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The equitable list tree-coloring model is an useful tool to formulate a structure decompo-
sition problem on the complex network with some security considerations. In this paper, 
it is proved that the equitable list vertex arboricity of every graph with treewidth ω is 
at most ��(G)/2� + ω − 2 whenever �(G) ≥ 4ω + 1, and moreover, if such a graph does 
not contain K3,3 as a topological minor, then its equitable list vertex arboricity is at most 
��(G)/2� provided that ω ∈ {2, 3, 4} and �(G) ≥ 6ω − 3.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The minimization problem in graph theory so-called the equitable list tree-coloring problem can be used to formulate 
a structure decomposition problem on the complex network with some security considerations. Precisely, our task is to 
partition the network into many smaller disjoint pieces so that each piece has a tree-like property and thus we may 
identify the possible node failures efficiently. Typically, the fewer number of the pieces the better, and sometimes we try 
to make as small difference between the scales of any two pieces as possible so as to manage each piece of the network 
with some uniform policies. Moreover, if we are given beforehand a rule for every node in the network on which kinds of 
tree-like pieces may it belongs to, then we can further use the equitable list tree-coloring model that was introduced by 
Zhang [16] in 2016 to formulate it.

We begin with some graph-based notations and definitions. For a graph G , V (G) and �(G) denote the set of vertices in 
G and maximum degree of G , respectively. By |G|, we denote the value of |V (G)|. Two subsets U , W ⊆ V (G) are disjoint if 
U ∩ W = ∅, and for two disjoint subsets U , W ⊆ V (G), e(U , W ) denotes the number of edges that have one end-vertex in U
and the other in W . A graph G is ω-degenerate if every subgraph of G contains a vertex of degree at most ω. For a graph H , 
if we replace some edges of H with new paths so that the inner vertices of those paths have degrees 2, then we result in a 
subdivision of H . If a graph G contains a subdivision of a graph H as a subgraph, then we say that H is a topological minor
of G . For the unmentioned notations and definitions, we refer the readers to the classic book due to Diestel [5].

Let k be a positive integer and let L be a function on V (G) such that |L(v)| = k for each vertex v ∈ V (G), where L(v) is 
a list of colors available for v . We call such a function L a k-uniform list assignment of G . A graph G has an equitable k-list 
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Fig. 1. Two distinct tree-decompositions of C8 with width 2.

tree-coloring, or is equitable tree k-choosable if, for each k-uniform list assignment L of G , we can choose for each v ∈ V (G)

a color from its list L(v) so that the resulting coloring of G satisfies (i) each color class (i.e., the set of vertices with a same 
color) induces a forest, and (ii) the size of any color class is at most �|G|/k�. The minimum integer k such that G is equitable 
tree k-choosable is the equitable list vertex arboricity of G , denoted by ρ=

l (G). The notions of the equitable list tree-coloring 
and the equitable list vertex arboricity were first introduced by Zhang [16], who put forward the following conjecture.

Conjecture 1. ρ=
l (G) ≤ ��(G)+1

2 � for every simple graph G.

This conjecture was settled by Zhang [16] for complete graphs, 2-degenerate graphs, 3-degenerate claw-free graphs 
with maximum degree at least 4, and planar graphs with maximum degree at least 8. Drgas-Burchardt et al. [6] verified 
Conjecture 1 for d-dimensional grids with d ∈ {2, 3, 4} and for graphs with (edge) arboricity 2. Moreover, they proved that

ρ=
l (G) ≤ max

{
8�(G) − 2

7
,

7�(G) − 7

6

}

for every simple graph G . This is an interesting result because it is the first one giving an upper bound on ρ=
l (G) in a 

general case, although it is a bit far away from Conjecture 1. Recently, Kaul, Mudrock and Pelsmajer [9] verified it for 
powers of cycles.

On the other hand, many large networks including social network and the communication network are often thought of 
as having tree-like structure, see [1,2,10,11,13], and there are many relative papers in the literature on the structures of the 
bounded treewidth networks, such as metabolic networks [4] and Bayesian networks [7]. This motivates us to investigate 
the equitable list tree-coloring problem for bounded treewidth networks, i.e., graphs with bounded treewidth.

A tree-decomposition of a graph G = (V , E) is a pair (T , X ) where T is a tree, and X = {Xi | i ∈ V (T )} is a family of 
subsets of V , called bags, such that

• ⋃
i∈V (T ) Xi = V ;

• for any edge uv ∈ E , there is a bag Xi (for some node i ∈ V (T )) containing both u and v;
• for any vertex v ∈ V , the set {i ∈ V (T ) | v ∈ Xi} induces a subtree of T .

