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Abstract
A graph is outer-1-planar if it can be drawn in the plane so that all vertices are on the
outer face and each edge is crossed at most once. Zhang et al. (Edge covering pseudo-
outerplanar graphs with forests, Discrete Math 312:2788–2799, 2012; MR2945171)
proved that the linear arboricity of every outer-1-planar graph with maximum degree
� is exactly ��/2� provided that � = 3 or � ≥ 5 and claimed that there are outer-
1-planar graphs with maximum degree � = 4 and linear arboricity �(� + 1)/2� = 3.
It is shown in this paper that the linear arboricity of every outer-1-planar graph with
maximum degree 4 is exactly 2 provided that it admits an outer-1-planar drawing
with crossing distance at least 1 and crossing width at least 2, and moreover, none
of the above constraints on the crossing distance and crossing width can be removed.
Besides, a polynomial-time algorithm for constructing a path-2-coloring (i.e., an edge
2-coloring such that each color class induces a linear forest, a disjoint union of paths)
of such an outer-1-planar drawing is given.
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1 Introduction and Definitions

In this paper, all graphs are finite, simple and undirected. Let V (G) and E(G) be
the vertex set and edge set ofG, respectively. The degree of a vertex v inG, denoted by
dG(v), is the number of edges that are incident with v in G. By NG(v), we denote the
set of neighbors of v in G. We denote by �(G) and δ(G) the maximum and minimum
degree of G, respectively. The distance distG(u, w) between two vertices u andw of a
connected graph G is the minimum length of the path (i.e., the number of edges on the
path) connecting them. For U ,W ⊆ V (G), distG(U ,W ) = min{distG(u, w) | u ∈
U , w ∈ W } denotes the distance between two vertex sets U and W . If U = {u},
we write distG(u,W ) instead of distG({u},W ). For undefined concepts, we refer the
readers to [1].

A linear forest is a forest in which every connected component is a path. The linear
arboricity la(G) of G, introduced by Harary [2], is the minimum number of colors
that can be used to color the edges of G so that each color class induces a linear forest
of G. In 1980, Akiyama et al. [3] conjectured the following:

Conjecture 1.1 (Linear Arboricity Conjecture) For any graph G, ��(G)
2 � ≤ la(G) ≤

��(G)+1
2 �.

Although Conjecture 1.1 has been proved to be true for all planar graphs [4,5], finding
planar graphs G with

la(G) = ��(G)/2� (1.1)

is stlll interesting. Wu [4] proved (1.1) for planar graphs with maximum degree at
least 13, and this bound 13 was later improved to 9 by Cygan et al. [6]. Wu [7] also
proved (1.1) for all series–parallel graphs (hence also for all outerplanar graphs) with
maximum degree at least 3.

From the view of the computational complexity perspective, Peroche [8] claimed
that determining whether a given graph has linear arboricity k for a given integer k is,
however, NP-complete, even for graphs with maximum degree 4. For planar graphs,
Cygan et al. [6] conjectured that it is NP-complete to determine whether a given planar
graph with maximum degree 4 has linear arboricity 2.

A graph is outer-1-planar if it can be drawn in the plane so that all vertices are on the
outer face and each edge crosses at most one other edge. Outer-1-planar graphs were
first introduced by Eggleton [9] who called them outerplanar graphs with edge cross-
ing number one and were also investigated under the notion of pseudo-outerplanar
graphs by Zhang et al. [10,11]. Actually, every outer-1-planar graph is planar. This
fact was released in [10] without detailed proof, and a formal proof was given by Auer
et al. [12].

A drawing of an outer-1-planar graph in the plane such that its outer-1-planarity is
satisfied is an outer-1-plane graph or outer-1-planar drawing.

Let G be an outer-1-plane graph. The associated plane graph G× of G is the plane
graph obtained from G by turning all crossings into new vertices of degree four. If u
is a crossing (not a real vertex) in G, then we define NG(u) to be NG×(u), called the
cluster of u in G.
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Linear Arboricity of Outer-1-Planar Graphs 183

Let C(G) be the set of crossings in an outer-1-plane graphG. The crossing distance
of an outer-1-plane graph G is defined by

CD(G) =
{

min
u,v∈C(G),u �=v

distG
(NG(u),NG(v)

)
, if |C(G)| ≥ 2;

+∞, if |C(G)| ≤ 1.

For a vertex u in G, its crossing distance is defined by

CDG(u) =
{

min
v∈C(G)

distG
(
u,NG(v)

)
, if |C(G)| ≥ 1;

+∞, if |C(G)| = 0.

