤ (d + 1)i − 1 for each 2 ≤ i ≤ k − 3, 
|N(xk−2) \ S| ≤ deg(u) − 1 ≤ (d + 1)(k − 2) − 1, |N(xk−1) \ S| ≤ deg(w) − 1 ≤ (d + 1)(k − 1) − 1, and |N(xk) \ S| < �(G) ≤
(d +1)k −1, S satisfies the condition (3.1). Hence Color-Extension (G, L, S, ϕ) extends the equitable d-degenerate L-coloring 
ϕ of G − S to G by Lemma 3.1 whenever every vertex v of G is assigned a k-uniform list L(v), a contradiction.

(5) Suppose for a contradiction that deg(v) ≤ (d + 1)(k − 1) + 1. Label u, v , and w as x1, xk−1, and xk respectively, and 
then execute Gap-Filling (G \ {x1, xk−1, xk}, 2d + 1, 2, k − 2). This results in a set S = {x1, · · · , xk−1, xk}. Since |N(x1) \ S| ≤
deg(u) − 2 = d, |N(xi) \ S| ≤ 2d + 1 ≤ (d + 1)i − 1 for each 2 ≤ i ≤ k − 2, |N(xk−1) \ S| ≤ deg(v) − 2 ≤ (d + 1)(k − 1) − 1 and 
|N(xk) \ S| < �(G) ≤ (d + 1)k − 1, S satisfies the condition (3.1). Hence Color-Extension (G, L, S, ϕ) extends the equitable 
d-degenerate L-coloring ϕ of G − S to G by Lemma 3.1 whenever every vertex v of G is assigned a k-uniform list L(v), a 
contradiction.

(6) Suppose for a contradiction that deg(v) ≤ (d + 1)(k − 2) + 1 and deg(w) ≤ (d + 1)(k − 1) + 1. Label u, v , w , and a 
vertex in N(u) \{v, w} by x1, xk−2, xk−1, and xk respectively, and execute Gap-Filling (G \{x1, xk−2, xk−1, xk}, 2d +1, 2, k −2). 
This results in a set S = {x1, · · · , xk−2, xk−1, xk}. Since |N(x1) \ S| ≤ deg(u) − 3 = d, |N(xi) \ S| ≤ 2d + 1 ≤ (d + 1)i − 1 for 
each 2 ≤ i ≤ k − 3, |N(xk−2) \ S| ≤ deg(v) − 2 ≤ (d + 1)(k − 2) − 1, |N(xk−1) \ S| ≤ deg(w) − 2 ≤ (d + 1)(k − 1) − 1, and 
|N(xk) \ S| < � ≤ (d + 1)k − 1, S satisfies the condition (3.1). Hence Color-Extension (G, L, S, ϕ) extends the equitable 
d-degenerate L-coloring ϕ of G − S to G by Lemma 3.1 whenever every vertex v of G is assigned a k-uniform list L(v), a 
contradiction. �

4. Graphs with bounded maximum average degree

In this section we confirm Conjecture 1.3 for graphs with bounded maximum average degree by the following theorems.

Theorem 4.1. Every graph G with mad(G) < 4 is equitably 1-degenerate k-choosable and equitably 1-degenerate k-colorable for every 
integer k ≥ max{⌈�(G)+1 ⌉

, 4
}

.
2
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Theorem 4.2. Every graph G with mad(G) < d + 4 is equitably d-degenerate k-choosable and equitably d-degenerate k-colorable for 
every integer k ≥ ⌈

�(G)+1
d+1

⌉
if

• k ≥ 4 and d ≥ 3 is an integer, or
• k ≥ 5 and d = 2.

A vertex of degree k, at least k, or at most k is a k, k+ , or k−-vertex, respectively. Instead of proving Theorem 4.1 directly, 
we prove the following slightly stronger theorem.

Theorem 4.3. Every graph G with mad(G) < 4 and �(G) ≤ � is equitably 1-degenerate k-choosable and equitably 1-degenerate 
k-colorable for every integer k ≥ max

{⌈
�+1

2

⌉
, 4

}
, where � is an integer.