The width of a tree-decomposition (T , X ) is maxi∈V (T ) |Xi | − 1, and the treewidth of G , denoted by t w(G), is the minimum 
width over all possible tree-decompositions of G .

For example, Fig. 1 gives two distinct tree-decompositions of the cycle C8 on 8 vertices with width 2. In each picture, 
the nodes of the tree T are marked by numbers as to make V (T ) = {1, 2, 3, 4, 5, 6}. Furthermore, for the tree-decomposition 
(T , X ) as shown in the upper right corner, we have X1 = {a, b, h}, X2 = {b, c, h}, X3 = {c, g, h}, X4 = {c, f , g}, X5 = {c, d, f }, 
and X6 = {d, e, f }. It is easy to check the first two rules in the definitions of tree-decomposition are definitely satisfied. For 
the last rule, we shall verify it for every vertex of C8. For example, for the vertex c ∈ V (C8), the set {i ∈ V (T ) | c ∈ Xi} is 
exactly equal to {2, 3, 4, 5} ⊆ V (T ), which induces a subtree of T .

Treewidth is commonly used as a parameter in the parameterized complexity analysis of graph algorithms. The graphs 
with treewidth at most ω are also called partial ω-trees [8,14]. Here a partial ω-tree is a subgraph of a ω-tree, which 
defines a graph formed by starting with a complete graph on ω + 1 vertices and then repeatedly adding vertices in such 
a way that each added vertex v has exactly ω neighbors U such that U induces a complete graph on ω vertices. By the 
definition, it is easy to say that graphs with treewidth at most ω is ω-degenerate. It is known that there is a linear time 
algorithm [12] to decide whether a given graph G is ω-degenerate for a given variable ω, however, it is NP-complete [3] to 
determine whether a given graph G has treewidth at most ω for a given variable ω.
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In the next sections, we give an upper bound on ρ=
l (G) that is very close to the one in Conjecture 1 for graphs with 

bounded treewidth (see Theorem 6 and Corollary 8), and meanwhile, confirm Conjecture 1 for K3,3-topological-minor-free 
graphs G with treewidth w ∈ {2, 3, 4} and maximum degree at least 6w − 3 (see Theorem 7 and Corollary 9).

2. Structural lemmas

For a vertex v ∈ V (G), N(v) denotes the set of neighbors of v in G . For a subset U ⊆ V (G), let

N(U ) = {v ∈ V (G) − U : N(v) ∩ U �= ∅}
and

N[U ] = N(U ) ∪ U .

Clearly, by the definition of N(U ), we have

N(U ) ∩ U = ∅.

To begin with, we introduce an useful lemma that was given by Zhang [16].

Lemma 2. [16, Lemma 2.2] If there exists a set S = {z1, · · · , zk} ⊆ V (G) of k distinct vertices such that G − S is equitable tree k-
choosable and |N(zi) − S| ≤ 2i − 1 for each 1 ≤ i ≤ k, then G is equitable tree k-choosable.

In this paper, we use a symmetric form of the above lemma, which is easier to be applied in the remaining arguments.

Lemma 3. If there exists a set S = {x1, · · · , xk} ⊆ V (G) of k distinct vertices such that G − S is equitable tree k-choosable and |N(xi) −
S| ≤ 2(k − i) + 1 for each 1 ≤ i ≤ k, then G is equitable tree k-choosable.

Proof. Let zi = xk+1−i with 1 ≤ i ≤ k. Since |N(xi) − S| ≤ 2(k − i) + 1, |N(zi) − S| = |N(xk+1−i) − S| ≤ 2(k − (k + 1 − i)) + 1 =
2i − 1 and thus the result holds by Lemma 2. �

The following lemma due to Pelsmajer [15] describes a local structure of graphs with treewidth ω ≥ 2.

Lemma 4. [15, Lemma 7] If G has treewidth ω ≥ 2 and |G| ≥ 3ω − 1, then there is a subset U ⊆ V (G) such that ω ≤ |U | ≤ 2(ω − 1)

and |N(U )| ≤ ω + 1. Moreover, if |N(U )| = ω + 1, then no vertex of U is adjacent to all of the vertices in N(U ).

The following structural lemma is an useful tool for our latter proofs of the main theorem.