The crossing width of an outer-1-plane graph G is defined by

CW(G) =
{

min
u∈C(G)

max
v,w∈NG (u)

dG(v,w), if |C(G)| ≥ 1;
+∞, if |C(G)| = 0.

It has been shown recently by Dehkordi and Eades [13] that every outer-1-planar
graph has a right angle crossing drawing that preserves its outer-1-planarity. Auer et
al. [14] confirmed that the recognition of outer-1-planarity can process in linear time,
and the same result was also independently obtained by Hong et al. [15].

The partition problems on the outer-1-plane graphs were also investigated in the
literatures. For example, Zhang et al. [10] showed that each outer-1-plane graph admits
edge decompositions into a linear forest and an outerplane graph, or a star forest and
an outerplane graph, or two forests and a matching, or max{�(G), 4} matchings, or
max{��(G)/2�, 3} linear forests if �(G) ≥ 4 and two linear forests if �(G) ≤ 3.
From the last result of the above, we conclude the following

Observation 1.2 If G is an outer-1-plane graph, then la(G) = ��(G)/2� provided
that �(G) = 3 or �(G) ≥ 5, and la(G) ≤ 3 while �(G) = 4.

For an outer-1-plane graph G with �(G) = 4, it may have la(G) = 3. Graphs (a)
and (b) in Fig. 1 are such examples (this fact can be easily checked if one has noticed
that the two edges e1 and e2 must be in different colors while only two colors are
available). One can see that graph (a) in Fig. 1 has crossing distance 1 and crossing
width 1, while graph (b) in Fig. 1 has crossing distance 0 and crossing width 2.

Actually, if we forbid graph G to be with crossing distance at least 1 and crossing
width at least 2, we can avoid all exceptions. In other words, we have the following

Theorem 1.3 If G is an outer-1-plane graph with �(G) = 4,CD(G) ≥ 1 and
CW(G) ≥ 2, then la(G) = 2.

Theorem 1.3 is best possible in the sense that there exist graphs G with la(G) = 3 and
with CD(G) ≥ 1, CW(G) = 1, or CD(G) = 0, CW(G) ≥ 2 (see Fig. 1 for examples).
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184 X. Zhang, B. Li

Fig. 1 Outer-1-planar graphs with maximum degree 4 and linear arboricity 3

2 Useful Lemmas

In this section, we release some lemmas on the structures of an outer-1-plane graph
G. First, we assume that G is 2-connected. By v1, · · · , v|G|, we denote the vertices of
G with clockwise ordering on the boundary of its outer-1-planar drawing. Here |G| is
the order of G, i.e., the number of vertices in G.

Let V[vi , v j ] = {vi , vi+1, · · · , v j } (listing in a clockwise order) and V(vi , v j ) =
V[vi , v j ]\{vi , v j }, where i �= j and the subscripts are takenmodulo |G|. ByG[vi , v j ]
and G(vi , v j ), we denote the subgraph of G induced by V[vi , v j ] and V(vi , v j ),
respectively.

A vertex setV[vi , v j ] with i �= j is a non-edge if j = i + 1 and viv j /∈ E(G) and
is a path if vkvk+1 ∈ E(G) for all i ≤ k < j . An edge viv j inG is a chord if j− i �= 1
or 1 − |G|. By C[vi , v j ], we denote the set of chords xy with x, y ∈ V[vi , v j ].
Lemma 2.1 [10, Claim 1] Let va and vb be vertices of a 2-connected outer-1-plane
graph G. If there is no crossed chord in C[va, vb] and no edge betweenV(va, vb) and
V(vb, va), then V[va, vb] is either a non-edge or a path.

In any figure of this section, the degree of a solid (or hollow) vertex is exactly (or
at least) the number of edges that are incident with it, respectively, and a solid vertex
is distinct to every another vertex but two hollow vertices may be identified unless
stated otherwise.

In what follows, when mentioning the configuration Gi with 1 ≤ i ≤ 8 we always
refer to the corresponding picture in Fig. 2.

Saying that an outer-1-plane graph G contains Gi with 1 ≤ i ≤ 8, we mean
that G contains a subgraph isomorphic to Gi such that the degree in G of any solid
(resp. hollow) vertex in that picture is exactly (resp. at least) the number of edges that
are incident with it. Specially, saying G contains Gi with 3 ≤ i ≤ 8, we also mean
that the corresponding picture is a partial drawing of G such that all marked vertices
are consecutive on the outer boundary of G.