Proof. Suppose for a contradiction that there exists an equitably 1-degenerate k-choosable (colorable)-critical graph G in 
the class of graphs with maximum average degree less than 4 and maximum degree at most �. Since graphs with maximum 
average degree less than 4 are 3-degenerate, G is also an equitably 1-degenerate k-choosable (colorable)-critical graph in 
the class of 3-degenerate graphs with maximum degree at most �. Hence Lemma 3.6 with d = 1 applies. Specifically, the 
following facts hold.

(F 1): δ(G) ≥ 3 (by Lemma 3.6(1));
(F 2): a 3-vertex is adjacent only to 7+-vertices (by Lemma 3.6(2));
(F 3): a 7+-vertex is adjacent to at most one 3-vertex (by Lemma 3.6(3));

Let ni and n+
i with i ≥ 3 be the number of vertices of degree i and of degree at least i, respectively. By (F 2) and (F 3), 

n+
7 ≥ 3n3. By (F 1), we have

mad(G) ≥ 3n3 + 4n4 + 5n5 + 6n6 + 7n+
7

n3 + n4 + n5 + n6 + n+
7

≥ 24n3 + 4n4 + 5n5 + 6n6

4n3 + n4 + n5 + n6
≥ 4,

a contradiction. �

Again, instead of proving Theorem 4.2 directly, we prove the following slightly stronger theorem.

Theorem 4.4. Every graph G with mad(G) < d + 4 and �(G) ≤ � is equitably d-degenerate k-choosable and equitably d-degenerate 
k-colorable for every integer k ≥ ⌈

�+1
d+1

⌉
if

• k ≥ 4 and d ≥ 3 is an integer, or
• k ≥ 5 and d = 2,

where � is an integer.

Proof. Suppose for a contradiction that there exists an equitably d-degenerate k-choosable (colorable)-critical graph G in 
the class of graphs with maximum average degree less than d + 4 and maximum degree at most �. Since graphs with 
maximum average degree less than d + 4 are (d + 3)-degenerate and d + 3 ≤ 2d + 1 if d ≥ 2, G is also an equitably d-
degenerate k-choosable (colorable)-critical graph in the class of (2d + 1)-degenerate graphs with maximum degree at most 
�. Hence Lemma 3.6 with d ≥ 2 applies. Specifically, the following facts hold.

(F 1): δ(G) ≥ d + 2 (by Lemma 3.6(1));

(F 2): a (d + 2)-vertex is adjacent only to 
(

(d + 1)(k − 1) + 1

)+
-vertices (by Lemma 3.6(2));

(F 3): a (d +3)-vertex is adjacent only to 
(

(d +1)(k −2) +1

)+
-vertices, or is adjacent to at least d +2

(
(d +1)(k −1) +1

)+
-

vertices (by Lemma 3.6(4));

(F 4): a 
(

(d + 1)(k − 1) + 1

)
-vertex is adjacent to at most one (d + 2)-vertices, and furthermore, it is not adjacent to any 

(d + 3)-vertex if it is adjacent to a (d + 2)-vertex (by Lemma 3.6(3)).

To each vertex v ∈ V (G), we assign an initial charge c(v) = deg(v) − (d + 4), and thus 
∑

v∈V (G) c(v) = ∑
v∈V (G) deg(v) −

(d + 4)|G| ≤ mad(G) · |G| − (d + 4)|G| < 0. We proceed the discharging by the following rules.
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(R1): Every 
(

(d + 1)(k − 1) + 1

)+
-vertex sends to each of its adjacent (d + 2)-vertices

α(d) =
{

2
5 if d ≥ 3,

1
2 if d = 2,

(R2): Every 
(

(d + 1)(k − 2) + 1

)+
-vertex sends to each of its adjacent (d + 3)-vertices

β(d) =
{

1
5 if d ≥ 3,

1
4 if d = 2.

By c′(v) we define the final charge of each vertex v ∈ V (G). Our goal is to prove that c′(v) ≥ 0 for each vertex v ∈ V (G)

and then obtain the contradiction: 0 >
∑

v∈V (G) c(v) = ∑
v∈V (G) c′(v) ≥ 0.

