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An equitable tree-k-coloring of a graph is a vertex k-coloring such that each color class 
induces a forest and the size of any two color classes differs by at most one. In this 
work, we show that every interval graph G has an equitable tree-k-coloring for any integer 
k ≥ �(�(G) + 1)/2�, solving a conjecture of Wu, Zhang and Li (2013) for interval graphs, 
and furthermore, give a linear-time algorithm for determining whether a proper interval 
graph admits an equitable tree-k-coloring for a given integer k. For disjoint union of split 
graphs, or K1,r -free interval graphs with r ≥ 4, we prove that it is W [1]-hard to decide 
whether there is an equitable tree-k-coloring when parameterized by number of colors, or 
by treewidth, number of colors and maximum degree, respectively. On the positive side, 
we propose a quadratic 2-approximation algorithm for the equitable tree-coloring problem 
in chordal graphs. Moreover, it is proved that there is no α-approximation algorithm for 
any α < 3

2 .
© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A minimization model in graph theory so-called the equitable tree-coloring can be used to formulate a structure 
decomposition problem on the communication network with some security considerations [2,3]. Namely, an equitable tree-k-
coloring of a (finite, simple and undirected) graph G is a mapping c : V (G) → {1, 2, · · · , k} so that c−1(i) induces a forest for 
each 1 ≤ i ≤ k, and 

∣∣|c−1(i)| − |c−1( j)|∣∣ ≤ 1 for each pair of 1 ≤ i < j ≤ k. The notion of the equitable tree-k-coloring was 
introduced by Wu, Zhang and Li [4], who conjectured that every graph G has an equitable tree-k-coloring for any integer 
k ≥ �(�(G) + 1)/2�. This conjecture (equitable vertex arboricity conjecture, EVAC for short) is known to have an affirmative 
answer in some cases including:

• G is complete or bipartite [4];
• �(G) ≥ (|G| − 1)/2 [5,6];
• �(G) ≤ 3 [7];
• G is 5-degenerate [8];
• G is d-degenerate with �(G) ≥ 10d [2];
• G is IC-planar with �(G) ≥ 14 or g(G) ≥ 6 [9];
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• G is a d-dimensional grid with d ∈ {2, 3, 4} [10].

EVAC is still widely open.
Algorithmically, the following EQUITABLE TREE COLORING is NP-complete [11].

Correspondingly, the optimization version of EQUITABLE TREE COLORING is to find the minimum k such that there is an 
equitable tree-k-coloring of a given graph G . Recently in [12], the last two authors proved that EQUITABLE TREE COLORING 
problem is W[1]-hard when parameterized by treewidth, and that it is polynomial solvable in the class of graphs with 
bounded treewidth, and in the class of graphs of bounded vertex cover number.

This paper focuses on chordal graphs. A graph G is chordal if every cycle in G of length > 3 possesses a chord: namely, 
an edge joining nonconsecutive vertices on the cycle. An enumeration v1, v2, · · · , vn of the vertices of a graph G is a perfect 
elimination ordering if for every 1 ≤ i ≤ n, NG(vi) 

⋂{v1, v2, · · · , vi} induces a clique in G . A graph G is a chordal graph if 
and only if it has a simplicial order on V (G), which can be find in linear time [13,14]. In particular, the class of interval 
graphs is a subclass of chordal graphs. A graph G is an interval graph if there exist an interval representation of G , i.e., a 
family {T v |v ∈ V (G)} of intervals on the real line such that u and v are adjacent vertices in G if and only if Tu ∩ T v 
= ∅. For 
any vertex v ∈ V (G), L(v) and R(v) denote the left point and the right point of its corresponding interval T v , respectively. 
For two vertices u, v ∈ V (G), if L(u) < L(v), or L(u)=L(v) and R(u) ≤ R(v), then we write u < v . For any three vertices 
u, v, w ∈ V (G), it is clear that

if u < v < w and uw ∈ E(G), then uv ∈ E(G). (1)

Olariu [15] shows that a graph is an interval graph if and only if it has a linear order < on V (G) satisfying (1); and that 
the order can be found in linear time. Using this fact, we give the following result as a quick start of this paper, confirming 
EVAC for interval graphs.