Let va and vb be two vertices on the outer boundary of an outer-1-plane graph G.
Saying G[va, vb] properly contains Gi for some i , we mean that G[va, vb] contains
Gi such that va and vb do not correspond to the solid vertices or hollow vertices with
degree restrictions in the picture of Gi . Note that if a = 1 and b = |G|, then G[va, vb]
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Linear Arboricity of Outer-1-Planar Graphs 185

Fig. 2 Local structures in outer-1-planar graph with �(G) = 4,CD(G) ≥ 1 and CW(G) ≥ 2

is clearly the graphG. However, by the definition of the proper containment, we cannot
say that G properly contains Gi , but saying that G[v1, v|G|] properly contains Gi is
permitted. Actually, the proper containment plays an important role when we generate
results from the 2-connected case to the connected case. One can see this in the proof
of Lemma 2.5.

Lemma 2.2 Let V[va, vb] with b − a ≥ 3 (i.e. |V[va, vb]| ≥ 4) be a path in a 2-
connected outer-1-plane graph G. If �(G) ≤ 4 and there is no crossed chord in
C[va, vb] and no edge between V(va, vb) and V(vb, va), then G[va, vb] properly
contains G1 or G3.

Proof If C[va, vb] \ {vavb} = ∅ (note that the chord vavb may not really exist), then
d(va+1) = d(va+2) = 2 and G1 is properly contained. If there is at least one chord in
C[va, vb] \ {vavb}, then choose one, say va′vb′ with a′ < b′, so that there is no other
chord in C[va′, vb′ ]. If b′ − a′ ≥ 3, then d(va′+1) = d(va′+2) = 2 and G1 is properly
contained. If b′−a′ = 2, then d(va′+1) = 2. Choose t ∈ {a′, b′} such that vt �= va, vb.
If d(vt ) ≤ 3, then G1 is properly contained. If d(vt ) = 4, then there is another one
chord vtvc′ with c′ �= a′, b′. If |c′ − t | = 2, then d(vt−1) = d(vt+1) = 2, and thus
G3 is properly contained. If |c′ − t | ≥ 3, then let a := min{c′, t}, b := max{c′, t} and
come back to the first line of this proof. Since t ′ �= a, b, |c′ − t | < |b − a|, which
implies that this iterative process will terminate.

Actually, the proof of Lemma 2.2 can be rewritten into the following Algorithm 1.
It takes at most O(|E |) time to run each of Steps 2, 4, 5, O(|V |) time to run each of

Steps 10, 12, 13, and O(1) time to run Steps 3, 6–9, 11, 14–17. Hence at most O(|E |)
time is needed for one iteration, and the running time of Finding-Outerplanar-
Configuration is at most O(|V | · |E |), since there occurs at most |V | iterations.
Lemma 2.3 Let viv j cross vkvl in a 2-connected outer-1-plane graph G with i < k <

j < l so that there are no other crossed chords besides viv j and vkvl in C[vi , vl ].
Suppose that �(G) ≤ 4.
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186 X. Zhang, B. Li

Algorithm 1: Finding-Outerplanar-Configuration(va, vb)

Input: Vertices va and vb of a 2-connected outer-1-plane graph G = (V , E) so that
conditions in Lemma 2.2 are satisfied;

Output: Special configuration that G[va , vb] properly contained;
Step 1 while b − a ≥ 3 do
Step 2 if C[va , vb] \ {vavb} = ∅ then
Step 3 Find two adjacent vertices va+1 and va+2 of degree 2 in G(va , vb), and output G1;

Step 4 else
Step 5 Choose a chord va′vb′ with a ≤ a′ < b′ ≤ b so that there is no other chord in

C[va′ , vb′ ];
Step 6 if b′ − a′ ≥ 3 then
Step 7 Find two adjacent vertices va′+1 and va′+2 of degree 2 in G(va′ , vb′ ), and output

G1;

Step 8 else
Step 9 Find vt ∈ {va′ , vb′ } \ {va , vb};

Step 10 if d(vt ) ≤ 3 then
Step 11 Find the configuration G1 that is properly contained in G[vt−1, vb′ ]

(resp.G[va′ , vt+1]) if t = a′ (resp. t = b′), and output G1;

Step 12 else
Step 13 Find a chord vtvc′ with c′ �= a′, b′;
Step 14 if |c′ − t | ≥ 3 then
Step 15 a ← min{c′, t};
Step 16 b ← max{c′, t};
Step 17 else
Step 18 Find the configuration G3 that is properly contained in G[vt−2, vt+2],

and output G3.

(1) If max{|V[vi , vk]|, |V[vk, v j ]|, |V[v j , vl ]|} ≥ 4, then G[vi , vl ] properly con-
tains G1 or G3;

(2) If max{|V[vi , vk]|, |V[vk, v j ]|, |V[v j , vl ]|} ≤ 3, then G[vi , vl ] properly con-
tains one of the configurations among G1,G2,G4,G5,G6,G7 and G8.