Lemma 5. Let G be an ω-degenerate graph with maximum degree at most � and let U be a subset of V (G) such that ω ≤ |U | ≤
2(ω − 1) and |N(U )| ≤ ω + 1. Suppose that h, k are two integers such that h ≥ 0, k ≥ ⌈

�+h
2 � and k ≥ 3ω − 1. If |N(U )| ≤  h

2 � + 1
or there are sets

Z ⊆ N(U ){
z j : 2 ≤ j ≤ |Z | −

⌊
h

2

⌋}
⊆ Z

and {
u j : 0 ≤ j <

⌈ |N(U ) − Z | − 1

2

⌉}
⊆ U

such that

(1) |N(z j) ∩ (Z ∪ U )| ≥ 2 j − 1, and
(2) |N(u j) ∩ (N(U ) − Z)| ≤ 2 j + 1,

then there exists S = {x1, ..., xk} ⊆ V (G) such that |N(xi) − S| ≤ 2(k − i) + 1 for each 1 ≤ i ≤ k.

Proof. We divide the proof into two cases as follows.
Case 1. |N(U )| ≤  h

2 � + 1.
Since |N(U )| + |U | ≤ 3ω − 1 ≤ k and N(U ) ∩ U = ∅, we can assume that N(U ) = {x1, x2, ..., x|N(U )|} and U =

{xk−|U |+1, ..., xk}. Let H |N(U )|+1 = G − N[U ] and let x|N(U )|+1 be a vertex of degree at most ω in H |N(U )|+1 if this graph 
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is not empty (note that such a vertex always exists since G is ω-degenerate). For |N(U )| + 1 ≤ i < k − |U | (if exists), we 
let Hi+1 = Hi − {xi} and let xi+1 be a vertex that has degree at most ω in Hi+1. At this stage we have assigned k distinct 
vertices to S = {x1, ..., xk} and our goal is to check that |N(xi) − S| ≤ 2(k − i) + 1 for each 1 ≤ i ≤ k.

Since G − S is a subgraph of Hi for each |N(U )| + 1 ≤ i ≤ k − |U | and xi has degree at most ω in Hi , |N(xi) − S| ≤ ω ≤
|U | < 2(k − (k − |U |)) + 1 ≤ 2(k − i) + 1 for |N(U )| + 1 ≤ i ≤ k − |U |.

For 1 ≤ i ≤ |N(U )|, since |N(xi) ∩ U | ≥ 1 and k ≥ ⌈
�+h

2 � ≥ �+h
2 , we conclude that |N(xi) − S| ≤ � − 1 ≤ 2k − (h + 1) ≤

2k − (2|N(U )| − 1) ≤ 2(k − i) + 1.
For k − |U | + 1 ≤ i ≤ k, it is clear that |N(xi) − S| = 0 ≤ 2(k − i) + 1 since N(U ) ⊆ S .
Case 2. |N(U )| >  h

2 � + 1.

If |Z | ≤  h
2 �, then add vertices from N(U ) − Z to Z until |Z | =  h

2 � + 1. This operation still preserves (1) and (2) and thus 
we can proceed the proof using this updated set Z . Therefore, we can assume, in advance, that |Z | ≥  h

2 � + 1.

Let Z = {x1, · · · , xh/2�+1, xh/2�+2, · · · , x|Z |}, where xi = zi−h/2� for  h
2 � + 2 ≤ i ≤ |Z | (if such i exists), and let U =

{xk−|U |+1, · · · , xk−�(|N(U )−Z |−1)/2�, xk−�(|N(U )−Z |−1)/2�+1, · · · , xk}, where xi = uk−i for k − ⌈ |N(U )−Z |−1
2

⌉
< i ≤ k (if such i ex-

ists). Since (k − |U |) − |Z | ≥ k − (|U | + |N(U )|) ≥ k − (3ω − 1) ≥ 0, Z and U are well represented by the above two sets as 
they satisfy the condition Z ∩ U = ∅. Next, we complete the set S by choosing xi for |Z | < i ≤ k − |U | (if such i exists) from 
G − (Z ∪ U ) by the w-degeneracy of G such that |N(xi) − S| ≤ w ≤ |U | < 2(k − (k − |U |)) + 1 ≤ 2(k − i) + 1. The detailed 
analysis of the step-by-step choices can be proceeded similarly as what we have done in Case 1, so we do not repeat it here. 
In the following, we remain to check that |N(xi) − S| ≤ 2(k − i) + 1 for each 1 ≤ i ≤ |Z | and for each k − |U | + 1 < i ≤ k. 
Note that Z ∪ U ⊂ S .