Theorem 1. Every interval graph G has an equitable tree-k-coloring for any integer k ≥ ��(G)+1
2 �, where the lower bound of k is sharp.

Proof. Sort the vertices of G into v0 < v1 < · · · < vn−1 so that (1) holds, and for each 0 ≤ i ≤ n − 1, let c(vi) = i (mod 
k). It is clear that c is an equitable k-coloring of G . If there is a monochromatic cycle in color i, then there are three 
vertices vi+αk , vi+βk and vi+γ k with 0 ≤ α < β < γ such that vi+αk vi+βk, vi+αk vi+γ k ∈ E(G). By (1), vi+αk v j ∈ E(G) for any 
i +αk < j ≤ i +γ k, which implies dG(vi+αk) ≥ (γ −α)k ≥ 2k ≥ �(G) +1, a contradiction. Hence, there is no monochromatic 
cycle under c. This implies that c is an equitable tree-k-coloring of G . Consider the complete graph K2s . It is an interval 
graph and it does not admit an equitable tree-k-coloring for any k ≤ s − 1, because in any k-coloring of K2s , there are three 
monochromatic vertices, which induces a cycle in it. So the lower bound of k in this result is sharp. �

On the other hand, if we are given an integer k < ��(G)+1
2 �, determining whether an interval graph, which is also a 

chordal graph, admits an equitable tree-k-coloring is not easy. Precisely, the next two theorems will be proved in Section 2.

Theorem 2. EQUITABLE TREE COLORING of the disjoint union of split graphs parameterized by number of colors is W [1]-hard.

Theorem 3. EQUITABLE TREE COLORING of K1,r -free interval graph with r ≥ 4 parameterized by treewidth, number of colors and 
maximum degree is W [1]-hard.

Here, a split graph is a graph in which the vertices can be partitioned into a clique and an independent set. Note that 
any vertex in the clique may be adjacent to any vertex in the independent set. A K1,r -free graph is a graph that does not 
contain the star K1,r as an induced subgraph.

However, the hardness situation is much better if we are working with an proper interval graph, that is an interval graph 
that has an interval representation in which no interval properly contains any other interval. Actually, we have the following 
theorem, which will be proved in Section 3.

Theorem 4. There is a linear-time algorithm to determine whether a proper interval graph admits an equitable tree-k-coloring for a 
given integer k.

For chordal graphs, based on a perfect elimination ordering, we could design efficient approximation algorithm for the 
problem.
9
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Theorem 5. There is a 2-approximation algorithm for the EQUITABLE TREE COLORING of chordal graphs.

Our algorithm is not bad according to the following unapproximable result:

Theorem 6. There is no α-approximation algorithm for EQUITABLE TREE COLORING of interval graphs for any α < 3
2 , unless P=NP.

To end this section, we collect some notations that will be used in the next sections. For any two graphs G and H , their 
sum G ⊕ H is the graph given by V (G ⊕ H) = V (G) ∪ V (H) and E(G ⊕ H) = E(G) ∪ E(H) ∪ {uv|u ∈ V (G), v ∈ V (H)}, and 
their union G ∪ H is the graph given by V (G ∪ H) = V (G) ∪ V (H) and E(G ∪ H) = E(G) ∪ E(H). By nG , we denote the n
disjoint copies of G , and [k] stands for {1, 2, · · · , k}. Other undefined notations follow [16].

2. W[1]-hardness: the proofs of Theorems 2 and 3

All of our reductions involve the following BIN-PACKING problem, which is NP-hard in the strong sense [17], and is 
W [1]-hard when parameterized by the number of bins [18,19].