Proof (1) If max{|V[vi , vk]|, |V[vk, v j ]|, |V[v j , vl ]|} ≥ 4, then assume, without loss
of generality, that |V[vi , vk]| ≥ 4. By Lemma 2.1,V[vi , vk] is a path, and by Lemma
2.2, G[vi , vk] properly contains G1 or G3.

(2) If max{|V[vi , vk]|, |V[vk, v j ]|, |V[v j , vl ]|} ≤ 3, then we assume, among
V[vi , vk],V[vk, v j ] and V[v j , vl ], that at most one of them is a non-edge. Oth-
erwise we have two cases by symmetry. If V[vi , vk] and V[vk, v j ] are non-edges,
then dG(vk) = 1 contradicting the 2-connectivity of G. If V[vi , vk] and V[v j , vl ]
are non-edges, then V[vk, v j ] is not a non-edge for otherwise dG(vk) = 1, which
again contradicts the 2-connectivity of G. By Lemma 2.1, V[vk, v j ] is a path. If
|V[vk, v j ]| = 2, then vk and v j are two adjacent vertices of degree two in G, and if
|V[vk, v j ]| = 3, then dG(vk) ≤ 3 and dG(vk+1) = 2. In any case, G1 is properly con-
tained in G[vi , vl ]. Hence, by Lemma 2.1, amongV[vi , vk],V[vk, v j ] andV[v j , vl ],
at least two of them are paths. By symmetry, we consider two cases.
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Linear Arboricity of Outer-1-Planar Graphs 187

Case 1 V[vi , vk] and V[vk, v j ] are paths.
Subcase 1.1 |V[vi , vk]| = 2 (implying vivk ∈ E(G)).

If |V[vk, v j ]| = 2, thenvkv j ∈ E(G) anddG(vk) = 3,which implies thatV[v j , vl ]
is a path, because otherwise it is a non-edge by Lemma 2.1 and thus dG(v j ) = 2,
which implies that G1 is properly contained. If |V[v j , vl ]| = 2, then v jvl ∈ E(G)

and G7 is properly contained. If |V[v j , vl ]| = 3, then G[vi , vl ] properly contains G1
if v jvl /∈ E(G), and G5 otherwise.

Therefore we assume that |V[vk, v j ]| = 3. If vkv j /∈ E(G), then dG(vk) = 3 and
dG(vk+1) = 2, and thus G1 is properly contained. If vkv j ∈ E(G), then V[v j , vl ]
is a path, because otherwise it is a non-edge by Lemma 2.1 and thus dG(v j ) = 3,
which implies that G1 is properly contained. Since �(G) ≤ 4, v jvl /∈ E(G). Hence
G[vi , vl ] properly contains G2 if |V[v j , vl ]| = 3 (note that dG(v j+1) = 2), and G8
otherwise.

Subcase 1.2 |V[vi , vk]| = 3 (implying dG(vk−1) = 2).
If |V[vk, v j ]| = 2, then vkv j ∈ E(G). If vivk /∈ E(G), then dG(vk) = 3 and

thus G1 is properly contained. Hence we assume that vivk ∈ E(G). If V[v j , vl ] is
a non-edge, then dG(v j ) = 2 and G2 is properly contained. If V[v j , vl ] is not a
non-edge, then it is a path by Lemma 2.1. If |V[v j , vl ]| = 2, then G5 is properly
contained. If |V[v j , vl ]| = 3, then v jvl ∈ E(G), because otherwise dG(v j ) = 3 and
dG(v j+1) = 2, and this G1 is properly contained. At this stage, one can easily see that
G6 is properly contained in G[vi , vl ].

Therefore we assume that |V[vk, v j ]| = 3. This implies that dG(vk+1) = 2. If
vivk ∈ E(G) or vkv j ∈ E(G), then G2 is properly contained. If vivk /∈ E(G) and
vkv j /∈ E(G), then vk has degree 3 and thus G1 is properly contained.

Case 2 V[vi , vk] and V[v j , vl ] are paths.
Here we assume that V[vk, v j ] is not a path (because otherwise we come

back to Case 1). By Lemma 2.1, V[vk, v j ] is a non-edge. If |V[vi , vk]| = 3
(resp. |V[v j , vl ]| = 3), then dG(vk−1) = 2 (resp.dG(v j+1) = 2) and dG(vk) ≤ 3
(resp.dG(v j ) ≤ 3), which implies that G1 is properly contained. If |V[vi , vk]| =
|V[v j , vl ]| = 2, then one can easily see that G4 is properly contained in G[vi , vl ].
Lemma 2.4 Let G be a2-connected outer-1-plane graphwith�(G) ≤ 4.We clockwise
label the vertices of G on its outer boundarywith v1, v2, · · · , vn, where n = |G|. If n ≥
4, then G[v1, vn] properly contains one of the configurations among G1,G2, · · · ,G8.