By (F 1), there is no (d + 1)−-vertex in G .
If deg(v) = d + 2, then by (F 2) and (R1),

c′(v) ≥ (d + 2) − (d + 4) + α(d)(d + 2)

= −2 + α(d)(d + 2)

=
{

2d−6
5 ≥ 0 if d ≥ 3,

d−2
2 = 0 if d = 2.

If deg(v) = d + 3, then by (F 3) and (R2),

c′(v) ≥ (d + 3) − (d + 4) + min{β(d)(d + 3),α(d)(d + 2)}
= −1 + β(d)(d + 3)

=
{

d−2
5 > 0 if d ≥ 3,

d−1
4 > 0 if d = 2.

If deg(v) ∈ [d + 4, (d + 1)(k − 2)], then c′(v) = c(v) ≥ (d + 4) − (d + 4) = 0.
If deg(v) ∈ [(d + 1)(k − 2) + 1, (d + 1)(k − 1)], then by (R2),

c′(v) ≥ deg(v) − (d + 4) − β(d)deg(v)

≥
(

1 − β(d)

)(
(d + 1)(k − 2) + 1

)
− (d + 4)

=
(

(1 − β(d))(k − 2) − 1

)
d +

(
(1 − β(d))(k − 1) − 4

)

≥
{

3d−8
5 > 0 if d ≥ 3 and k ≥ 4,

5d−4
4 > 0 if d = 2 and k ≥ 5.

If deg(v) = (d + 1)(k − 1) + 1, then by (F 4), (R1), (R2), and by the previous calculation,

c′(v) ≥ (d + 1)(k − 1) + 1 − (d + 4) − max{α(d),β(d)((d + 1)(k − 1) + 1)}
= (d + 1)(k − 1) + 1 − (d + 4) − β(d)((d + 1)(k − 1) + 1)

> (d + 1)(k − 2) + 1 − (d + 4) − β(d)((d + 1)(k − 2) + 1)

≥ 0

If deg(v) ≥ (d + 1)(k − 1) + 2, then by (R1) and (R2), and by the fact that α(d) ≥ β(d),

c′(v) ≥ deg(v) − (d + 4) − α(d)deg(v)

≥
(

1 − α(d)

)(
(d + 1)(k − 1) + 2

)
− (d + 4)

=
(

(1 − α(d))(k − 1) − 1

)
d +

(
(1 − α(d))(k + 1) − 4

)
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≥
{

4d−5
5 > 0 if d ≥ 3 and k ≥ 4,

d − 1 > 0 if d = 2 and k ≥ 5.

This ends the proof. �

5. Planar graphs

A drawing of a planar graph on the plane such that no edges cross each other is called a plane graph. This drawing 
divides the plane into a set of regions, called faces. The degree of a face in a plane graph is the number of edges on its 
boundary, where cut edges are counted twice. For a plane graph G , we use F (G) to denote the set of faces of G , and a face 
of degree k, at least k, or at most k of G is a k, k+ , or k−-face, respectively. In the section, we always think a planar graph as 
a plane graph.

Note again that Conjecture 1.3(1) with d = 0 is exactly the Hajnal-Szemerédi Theorem [10]. The result of Esperet, 
Lemoine, and Maffray [9] states that every planar graph G is equitably 1-degenerate k-colorable for every integer k ≥ 4, 
and thus Conjecture 1.3(1) with d = 1 holds for planar graphs G with �(G) ≥ 6. On the other hand, since Conjecture 1.1
holds for all 5-degenerate graphs (and thus naturally for all graphs G with �(G) ≤ 5) due to the result of Chen et al. [4], 
Conjecture 1.3(1) with d = 1 holds for planar graphs G with �(G) ≤ 5, and thus for all planar graphs. According to the result 
of Kim, Oum, and Zhang [12] that every planar graph is equitably 2-degenerate k-colorable for every k ≥ 3, and is equitably 
d-degenerate k-colorable for every d ≥ 3 and k ≥ 2, we conclude that Conjecture 1.3(1) with d = 2 holds for planar graphs 
G with �(G) ≥ 8, and Conjecture 1.3(1) with d ≥ 3 holds for planar graphs G with �(G) ≥ d + 1. Therefore, the colorability 
version of Conjecture 1.3 had already been verified for planar graphs with large maximum degree.