Proof of Theorem 2. Given an instance of BIN-PACKING as above, our strategy is to construct a disjoint union of split graph 
G such that the answer of the BIN-PACKING is YES if and only if G admits an equitable tree-k-coloring. Here,

G =
⋃
j∈[n]

H(a j,k),

where a1, a2, · · · , an are arbitrarily given integers in the instance of BIN PACKING, and

H(a,k) = K2k−1 ⊕ (a + 1)K1

defines a split graph for integers a and k. For j ∈ [n], let I j be the independent set of size a j + 1 in H(a j, k), and let c j be 
a fixed vertex in the clique part K2k−1 of H(a j, k).

Suppose that there is a k-partition ϕ of A = {a1, a2, ..., an} such that, ∀ i ∈ [k], ∑a j∈ϕi
a j = B . For any i ∈ [k] and for any 

j satisfying a j ∈ ϕi , color c j and all vertices in I j with color i. For any j ∈ [n] such that a j ∈ ϕi , color the 2k − 2 vertices 
in V (H(a j, k)) \ (I j ∪ {c j}) with k − 1 distinct colors in [k] \ i so that each color is used exactly twice. At this moment, for 
any j ∈ [n], H(a j, k) has been colored with k colors so that the set of all vertices with color i (here i is the integer such 
that a j ∈ ϕi ) induces a forest, which is actually a star with center c j , and each of another k − 1 colors besides i is used for 
exactly two vertices. Hence this gives a tree-k-coloring of H(a j, k) for any j ∈ [n], and thus finally gives a tree-k-coloring 
of G . To see that this coloring is an equitable tree-k-coloring of G , we denote the set of vertices with color i as V i for any 
color i ∈ [k]. Clearly,

|V i | =
∑

a j∈ϕi

(a j + 2) +
∑

a j /∈ϕi

2 =
∑

a j∈ϕi

a j + 2n = B + 2n

for any i ∈ [k], which implies that such a coloring is equitable.
On the other direction, if G admits an equitable tree-k-coloring ψ , then in the clique part K2k−1 of each H(a j, k) with 

j ∈ [n], there is a color i appearing on exactly one vertex, and each of another k − 1 colors appears on exactly two vertices. 
It follows that all vertices in I j of H(a j, k) are colored with i, since any other color classes contain two vertices in the clique 
part K2k−1, which are adjacent to all vertices in I j . Therefore, taking any one vertex v j ∈ I j together with the clique part 
K2k−1 induces a clique K2k containing exactly two vertices in each color class. Let ψi be the vertices of G colored with i
under the coloring ψ . We show that 

∑
I j⊆ψi

a j = B , which indicates that the answer for the BIN-PACKING is YES.
Since there are

n(2k − 1) +
∑
j∈[n]

(a j + 1) = k(2n + B)

vertices in G (note that in BIN-PACKING we always assume that 
∑

j∈[n] a j = kB), each color class of ψ contains exactly 
2n + B vertices, which consists of, for each j ∈ [n], two vertices in the clique K2k of H(a j, k) as chosen above and a j vertices 
in I j\{v j} if I j ⊆ ψi . So
10
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2n + B = |ψi| = 2n +
∑

I j⊆ψi

a j,

which gives 
∑

I j⊆ψi
a j = B .

Lemma 7. [20,21] A graph is an interval graph if and only if its maximal cliques can be ordered as M1, M2, · · · , Mk such that for any 
v ∈ Mi ∩ Mk with i < k, it holds that v ∈ M j for any i ≤ j ≤ k.

Proof of Theorem 3. We prove the theorem for parameter number of colors; and the theorem for another two parameters 
can be proved in the same way. Given an instance of the BIN-PACKING, our strategy is to construct a K1,r -free interval graph 
G with r ≥ 4 such that the answer of the BIN-PACKING is YES if and only if G admits an equitable tree-k-coloring. Here,

G =
⋃
j∈[n]

J (a j,k)

with a1, a2, · · · , an being arbitrarily given integers in the instance of BIN PACKING, and

J (a,k) =
( ⋃

i∈[a]

(
Q i ⊕ yi

))⋃( ⋃
i∈[a]

(
Q ′

i ⊕ yi
))⋃( ⋃

i∈[a−1]

(
Q i+1 ⊕ yi

))
,

where S = {Q 1, Q ′
1, · · · , Q a, Q ′

a} is a set of cliques such that Q i � Q ′
i � K2k−1 and Y = {y1, · · · , ya} is a set of vertices. Note 

that the vertices of G with largest degree are the ones contained in Y \ {ya}, which have degrees equal to 3(2k − 1), and 
the treewidth of G is 2k − 1.