Proof If there is no crossing inG, thenV[v1, vn] forms a path sinceG is 2-connected.
Under this condition, one can easily show, by Lemma 2.2, that G[v1, vn] properly
contains G1 or G3, since n ≥ 4. Hence in the following we assume that there is at
least one crossing in G. Choose two crossed chords viv j and vkvl in G such that (1)
1 ≤ i < k < j < l ≤ n, and (2) l − i is minimum. By (2), there are no crossed
chords in C[vi , v j ] besides viv j and vkvl . Therefore, Lemma 2.3 implies the required
conclusion.

Lemma 2.5 If G is a connected outer-1-plane graph with 2 ≤ δ(G) ≤ �(G) ≤ 4,
then G contains one of the configurations among G1,G2, · · · ,G8.
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188 X. Zhang, B. Li

Proof If G is 2-connected, then set H := G, otherwise set H to be an end-block of
G, i.e., a 2-connected component of G that contains only one cut-vertex of G. Let
v1, v2, · · · , vm be vertices lying clockwise on the outer boundary of H so that v1 is
a cut-vertex of G if G is not 2-connected. If |H | = 2 (note that |H | ≥ 2), then one
can easily find a vertex of degree 1 in G, contradicting the fact that δ(G) ≥ 2. If
|H | = 3, then by the 2-connectivity of H , H ∼= K3, which implies the appearances of
two adjacent vertices of degree 2 in G, and then the containment of G1. If |H | ≥ 4,
then by Lemma 2.4, H [v1, vm] properly contains one of the configurations among
G1,G2, · · · ,G8. Recall the definition of the proper containment, we can immediately
conclude that G contains one of those configurations.

Let � be the class of all outer-1-plane graphs G so that �(G) ≤ 4, CD(G) ≥ 1 and
CW(G) ≥ 2. Clearly, G ′ ∈ � if G ′ is a subgraph of G. The following lemma shows
that the class� is closed under some special graph operations. In the following,G−S,
where S is a subset of V (G), stands for the graph obtained from G by removing all
vertices in S. Specially, if S = {v}, we writeG−v instead ofG−{v} for convenience.
G+ E , where E is a set of edges, stands for the graph derived formG by adding edges
in E that do not exist in G. Again, we do not distinguish G + uv with G + {uv}.
Lemma 2.6 If G ∈ � contains the configuration G4 or G7 or G8, then G−v+v0w0 ∈
� or G − v + x0y0 ∈ � or G − {v,w} + {ux, uy, xy} ∈ �, respectively.

Proof Suppose that G contains G4 and let G ′ = G−v+v0w0. It is easy to see that G ′
is an outer-1-plane graph with �(G ′) ≤ 4. Since CD(G) ≥ 1, we have CDG ′(v0) ≥ 1
and CDG ′(w0) ≥ 1, which implies that CD(G ′) ≥ 1. If CW(G ′) = 1, then there exists
a crossing u in G ′ (and thus in G) so that v0, w0 ∈ NG ′(u) = NG(u). Since u is a
crossing in G that is deferent from the one, denoted by u′, appearing in the picture
of G4, and NG(u) ∩ NG(u′) = {v0, w0}, we have CD(G) = 0, a contradiction. This
implies that CW(G ′) ≥ 2, and thusG ′ ∈ �. Another two cases can be similarly proved.

To end this section, we combine the proofs of Lemmas 2.2–2.5 into Algorithm 2,
and claim that for any graph G ∈ �, there is a polynomial-time algorithm to find one
of the configurations among G0,G1,G2, · · · ,G8, where the configuration G0 refers
to an edge uv with d(u) = 1.

In Algorithm 2, it takes at most O(|V |) time to run each of the Steps 1–4, O(|E |2)
time to run each of the Steps 5,10,11, O(|V | · |E |) time to run Step 9 or Step 14 by
Algorithm 1, and O(1) time to run each of the Steps 6–8,12,13,15 and 16. Hence the
running time of Finding-Outer-1-Planar-Configuration is at most O(|E |2).