For 1 ≤ i ≤  h
2 � + 1,

|N(xi) − S| ≤ |N(xi) − (Z ∪ U )| = |N(xi)| − |N(xi) ∩ (Z ∪ U )|
≤ � − |N(xi) ∩ (Z ∪ U )| ≤ (2k − h) − |N(xi) ∩ (Z ∪ U )|
≤ 2k − h − 1 ≤ 2k − (2i − 2) − 1 = 2(k − i) + 1.

Recall that xi ∈ Z ⊆ N(U ) in this case and thus N(xi) ∩ U �= ∅.
For  h

2 � + 1 < i ≤ |Z |, since xi = zi−h/2� , we conclude by (1) that

|N(xi) − S| = |N(zi−h/2�) − S|
≤ |N(zi−h/2�) − (Z ∪ U )| = |N(zi−h/2�)| − |N(zi−h/2�) ∩ (Z ∪ U )|
≤ � −

(
2

(
i −

⌊
h

2

⌋)
− 1

)
≤ (2k − h) − (2i − h − 1) = 2(k − i) + 1.

For k − |U | + 1 < i ≤ k, N(xi) − S ⊆ N(xi) ∩ (N(U ) − Z), since xi ∈ U , Z ∪ U ⊆ S , and Z ⊆ N(U ). If i ≤ k − ⌈ |N(U )−Z |−1
2

⌉
, 

then

|N(xi) − S| ≤ |N(xi) ∩ (N(U ) − Z)| ≤ |N(U ) − Z | ≤ 2(k − i) + 1.

On the other hand, if i > k − ⌈ |N(U )−Z |−1
2

⌉
, then xi = uk−i and thus we conclude by (2) that

|N(xi) − S| ≤ |N(xi) ∩ (N(U ) − Z)| = |N(uk−i) ∩ (N(U ) − Z)| ≤ 2(k − i) + 1.

This completes the proof. �
3. Main results

In this section, we present our main theorems as follows.

Theorem 6. A graph G is equitable tree k-choosable for every

k ≥ max

{⌈
�(G) + 2w − 4

2

⌉
,3ω − 1

}

if G has treewidth ω ≥ 2.

Proof. Suppose that G is a counterexample to the result with fewest number of vertices. It follows that |G| ≥ 3ω − 1
(otherwise it is possible to color the vertices of G from their lists so that they receive |G| distinct colors because k ≥
3ω − 1 > |G|), and G − S is equitable tree k-choosable for any set S = {x1, · · · , xk} ⊆ V (G) of k distinct vertices (this is 
because that G − S has less vertices than G and thus G − S is not a counterexample by the minimality of G). Note that 
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graphs with treewidth ω are clearly ω-degenerate. By Lemma 4, there is a subset U ⊆ V (G) such that ω ≤ |U | ≤ 2(ω − 1)

and |N(U )| ≤ ω + 1.
In the following, we claim that

there exists S = {x1, ..., xk} ⊆ V (G) such that |N(xi) − S| ≤ 2(k − i) + 1 for each 1 ≤ i ≤ k. (∗)

Therefore, G is equitable tree k-choosable by Lemma 3, contradicting the fact that G is a counterexample.
Let h = 2ω − 4. We may assume that |N(U )| ≥  h

2 � + 2 = ω, because otherwise (∗) holds by Lemma 5. We now consider 
two major cases.

Case 1. N(U ) contains a vertex, say z2 , such that it has at least three neighbors in U .
Note that ω ≤ |N(U )| ≤ ω + 1. If |N(U )| = ω, then let Z = N(U ). If |N(U )| = ω + 1, then let Z = N(U ) − {z0}, where 

z0 ∈ N(U ) and z0 �= z2. In any of the above subcases,

Z ⊇ {z2} =
{

z j : 2 ≤ j ≤ |Z | −
⌊

h

2

⌋}

U ⊇ ∅ =
{

u j : 0 ≤ j <

⌈ |N(U ) − Z | − 1

2

⌉}

and

|N(z2) ∩ (Z ∪ U )| ≥ |N(z2) ∩ U | ≥ 3.