In this section, we confirm the choosability version of Conjecture 1.3 for planar graphs with large maximum degree.

Theorem 5.1. Every planar graph G is equitably d-degenerate k-choosable for every integer

k ≥ max

{⌈
�(G) + 1

d + 1

⌉
,6 − d

}
,

where d ≥ 1 is an integer.

Note the Theorem 5.1 is only interesting for d ≤ 4, because a planar graph itself is 5-degenerate. Zhang [22] proved 
Theorem 5.1 with d = 1. So in what follows we complete the proofs of Theorem 5.1 with d = 2, 3, 4. For convenience, we 
use three independent theorems to show this fact.

Theorem 5.2. Every planar graph G with �(G) ≤ � is equitably 2-degenerate k-choosable for every integer k ≥ max
{⌈

�+1
3

⌉
, 4

}
, 

where � is an integer.

Proof. Suppose for a contradiction that there exists an equitably 2-degenerate k-choosable-critical graph G in the class of 
planar graphs with maximum degree at most �. Since planar graphs are 5-degenerate, G is also an equitably 2-degenerate 
k-choosable-critical graph in the class of 5-degenerate graphs with maximum degree at most �. Hence Lemma 3.6 with 
d = 2 applies. Specifically, the following facts hold.

(F 1): δ(G) ≥ 4 (by Lemma 3.6(1));
(F 2): If uv w is a triangle with deg(u) = 4, then min{deg(v), deg(w)} ≥ 11 (by Lemma 3.6(5));
(F 3): If uv w is a triangle with deg(u) = 5, then either max{deg(v), deg(w)} ≥ 11 or min{deg(v), deg(w)} ≥ 8 (by 

Lemma 3.6(6)).

To each element x ∈ V (G) ∪ F (G), we assign an initial charge c(x) = deg(x) − 4, and thus∑
x∈V (G)∪F (G)

c(x) =
∑

v∈V (G)

(deg(v) − 4) +
∑

f ∈F (G)

(deg( f ) − 4)

= (2|E(G)| − 4|V (G)|) + (2|E(G)| − 4|F (G)|)
= −4(|V (G)| + |F (G)| − |E(G)|)
= −8,

by Euler’s formula. We use one discharging rule.

(R): Every 3-face receives deg(u)−4 from each of its incident vertices u with deg(u) ≥ 5.
deg(u)
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By c′(x) we denote the final charge of x ∈ V (G) ∪ F (G) after (R) is applied. It is clear that G has no 3−-vertex by (F 1) 
and c′(x) ≥ 0 if x is a 4-vertex or a 4+-face.

For any vertex u with deg(u) ≥ 5, (R) implies c′(u) ≥ deg(u) − 4 − deg(u) · deg(u)−4
deg(u)

= 0.
If f is a 3-face incident with three vertices u, v , and w with deg(u) ≤ deg(v) ≤ deg(w), then deg(u) ≥ 4 by (F 1).
If deg(u) = 4, then by (F 2) and (R), we have c′( f ) ≥ 3 − 4 + 2 · 11−4

11 > 0.
If deg(u) = 5, then by (F 3), we have two subcases. If deg(v) ≥ 8, then c′( f ) ≥ 3 − 4 + 5−4

5 + 2 · 8−4
8 > 0 by (R). If 

deg(w) ≥ 11, then c′( f ) ≥ 3 − 4 + 2 · 5−4
5 + 11−4

11 > 0 by (R).
If deg(u) ≥ 6, then it is easy to conclude that c′( f ) ≥ 3 − 4 + 3 · 6−4

6 = 0 by (R).
Therefore, c′( f ) ≥ 0 for every 3-face f and thus c′(x) ≥ 0 for any x ∈ V (G) ∪ F (G). This implies 

∑
x∈V (G)∪F (G) c′(x) ≥ 0, 

contradicting the fact that 
∑

x∈V (G)∪F (G) c′(x) = ∑
x∈V (G)∪F (G) c(x) = −8. �

Theorem 5.3. Every planar graph G with �(G) ≤ � is equitably 3-degenerate k-choosable for every integer k ≥ max
{⌈

�+1
4

⌉
, 3

}
, 

where � is an integer.