3 The Proof of Theorem 1.3

A path-t-coloring of G is a function c from E(G) to {1, 2, · · · , t} so that the
graph induced by c−1(i) is a linear forest for any i ∈ {1, 2, · · · , t}. Therefore, the
linear arboricity la(G) of G is actually the minimum integer t so that G admits a
path-t-coloring.
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Algorithm 2: Finding-Outer-1-Planar-Configuration(G)

Input: A connected outer-1-plane graph G = (V , E) with |E | ≥ 3, �(G) ≤ 4, CD(G) ≥ 1
and CW(G) ≥ 2;

Output: Special configuration that G contained;
Step 1 if δ(G) ≤ 1 then
Step 2 Find a 1-valent vertex in G and output G0;

Step 3 else
Step 4 Find an end-block H of G with vertices v1, · · · , v|H | lying clockwise on the outer

boundary of H and v1 being a cut-vertex of G;
Step 5 if there is no crossing in H then
Step 6 if |H | = 3 then
Step 7 Find two adjacent 2-valent vertices v2 and v3, and output G1;

Step 8 else
Step 9 Finding-Outerplanar-Configuration(v1, v|H |);

Step 10 else
Step 11 Choose a pair of crossed chords viv j and vkvl with 1 ≤ i < k < j < l so that there

is no other crossed chords besides viv j and vkvl in C[vi , vl ];
Step 12 if max{|V[vi , vk ]|, |V[vk , v j ]|, |V[v j , vl ]|} ≥ 4 then
Step 13 Choose one, say |V[vi , vk ]|, from them so that |V[vi , vk ]| ≥ 4;
Step 14 Finding-Outerplanar-Configuration(vi , vk );

Step 15 else
Step 16 Find one of the configurations among G1,G2,G4,G5,G6,G7 and G8 that is

properly contained in H [vi , vl ], and output this configuration.

In what follows, we prove that every outer-1-plane graphG ∈ � is path-2-colorable
by the induction on |E(G)|. Clearly, this result holds for every outer-1-plane graph
G ∈ � with |E(G)| ≤ 1. Following the induction procedure, we assume it holds for
every outer-1-plane graph G ′ ∈ � with |E(G ′)| < |E(G)| when an outer-1-plane
graph G ∈ � is considered.

By Lemma 2.5, for every outer-1-plane graph G ∈ �, either it is disconnected,
or δ(G) = 1, or it contains one of the configurations among G1,G2, · · · ,G8 as a
subgraph.

Claim 3.1 If G is disconnected or δ(G) = 1, then G is path-2-colorable.

Proof If G is disconnected, then every component of G belongs to �, and thus has a
path-2-coloring by the induction hypothesis. This implies that G is path-2-colorable.

If G has a vertex u of degree one, then G − uv ∈ �, where v is the neighbor of
u in G. By the induction hypothesis, G − uv has a path-2-coloring c, which can be
extended to a path-2-coloring of G by assigning uv a color that has been used at most
once on the edges incident with v in G − uv. Note that v has degree at most 3 in
G − uv.

Claim 3.2 If G contains G1 as a subgraph, then G is path-2-colorable.

Proof If G contains G1 as a subgraph, then G − uv ∈ �, thus by the induction
hypothesis, it has a path-2-coloring c. If NG(v) = {u, v1, v2} and c(vv1) = c(vv2),
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then color uv with a color different from c(vv1), otherwise color uv with a color
different from c(uw). In any case we get a path-2-coloring of G.

Claim 3.3 If G contains G2 as a subgraph, then G is path-2-colorable.

Proof If G contains G2 as a subgraph, then G ′ = G − uw has a path-2-coloring c by
the induction hypothesis, since G ′ ∈ �.

If c(wy) = c(wx) = 2, then color uw with 1. If the resulting coloring of G is not
a path-2-coloring, then c(uv) = 1, in which case we just need exchange the colors on
uw and wx .

If c(wy) = 1 and c(wx) = 2, then we consider two subcases.
If c(vw) = 1, then color uw with 2. If the resulting coloring of G is not a path-2-

coloring, then c(uv) = c(xz) = 2, in which case we exchange the colors on uv and
vw, and recolor wx with 1.

If c(vw) = 2, then color uw with 1. If the resulting coloring of G is not a path-
2-coloring, then c(uv) = 1 and there is a path initialing from w and ending with v

such that all its incident edges are colored with 1 under the coloring c of G ′. This
implies that there cannot exist a path initialing from w and ending with x such that all
its incident edges are colored with 1 under the coloring c of G ′. Hence we just need
exchange the colors on uw and wx so as to get a path-2-coloring of G.

Claim 3.4 If G contains G3 as a subgraph, then G is path-2-colorable.

Proof If G contains G3 as a subgraph, then by the induction hypothesis, G ′ = G− xv
has a path-2-coloring c, since G ′ ∈ �. By Claim 3.2, we shall assume that dG(v) =
dG(w) = 4. Let v1, v2 andw1, w2 be other two neighbors of v andw inG, respectively.