We claim first that G is an interval graph. Indeed, it is sufficient to show that J (a, k) is an interval graph for any positive 
integer a. By the definition of J (a, k), one can see that it has 3a − 1 maximal cliques M1, M2, · · · , M3a−1 such that

Mi =

⎧⎪⎨
⎪⎩

Q i ⊕ yi if i ≡ 1 (mod 3)

Q ′
i ⊕ yi if i ≡ 2 (mod 3)

Q i+1 ⊕ yi if i ≡ 0 (mod 3).

Since Mi ∩ M j = ∅ for any i ≡ 1 (mod 3) and j ≥ i + 3, Mi ∩ M j = ∅ for any i 
≡ 1 (mod 3) and j ≥ i + 2, and Mi ∩ Mi+1 =
Mi ∩ Mi+2 = Mi+1 ∩ Mi+2 = {yi} for any 1 ≤ i ≤ 3a − 5 with i ≡ 1 (mod 3), the ordering M1, M2, · · · , M3a−1 satisfies the 
property described by Lemma 7, and therefore, J (a, k) is an interval graph.

Suppose that there is a k-partition ϕ of A such that, ∀ i ∈ [k], ∑a j∈ϕi
a j = B . For any i ∈ [k] and for any j satisfying 

a j ∈ ϕi , color all vertices of Y j , corresponding to the vertex set Y in J (a j, k), with color i. For any j ∈ [n] such that a j ∈ ϕi , 
color each (k − 1)-clique of S j , corresponding to the set S of cliques in J (a j, k), so that the color i is used for exactly one 
vertex, and each of the remaining k − 1 colors in [k]\i are used for exactly two vertices. Clearly, this gives a tree-k-coloring 
of J (a j, k), where 3a j vertices consisting of Y j and one vertex in each clique in S j , are colored with color i, and each of 
another k − 1 colors is used for exactly two vertices in each clique of S j . Hence a tree-k-coloring of G is given now. To see 
that this is an equitable tree-k-coloring of G , we denote the set of vertices with color i as V i for any color i ∈ [k]. The fact 
that

|V i | =
∑

a j∈ϕi

3a j +
∑

a j /∈ϕi

4a j = 3B + 4(kB − B) = (4k − 1)B

for any i ∈ [k] implies the equability of this coloring.
On the other direction, if G admits an equitable tree-k-coloring ψ , then in each clique of S j for j ∈ [n], there is a color 

appearing on exactly one vertex, and each of another k − 1 colors appears on exactly two vertices. Suppose that the color 
i appears on exactly one vertex of the first clique Q 1 ∈ S j for some j ∈ [n]. It follows that y1 should be colored with i
because y1 is adjacent to every vertices of Q 1 and each color in [k]\i already appears on two vertices of Q 1. Consequently, 
the color being used exactly once for the vertices of the second clique Q ′

1 ∈ S j and the third clique Q 2 ∈ S j is indeed i, 
which implies that y2 shall be colored with i. Following this process, we can conclude that each vertex of Y j is colored 
with i, and in each clique of S j , the color i appears on exactly one vertex, and each of another k − 1 colors in [k]\i appears 
on exactly two vertices. Let ψi be the vertices of G colored with i under the coloring ψ . We show that 

∑
Y j⊆ψi

a j = B , 
which indicates that the answer for the BIN-PACKING is YES.

Since there are∑
j∈[n]

(
a j + 2a j(2k − 1)

) = kB + (4k − 2)kB = k(4k − 1)B

vertices in G , for each i ∈ [k],
11
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|ψi| = (4k − 1)B,

and by the way of the coloring ψ as described above, we also see that

|ψi| =
∑

Y j⊆ψi

3a j +
∑

Y j∩ψi=∅
4a j =

∑
j∈[n]

4a j −
∑

Y j⊆ψi

a j = 4kB −
∑

Y j⊆ψi

a j .