Therefore, (∗) holds by Lemma 5.
Case 2. Every vertex in N(U ) has at most two neighbors in U .
Since |N(U )| ≤ ω + 1 and |U | ≥ ω, e(U ,N(U ))

|U | ≤ 2|N(U )|
|U | ≤ 2(ω+1)

ω < 3. This implies that there exists u0 ∈ U such that 
|N(u0) ∩ N(U )| ≤ 2. Let z0 ∈ N(U ) be a neighbor of u0 if N(u0) ∩ N(U ) �= ∅, or let z0 ∈ N(U ) be an arbitrary vertex otherwise.

If |N(U )| = ω, then let Z = N(U ) − {z0}. If |N(U )| = ω + 1, then let Z = N(U ) − {z0, z1}, where z1 ∈ N(U ) \ N(u0). Note 
that such z1 exists because |N(u0) ∩ N(U )| ≤ 2 and |N(U )| = ω + 1 ≥ 3. In each of the above subcases,

Z ⊇ ∅ =
{

z j : 2 ≤ j ≤ |Z | −
⌊

h

2

⌋}

U ⊇ {u0} ⊇
{

u j : 0 ≤ j <

⌈ |N(U ) − Z | − 1

2

⌉}

and

|N(u0) ∩ (N(U ) − Z)| ≤ 1 (note that N(u0) ∩ (N(U ) − Z) ⊆ {z0}).
Therefore, (∗) holds by Lemma 5. �
Theorem 7. A graph G is equitable tree k-choosable for every

k ≥ max

{⌈
�(G)

2

⌉
,3ω − 1

}

if G has treewidth ω ∈ {2, 3, 4} and K3,3 is not its topological minor.

Proof. Choose the minimal (in terms of the number of vertices) counterexample G to the result and the same U as the one 
in the beginning of the proof of Theorem 6. Our final goal is to prove (∗) again.

Case 1. N(U ) contains a vertex, say z2 , such that it has at least three neighbors in U .
Recall that ω ≤ |U | ≤ 2(ω − 1) and |N(U )| ≤ ω + 1.
If |N(U )| ≤ 2, then let Z = N(U ).
If |N(U )| = 3, then let Z = N(U ) − {z0}, where z0 ∈ N(U ) and z0 �= z2.
If |N(U )| = 4 (this case implies ω ≥ 3), then choose two distinct vertices a, b ∈ N(U ) − {z2} and a vertex u0 ∈ U such 

that |N(u0) ∩ {a, b}| ≤ 1, and let Z = N(U ) −{a, b}. Actually, such a, b and u0 exist. If we fail to find them, then every vertex 
in U is adjacent to every vertex in N(U ) − {z2}. Since |U | ≥ ω ≥ 3 and |N(U ) − {z2}| = 3, we find a copy of K3,3 in G , 
contradicting the fact that G does not contain a K3,3 as a topological minor.

If |N(U )| = 5 (this case implies ω = 4), then choose three distinct vertices a, b, c ∈ N(U ) − {z2} and a vertex u0 ∈ U such 
that |N(u0) ∩ {a, b, c}| ≤ 1, and let Z = N(U ) − {a, b, c}. Actually, such a, b, c and u0 exist. If we fail to find them, then every 
vertex in U is adjacent to at least three vertices in N(U ) − {z2}.

Let {v1, v2, v3} ⊆ N(z2) ∩ U and let N(U ) = {z2, s1, s2, s3, s4}. By Lemma 4 and the above conclusion, any vertex in 
N(z2) ∩U is adjacent to exactly three vertices in {s1, s2, s3, s4}. Assume, without loss of generality, that N(v1) ∩ N(U ) \{z2} =
65
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{s1, s2, s3}. Since G does not contain K3,3 as a subgraph, either N(v2) ∩ N(U ) \ {z2} �= {s1, s2, s3} or N(v3) ∩ N(U ) \ {z2} �=
{s1, s2, s3}, and we assume the former one. In such a case, we can assume that N(v2) ∩N(U ) \{z2} = {s1, s2, s4} by symmetry, 
which follows that {s1, s2} � N(v3) ∩ N(U ) (otherwise G contains a copy of K3,3). By the symmetry of s1 and s2 at this stage, 
we assume that N(v3) ∩ N(U ) \ {z2} = {s1, s3, s4}.