If c(vv1) = c(vv2) = 1, then color xv with 2. The resulting coloring is a path-
2-coloring of G unless c(xu) = 2. If this special case occurs, then we exchange the
colors on xu and uy, and a path-2-coloring of G is constructed.

If c(vv1) = 1 and c(vv2) = 2 (without loss of generality, we also assume that
c(uv) = 1), then color xv with 2. The resulting coloring is a path-2-coloring of G
unless c(xu) = 2 and {c(ww1), c(ww2)} = {1, 2}. If c(uw) = 2, then exchange the
colors on uv and uw, and on xv and yw. If c(uw) = 1, then exchange the colors on
uv and uy, and recolor xv with 1. In any case, we obtain a path-2-coloring of G.

Claim 3.5 If G contains G4 as a subgraph, then G is path-2-colorable.

Proof If v0w0 /∈ E(G), then the graph G ′ obtained from G by deleting v and adding
a new edge v0w0 belongs to � by Lemma 2.6. By the induction hypothesis, G ′ has
a path-2-coloring c. Restrict c to G and color vv0 and vw0 with c(v0w0). We get a
path-2-coloring of G.

On the other hand, if v0w0 ∈ E(G), then G ′ = G − v ∈ �, and thus, by the
induction hypothesis, G ′ has a path-2-coloring c. Assign vv0 and vw0 a color that
has been used at most once on the edges incident with v0 and w0 in G ′, respectively.
The resulting coloring of G, still denoted by c, is a path-2-coloring unless c(vv0) =
c(vw0) = c(v0w0) or c(vv0) = c(vw0) = c(wv0) = c(ww0). If the former case
occurs, then exchange the colors on vv0 andwv0. If the latter case occurs, then recolor
vv0 and ww0 with c(v0w0), and v0w0 with c(vv0). In any case we obtain a path-2-
coloring of G.
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Claim 3.6 If G contains G5 as a subgraph, then G is path-2-colorable.

Proof If G contains G5 as a subgraph, then delete u, v and w from G and denote the
resulting graph by G ′. Clearly, G ′ ∈ �, thus by the induction hypothesis, G ′ has a
path-2-coloring c.

By Claim 3.2, only the case that dG(x) = 4 and dG(y) ≥ 3 shall be considered.
Without loss of generality, assume that dG(y) = 4 (note that the case when dG(y) = 3
can be dealt withmuchmore easily). Let x1 be the fourth neighbor of x and let y1, y2 be
the remaining two neighbors of y inG. Suppose that c(xx1) = 1. If c(yy1) = c(yy2) =
1, then color xw, uv, vw with 1 and xu, xv, vy, wy with 2. If c(yy1) = c(yy2) = 2,
then color xw, uv, vy, wywith 1 and xu, xv, vwwith 2. If c(yy1) = 1 and c(yy2) = 2,
then color xw, uv, vy with 1 and xu, xv, vw,wy with 2. In any case we obtain a path-
2-coloring of G.

Claim 3.7 If G contains G6 as a subgraph, then G is path-2-colorable.

Proof If G contains G6 as a subgraph, then delete u, v, w and z from G and denote
the resulting graph by G ′. Clearly, G ′ ∈ �, and thus by the induction hypothesis, G ′
has a path-2-coloring c.

By Claim 3.2, we can assume that dG(x) = dG(y) = 4. Let x1 and y1 be the fourth
neighbor of x and y in G, respectively. Suppose that c(xx1) = 1. If c(yy1) = 1,
then color xw, uw, vy, vz with 1 and xu, xv,wv,wy, yz with 2. If c(yy1) = 2, then
color xw,wv, vy, yz with 1 and xu, xv, uw,wy, vz with 2. In any case we obtain a
path-2-coloring of G.

Claim 3.8 If G contains G7 as a subgraph, then G is path-2-colorable.

Proof IfG containsG7 as a subgraph, then x0y0 /∈ E(G), sinceCW(G) ≥ 2. Construct
a graph G ′ from G by deleting the vertex v and adding an edge x0y0. By Lemma 2.6,
G ′ ∈ �.

By the induction hypothesis, G ′ admits a path-2-coloring c. Here we only analyze
the case that dG(x0) = dG(y0) = 4, since the case that min{dG(x0), dG(y0)} = 3 is
easier. Note that Claim 3.2 implies min{dG(x0), dG(y0)} ≥ 3, because otherwise we
are done.