Combining the two expression gives 
∑

Y j⊆ψi
a j = B .

3. Linear algorithm for proper interval graphs: the proof of Theorem 4

Lemma 8. Let G be a proper interval graph with V (G) = {v1, v2, · · · , vn}, where v1 < v2 < · · · < vn. If vi v j ∈ E(G), then 
{vi, vi+1, · · · , v j−1, v j} induces a clique of size j − i + 1.

Proof. By the definition of the proper interval graph, for any i ≤ s < � ≤ j, L(vs) < L(v�), and if vi v j ∈ E(G), then L(vi) ≤
L(vs) < L(v�) ≤ L(v j) ≤ R(vi) ≤ R(vs) < R(v�) ≤ R(v j). This implies that the interval [L(vs), R(vs)] intersects the interval 
[L(v�), R(v�)] and thus vk v� ∈ E(G). Hence any two vertices among {vi, vi+1, · · · , v j−1, v j} are adjacent and such a vertex 
set induces a clique. �
Lemma 9. A proper interval graph has an equitable tree-k-coloring if and only if its maximum clique has size at most 2k.

Proof. If c is an equitable tree-k-coloring of G , then there is no clique on at least 2k + 1 vertices, because otherwise there 
is a color appearing at least three times on this clique, implying the existence of a monochromatic triangle, a contradiction. 
Hence the maximum clique of G has size at most 2k.

On the other direction, if the maximum clique of G has size at most 2k, then sort the vertices of G into v0, v1, · · · , vn−1
so that vi < v j if i < j. Let c(vi) = i (mod k). It is clear that c is an equitable k-coloring of G . If there is a monochromatic 
cycle under c, then there are two adjacent vertices vi and v j with j − i = βk with β ≥ 2. By Lemma 8, G contains a clique 
of size j − i + 1 = βk + 1 ≥ 2k + 1 as a subgraph, a contradiction. This implies that there is no monochromatic cycle under 
c, and thus c is an equitable tree-k-coloring of G . �

Algorithm 1: Linear-time Algorithm for proper interval graphs.

Input: A proper interval graph G = (V , E) on n vertices; a set of k colors {0, 1, · · · , k − 1};
Output: Answ;

1 Answ ← Y E S;
2 Sort the vertices of G into v0 < v1 < · · · < vn−1, where < is a linear order on V (G);
3 for i = 0 to n − 1 do
4 Color vertex vi with the color c(i) = i (mod k);

5 if there is a monochromatic cycle in any color class then
6 Output N O ;

7 Output Answ .

Theorem 10. Given a proper interval graph G and an integer k > 0, Algorithm 1 outputs YES in linear time if and only if there exists 
an equitable tree-k-coloring of G; moreover, if YES, it gives an equitable tree-k-coloring of G.

Proof. From Algorithm 1, one sees that the given coloring is an equitable tree-k-coloring of G if it outputs YES. If there is 
an equitable tree-k-coloring of G , then the size of the maximum clique of G is at most 2k by Lemma 9. In any iterative 
step of Algorithm 1, every color class induces disjoint unions of paths, because if not, there are two adjacent vertices vs v�

with � − s ≥ 2k, which gives a clique of size 2k + 1 by Lemma 8, a contradiction. So the algorithm outputs YES. The time 
complexity dominates by Line 2, which takes O (|V | + |E|) time, see [15, Theorem 6]. �
Proof of Theorem 4. This is an immediate corollary from Theorem 10.