Let v4 ∈ U \ {v1, v2, v3} (note that |U | ≥ ω = 4, and we do not mind whether v4 is in N(z2) or not). Suppose first 
that s2 ∈ N(v4). Since v4 is adjacent to at least three vertices in {s1, s2, s3, s4}, either s3 ∈ N(v4) or s4 ∈ N(v4). If s3 ∈
N(v4), then s2 v4s3 v3 is a path from s2 to v3, and if s4 ∈ N(v4), then s2 v4s4 v3 is a path from s2 to v3. In each case, 
{v1, v2, v3} ⊆ N(z2) ∩ N(s1), {v1, v2} ⊆ N(s2) and there is a path from s2 to v3 that does not pass the vertices among 
v1, v2, z2 and s1. So, there is a K3,3-subdivision in G , a contradiction. Therefore we conclude that s2 /∈ N(v4) and thus 
N(v4) ∩ N(U ) \ {z2} = {s1, s3, s4}. In this case, {s1, s3, s4} ⊆ N(v3) ∩ N(v4), {s1, s4} ⊆ N(v2) and there is a path, say v2z2 v1s3
from v2 to s3. This results in a K3,3-subdivision in G , a contradiction.

In each of the above subcases, |Z | ≤ 2, |N(U ) − Z | ≤ 1 if |N(U )| ≤ 3, and 2 ≤ |N(U ) − Z | ≤ 3 if |N(U )| ≥ 4, which implies

Z ⊇ {z2} ⊇
{

z j : 2 ≤ j ≤ |Z |
}

U ⊇ ∅ =
{

u j : 0 ≤ j <

⌈ |N(U ) − Z | − 1

2

⌉}
if |N(U )| ≤ 3

U ⊇ {u0} =
{

u j : 0 ≤ j <

⌈ |N(U ) − Z | − 1

2

⌉}
if |N(U )| ≥ 4.

Since we already have

|N(z2) ∩ (Z ∪ U )| ≥ |N(z2) ∩ U | ≥ 3

and have proved (by the choice of u0)

|N(u0) ∩ (N(U ) − Z)| ≤ 1

for the case |N(U )| ≥ 4, we conclude that (∗) holds by Lemma 5.
Case 2. Every vertex in N(U ) has at most 2 neighbors in U .
Since e(U ,N(U ))

|U | ≤ 2|N(U )|
|U | ≤ 2(w−1)

w < 3, there is a vertex u0 ∈ U such that |N(u0) ∩ N(U )| ≤ 2. If |N(u0) ∩ N(U )| = 2, then 
let Z = {z0}, where z0 ∈ N(U ) is a neighbor of u0. If |N(u0) ∩ N(U )| ≤ 1, then let Z = {z0}, where z0 is an arbitrary vertex 
chosen from N(U ). In each subcase, we have |Z | = 1, |N(U )| ≤ w + 1 and thus 

⌈ |N(U )−Z |−1
2

⌉ ≤ � w−1
2 �.

If ω ∈ {2, 3}, then

Z ⊇ ∅ =
{

z j : 2 ≤ j ≤ |Z |
}

U ⊇ {u0} ⊇
{

u j : 0 ≤ j <

⌈ |N(U ) − Z | − 1

2

⌉}
.

Since |N(u0) ∩ (N(U ) − Z)| ≤ 1 by the choices of u0 and Z , (∗) holds by Lemma 5.
If ω = 4, then

e(U − {u0}, N(U ))

|U | − 1
≤ 2N(U )

|U | − 1
≤ 2(w + 1)

w − 1
= 10

3
< 4,

which implies that there is a vertex u1 ∈ U − {u0} such that |N(u1) ∩ N(U )| ≤ 3. Note that

Z ⊇ ∅ =
{

z j : 2 ≤ j ≤ |Z |
}

U ⊇ {u0, u1} ⊇
{

u j : 0 ≤ j <

⌈ |N(U ) − Z | − 1

2

⌉}
.

Since |N(u0) ∩ (N(U ) − Z)| ≤ 1 by the choices of u0 and Z , and |N(u1) ∩ (N(U ) − Z)| ≤ |N(u1) ∩ N(U )| ≤ 3, we conclude 
that (∗) holds by Lemma 5. �

From Theorems 6 and 7, we immediately deduce the following corollaries.

Corollary 8. If G has treewidth ω ≥ 2, then

ρ=
l (G) ≤

{ ⌈
�(G)

2

⌉ + ω − 2, if �(G) ≥ 4ω + 1;

3w − 1, if �(G) ≤ 4ω.
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Corollary 9. If G has treewidth ω ∈ {2, 3, 4} and K3,3 is not its topological minor, then

ρ=
l (G) ≤

{ ⌈
�(G)

2

⌉
, if �(G) ≥ 6ω − 3;

3w − 1, if �(G) ≤ 6ω − 4.
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