Proof. Suppose for a contradiction that there exists an equitably 3-degenerate k-choosable-critical graph G in the class of 
planar graphs with maximum degree at most �. Since planar graphs are 5-degenerate (and thus 7-degenerate), G is also 
an equitably 3-degenerate k-choosable-critical graph in the class of 7-degenerate graphs with maximum degree at most �. 
Hence Lemma 3.6 with d = 3 applies. Specifically, the following facts hold.

(F 1): δ(G) ≥ 5 (by Lemma 3.6(1));
(F 2): If uv w is a triangle with deg(u) = 5, then min{deg(v), deg(w)} ≥ 10 (by Lemma 3.6(5)).

To each element x ∈ V (G) ∪ F (G), we assign an initial charge

c(x) =
{

2deg(x) − 10 if x ∈ V (G),

3deg( f ) − 10 if x ∈ F (G),

and thus 
∑

x∈V (G)∪F (G) c(x) = −20 by Euler’s formula. We use one discharging rule.

(R): Every 3-face receives 2deg(u)−10
deg(u)

from each of its incident vertices u with deg(u) ≥ 5.

By c′(x) we denote the final charge of x ∈ V (G) ∪ F (G) after (R) is applied. Assume that f is a 3-face incident with 
three vertices u, v , and w with deg(u) ≤ deg(v) ≤ deg(w), then deg(u) ≥ 5 by (F 1). If deg(u) = 5, then by (F 2) and (R), 
we have c′( f ) ≥ 3 · 3 − 10 + 2 · 2·10−10

10 > 0. If deg(u) ≥ 6, then it is clear that c′( f ) ≥ 3 · 3 − 10 + 3 · 2·6−10
6 = 0 by (R). 

Therefore, c′( f ) ≥ 0 if f is a 3-face. On the other hand, if f is a 4+-face, then c′( f ) = c( f ) = 3deg( f ) − 10 > 0, and if v is a 
vertex, then v must be a 5+-vertex by (F 1) and thus c′(v) ≥ 2deg(v) − 10 − deg(v) · 2deg(u)−10

deg(u)
= 0 by (R). Hence we have 

0 ≤ ∑
x∈V (G)∪F (G) c′(x) = ∑

x∈V (G)∪F (G) c(x) = −20, a contradiction. �

Theorem 5.4. Every planar graph G with �(G) ≤ � is equitably 4-degenerate k-choosable for every integer k ≥ max
{⌈

�+1
5

⌉
, 2

}
, 

where � is an integer.

Proof. The possible counterexample to this theorem will be an equitably 4-degenerate k-choosable-critical planar graph 
with maximum degree at most �, and thus it has minimum degree at least 6 by Lemma 3.6(1). This is impossible since 
every planar graph contains a vertex of degree at most 5. �
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[7] E. Drgas-Burchardt, H. Furmańczyk, E. Sidorowicz, Equitable improper choosability of graphs, Theor. Comput. Sci. 844 (2020) 34–45.
60

http://refhub.elsevier.com/S0304-3975(21)00213-9/bib4C1E9D64563EFD02E29B923AAB45DF09s1
http://refhub.elsevier.com/S0304-3975(21)00213-9/bib90A840108DB6969AEBB08C41A30F76C8s1
http://refhub.elsevier.com/S0304-3975(21)00213-9/bibCB95A7AC0F32933172F5A8C18C45B90Bs1
http://refhub.elsevier.com/S0304-3975(21)00213-9/bib71EA0FA55710D064C7AFE03D60ACC594s1
http://refhub.elsevier.com/S0304-3975(21)00213-9/bib55DA48F7BF1EB7A5F6BF95FEB5B6F0A4s1
http://refhub.elsevier.com/S0304-3975(21)00213-9/bib644417DB1C24005CB2E97A7F82EF6A0Bs1
http://refhub.elsevier.com/S0304-3975(21)00213-9/bib644417DB1C24005CB2E97A7F82EF6A0Bs1
http://refhub.elsevier.com/S0304-3975(21)00213-9/bib6E5D1E01E008501A4B0F39B4B1BC4309s1


H. Zhang and X. Zhang Theoretical Computer Science 871 (2021) 51–61
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