Remark. Lemma 9 implies that EQUITABLE TREE COLORING of proper interval graphs is equivalent to determine whether 
2k is the upper bound of its clique number. We know that to calculate all maximal cliques of a chordal graph G = (V , E)

can be done in O (|V | + |E|) time [22, Theorem 4.17]. This also proves Theorem 4, however, without giving an equitable 
tree-k-coloring of G if the algorithm outputs YES. Moreover, it also confirms that any proper interval graph is equitable 
tree-�ω(G) �-colorable, where ω(G) is the size of a maximum clique of G .
2
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4. Approximation algorithm for chordal graphs: the proofs of Theorems 5 and 6

Given a chordal graph G = (V , E), let v1, v2, ..., vn be a perfect elimination ordering of G , i.e. the neighbors of vi in 
{v1, v2, ..., vi} for 1 ≤ i ≤ n induce a clique in G . A k-coloring of the vertices of a graph G is called acyclic if any color class 
is an independent set and every subgraph induced by any two color classes is acyclic, i.e., a forest. The relation of acyclic 
coloring and equitable tree-coloring has been shown in [23]: any acyclic k-coloring of a graph can be modified into an equitable 
tree-(k − 1)-coloring for any integer k ≥ 2. For the integrality and the convenience of the readers, we will prove it from an 
algorithmic point of view later. In the following Algorithm 2, we find an acyclic ω(G)-coloring of G in lines 3 – 10 based on 
a perfect elimination ordering of G; and then change this coloring to an equitable tree-(ω(G) − 1)-coloring in lines 11 – 20.

Algorithm 2: 2-approximation algorithm for chordal graphs.

Input: A chordal graph G = (V , E) on n vertices;
Output: A coloring of G;

1 Compute the size of a maximum clique ω of G;
2 Find a perfect elimination ordering v1, v2, . . . , vn of G;
3 for j = 1 to ω do
4 A j ← {v j};

5 for i = ω + 1 to n do
6 b ← 0;
7 for j = 1 to ω do
8 if b = 0 and NG (vi) ∩ A j = ∅ then
9 A j ← A j ∪ vi ;

10 b ← 1;

11 for h = 1 to ω − 1 do
12 Find Amin ∈ {A1, A2, . . . , Aω} such that Amin 
= ∅ and |Amin| = min j=1,2,...,ω |A j |;
13 Find Amax ∈ {A1, A2, . . . , Aω} such that Amax 
= ∅ and |Amax| = max j=1,2,...,ω |A j |;
14 if h ≤ n (mod ω − 1) then
15 Take any subset S ⊆ Amax such that |S| = � n

ω−1 � − |Amin|;
16 else
17 Take any subset S ⊆ Amax such that |S| = � n

ω−1 � − |Amin|;
18 Vh ← Amin ∪ S;
19 for j = 1 to ω do
20 A j ← A j \ Vh ;

21 Output V 1, V 2, . . . , Vω−1, which give an equitable tree-(ω − 1)-coloring of G .

Lemma 11. Algorithm 2 outputs an equitable tree-(ω − 1)-coloring of G in O (n2) time.

Proof. First, let us prove that from Line 3 to 10, the obtained A1, A2, . . . , Aω give an acyclic-ω coloring of G . If n = ω, then 
|A j| = 1 for each j = 1, 2, . . . , ω. So A1, A2, . . . , Aω give an acyclic-ω coloring of G . For any integer N > ω, assume that 
it is true for n ≤ N − 1. Now we prove it for n = N . From Line 5 to 10 one sees that vi ∈ A j only if vi has no neighbor 
in {v1, v2, . . . , vi−1} ∩ A j for some j = 1, 2, . . . , ω. We claim that this A j exists. Since the enumeration v1, v2, . . . , vn is 
a perfect elimination ordering, vi and its neighbors in {v1, v2, . . . , vi−1} induce a clique in G . So vi has at most ω − 1
neighbors in {v1, v2, . . . , vi−1}. One sees that vi is put in only one of the A js. So A j induces an independent set after 
adding vi . Moreover, any two neighbors u, u′ of vi in {v1, v2, . . . , vi−1} are also adjacent, so they are not in the same 
class of A1, A2, . . . , Aω . Then vi cannot belong to any cycle of A j ∪ A j′ for any j′ = 1, 2, . . . , ω. So A1, A2, . . . , Aω give an 
acyclic-ω coloring of G .