Let x1, x2 and y1, y2 be the remaining two neighbors of x0 and y0 inG, respectively.
If c(x0x1) = c(x0x2) = 1, then {c(y0y1), c(y0y2)} = {1, 2}. We construct a path-

2-coloring of G by restricting c to G and coloring vx0, vy0 with 2 and uv with 1.
If {c(x0x1), c(x0x2)} = {c(y0y1), c(y0y2)} = {1, 2}, then assume, without loss of

generality, that c(x0y0) = 1 and c(ux0) = c(uy0) = 2. Note that there does not exist
in G ′ − x0y0 a path initialing from x0 and ending with y0 such that all its incident
edges are colored with 1 under the coloring c. We construct a path-2-coloring of G by
restricting c to G, coloring vx0, uv with 1 and vy0 with 2, and recoloring uy0 with 1.

Claim 3.9 If G contains G8 as a subgraph, then G is path-2-colorable.

Proof IfG containsG8 as a subgraph, then xy /∈ E(G), because otherwiseCW(G) = 1,
a contradiction. Remove v,w from G and add edges ux, uy and xy. Denote by G ′ the
resulting graph. Lemma 2.6 implies that G ′ ∈ �.

123



192 X. Zhang, B. Li

By the induction hypothesis,G ′ has a path-2-coloring c. By Claim 3.3, only the case
that min{dG(x), dG(y)} ≥ 3 shall be considered. Assume, without loss of generality,
that dG(x) = dG(y) = 4 (the case that min{dG(x), dG(y)} = 3 can be considered
much more easily). Let x1, x2 and y1, y2 be another two neighbors of x and y in G,
respectively.

If c(xx1) = c(xx2) = 1, then {c(yy1), c(yy2)} = {1, 2}. We extend c to G by
coloring vy, vw and uw with 1, and vx, wx, wy and uv with 2.

If {c(xx1), c(xx2)} = {c(yy1), c(yy2)} = {1, 2}, then there does not exist inG ′ −u
a path initialing from x and ending with y such that all its incident edges are colored
with 1 or 2 under the coloring c. Hence we can extend c to G by coloring vx, vw and
wy with 1, and vy, wx, uv and uw with 2.

In each case we obtain a path-2-coloring of G.

4 Conclusions

In Sect. 3, we have proved that if G is an outer-1-plane graph with �(G) =
4,CD(G) ≥ 1 and CW(G) ≥ 2, then la(G) ≤ 2. Actually, for such an outer-1-plane
graph G there is a polynomial-time algorithm, according to the proofs in Sect. 3, to
construct a path-2-coloring.

First of all, we consider the connected case. In Algorithm 3, Steps 1–3 and 6–9
run in O(1) time, and Step 5 runs in O(|E |2) time by Algorithm 2. Therefore, after
O(|E |3) time we can come to Step 10, which just runs in O(1) time. Since Step 12
runs in O(1) time by the proofs of Claims 3.1–3.9, we shall use another O(|E |) time
to complete the algorithm. Hence the running time of Path-Coloring-Connected-
Case is O(|E |3).

Algorithm 3: Path-Coloring-Connected-Case(G)

Input: A connected outer-1-plane graph G = (V , E) with �(G) = 4,CD(G) ≥ 1 and
CW(G) ≥ 2;

Output: A path-2-coloring of G;

Step 1 i ← 1;
Step 2 Ei ← ∅;
Step 3 H0 ← G;
Step 4 while |E(G)| > 2 do
Step 5 Finding-Outer-1-Planar-Configuration(G);
Step 6 According to the found configuration that G contained, construct a subgraph Hi ∈ � as

in the proof of the corresponding claim in Sect. 3;
Step 7 Ei ← E(G) \ E(Hi );
Step 8 G ← Hi ;
Step 9 i ← i + 1;

Step 10 Find a path-2-coloring c0 of G;
Step 11 for j = 1 to i − 1 do
Step 12 Find a path-2-coloring c j of Hi− j−1 by coloring Ei− j according to c j−1;

Step 13 Output ci−1.
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For the general case, even if G has many component �i = (Vi , Ei ) with
i = 1, 2, · · · t , we can independently apply Algorithm 3 to each of �i . Hence after
O(|E1|3) + O(|E2|3) + · · · + O(|Et |3) = O(|E |3) = O(|V |3) time (note that
|E | ≤ 5

2 |V | − 4 for every outer-1-planar graph G = (V , E), see [12, Theorem
3]), we can obtain a path-2-coloring of G.

In conclusion, there is a polynomial-time algorithm to construct a path-2-coloring
of an outer-1-plane graph G with �(G) = 4,CD(G) ≥ 1 and CW(G) ≥ 2.

Note that in this paper we just show the existence of a polynomial-time algorithm
for the problem we investigate but do not optimize the time complexity. Maybe there
is a faster algorithm for this problem.
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