Next, we prove that from Line 11 to 20, the obtained V 1, V 2, . . . , Vω−1 give an equitable tree-(ω − 1) coloring of G . 
For h = 1, one sees that from Line 12 (resp. 13), Amin (resp. Amax) is one of the smallest (resp. largest) class in the above 
A1, A2, . . . , Aω . So |Amin| ≤ n

ω < n
ω−1 . Since 

∑
A j 
=Amin

(|Amin| + |A j |) = n + (ω − 1)|Amin|, we have that |Amin| + |Amax| ≥
n+(ω−1)|Amin|

ω−1 > n
ω−1 . So there exists a subset S ⊆ Amax such that |S| = � n

ω−1 � −|Amin| in Line 15. From V 1 = Amin ∪ S in Line 
18, we get that |V 1| = � n

ω−1 � and that V 1 induces a forest in G . Then V 1 is deleted in Line 20 and the algorithm continues 
recursively. One sees that each Vh for h = 1, 2, . . . , ω − 1 satisfies that |Vh| = � n

ω−1 � or � n
ω−1 � and that Vh induces a forest 

in G . So V 1, V 2, . . . , Vω−1 give an equitable tree-(ω − 1) coloring of G .
Finally, the time complexity of the algorithm is dominated by Lines 5- 10, which takes O (n2) because of ω ≤ n. The 

lemma is proved. �
Now we are ready to prove Theorem 5.
13
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Proof of Theorem 5. From Lemma 11, we can always find an equitable tree-(ω − 1)-coloring for any chordal graph G in 
quadratic time, where ω is the size of a maximum clique of G . On the other side, for a clique of size ω, at least �ω

2 �
colors are needed to have a tree-coloring. So any equitable tree-coloring of G requires at least �ω

2 � colors. This proves that 
Algorithm 2 is a 2-approximation algorithm for the EQUITABLE TREE COLORING problem in chordal graphs.

In the rest of the paper, we prove the unapproximability of the EQUITABLE TREE COLORING problem by reduction from 
the PARTITION PROBLEM, which is NP-complete [17].

Proof of Theorem 6. Given an instance of PARTITION PROBLEM as above, our strategy is to construct a disjoint union of 
split graphs G such that if there is an α-approximation algorithm for the EQUITABLE TREE COLORING problem, then the 
answer of the PARTITION PROBLEM can be decided in polynomial time. Here, the graph G is similar as the one in the proof 
of Theorem 2 for k = 2. Let

G =
⋃
j∈[n]

H(a j,2),

where a1, a2, · · · , an are arbitrarily given integers in the instance of the PARTITION PROBLEM, and

H(a,2) = K3 ⊕ (a + 1)K1

defines a split graph for integer a. From the proof of Theorem 2, one can prove that G is equitable tree-2-colorable if and 
only if the answer for the PARTITION PROBLEM is YES. Moreover, we see that G is always equitable tree-3-colorable. This is 
because there is an acyclic-4-coloring of G by coloring each K3 with 3 colors and all K1s with the left color. So we get that 
if the answer for the PARTITION PROBLEM is YES, then G has an equitable tree-2-coloring; and otherwise, G has equitable 
tree-3-coloring. Let t be the minimum such that G has an equitable tree-t-coloring. Then 2 ≤ t ≤ 3.

Suppose that there is an α-approximation algorithm A for the EQUITABLE TREE COLORING problem. Then one finds an 
equitable tree-a-coloring of G by Algorithm A. Then 2 ≤ t ≤ a ≤ αt < 9

2 . So a ∈ {2, 3, 4}.

• If a = 2, then t = 2.
• If a = 3, then t ≥ a

α > 2. So t = 3

• If a = 4, then t ≥ a
α > 8

3 . So t = 3.

This shows that a = 2 if and only if t = 2, which is equivalent with that the answer for the PARTITION PROBLEM is YES. So 
we could solve the PARTITION PROBLEM in polynomial time. The theorem is proved.
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