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Abstract

A graph is 1-planar if it can be drawn on the plane so that each edge
is crossed by at most one other edge. In this paper, it is proved that the
(p, 1)-total labelling number (p ≥ 2) of every 1-planar graph G is at most
∆(G) + 2p − 2 provided that ∆(G) ≥ 6p + 7 or ∆(G) ≥ 4p + 6 and G is
triangle-free.
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1. Introduction

All graphs considered in this paper are simple and undirected. By V (G), E(G),
δ(G) and ∆(G), we denote the vertex set, the edge set, the minimum degree and
the maximum degree of a graph G, respectively. A planar graph is a graph that
can be drawn on a plane in such a way that no edges cross each other, and this
drawing is a plane graph. By F (G), we denote the face set of a plane graph G.
The degree of a vertex v in G, denoted by dG(v), is the number of edges that
are incident with v in G, and the degree of a face f in a plane graph G, denoted
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by dG(f), is the the number of edges that are incident with f in G, where cut-
edges are counted twice. A k-, k+-, or k−-vertex (respectively face) is a vertex
(respectively face) of degree exactly k, at least k, or at most k, respectively. The
length of a cycle is the number of edges that are incident with it, and the girth

of a graph G, denoted by g(G), is the length of the shortest cycle in G.

In the channel assignment problems, we assign different channels to “close”
transmitters and channels that are at least two channels apart to “very close”
transmitters in order to avoiding interference and communication link failure. In
the language of graph theory, the transmitters are represented by vertices of a
graph, in which two vertices are adjacent (respectively of distance two) if and
only if their representing transmitters are very close (respectively close). Hence
the channel assignment problem is now to label the vertices of this graph G with
nonnegative integers (representing the channels) so that |L(u)−L(v)| is at least 2
if uv ∈ E(G), and at least 1 if the distance between u and v is 2, where L(u) and
L(v) denotes the labellings on u and v, respectively. Yeh [16] and then Griggs
and Yeh [5] called it an L(2, 1)-labelling of graphs.

In the network of the wireless communications, we may do some optimization
to the efficiency by adding new transmitters between any two transmitters that
are very close. This operation updates the structure of the network and we are
to complete the channel assignment problem on this new network. Denote by G′

and G the updated network/graph and the original network/graph, respectively.
Comparing their structures with each other, we can easily find that G′ is derived
from G by replacing every edge xy of G with a path xzy (i.e., inserting a vertex z

of degree 2 along every edge xy of G). In the words of graph theory, G′ is called
the incidence graph of G. It is clear to see that those new inserted vertices of
degree 2 to G correspond to the edges of G and any two of them has distance 2 in
G′. Therefore, the L(2, 1)-labelling of G′ is somehow a labelling ϕ of the vertices
and edges of G so that ϕ(u) 6= ϕ(v) if uv ∈ E(G), ϕ(e1) 6= ϕ(e2) if e1 and e2 are
two adjacent edges in G, and |ϕ(u) − ϕ(e)| ≥ 2 if a vertex u is incident with an
edge e in G. Such kind of a labelling is called the (2, 1)-total labelling of graphs,
which was introduced by Havet and Yu [7, 8] at the beginning of the 2000’, and
generalized to the (p, 1)-total labelling of graphs.

Formally, a (p, 1)-total k-labelling of a graph G is a function f from V (G) ∪
E(G) to the color set {0, 1, . . . , k} such that |f(u) − f(v)| ≥ 1 if uv ∈ E(G),
|f(e1)−f(e2)| ≥ 1 if e1 and e2 are two adjacent edges in G, and |f(u)−f(e)| ≥ p

if a vertex u is incident with the edge e. The minimum k such that G has a
(p, 1)-total k-labelling, denoted by λT

p (G), is the (p, 1)-total labelling number of
G. Note that the (1, 1)-total (k − 1)-labeling of G is equivalent to the total k-
coloring of G, that is a function f from V (G) ∪ E(G) to {1, 2, . . . , k} such that
any two adjacent or incident elements from V (G)∪E(G) receive different colors.
The minimum integer k so that G admits a total k-coloring is the total chromatic
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number of G, denoted by χ′′(G). It is easy to see that

λT
1 (G) + 1 = χ′′(G) ≥ ∆(G) + 1.

On the other side, the well-known Total Coloring Conjecture states that χ′′(G) ≤
∆(G) + 2, and this conjecture is still quite open. As a generalization of the Total
Colouring Conjecture, Havet and Yu [8, 9] put forward the following so called
(p, 1)-Total Labelling Conjecture.

Conjecture 1. λT
p (G) ≤ min{∆(G) + 2p− 1, 2∆(G) + p− 1}.

Note that Havet [7] proved that λT
p (G) ≤ 2∆(G) + p − 1 for any graph G.

Hence Conjecture 1 can be rewritten as follows.

Conjecture 2. λT
p (G) ≤ ∆(G) + 2p− 1.

If p ≥ ∆(G), then 2∆(G) + p − 1 ≤ ∆(G) + 2p − 1. Therefore, Conjecture
2 is only interesting for p < ∆(G). For planar graphs G, Havet [7] showed that
λT
p (G) ≤ ∆(G) + p+ 3 and λT

p (G) ≤ ∆(G) + p+ 2 if ∆(G) ≥ 7. This implies that
Conjecture 2 with p ≥ 4 holds for all planar graphs and Conjecture 2 with p = 3
holds for planar graphs with maximum degree at least 7.

We now move the attentions to a larger class of graphs than planar graphs.
A graph is 1-planar if it can be drawn on a plane in such a way that one edge
is crossed by at most one other edge, and this drawing is a 1-plane graph. The
notion of 1-planarity was first introduced in 1965 by Ringle [13] while consid-
ering the proper vertex-face coloring of plane graphs, which can be translated
into the proper vertex coloring of 1-plane graphs. Ringel [13] proved that 7 col-
ors are sufficient to properly color the vertices of any 1-planar graph, and asked
whether 6 colors are enough. In 1984, Borodin [3, 4] answered Ringel’s question
by proving that the chromatic number of any 1-planar graph is at most 6 (being
sharp). Nowadays various research streams on 1-planar graphs, such as character-
ization and recognition, combinatorial properties, and geometric representations,
are active. A survey contributed by Kobourov, Liotta and Montecchiani [11] in
2017 reviewed the current literatures covering those research streams on 1-planar
graphs.

Concerning the (p, 1)-total labelling, Bazzaro, Montassier and Raspaud [1]
raised another interesting problem that is to answer when

(1) λT
p (G) ≤ ∆(G) + 2p− 2

holds. If p = 1, then this reduces to ask when it holds that λT
1 (G) = ∆(G), that

is, χ′′(G) = ∆(G) + 1. Actually, this reduced problem on total coloring attracts
interests from many researchers. For example, Kowalik, Sereni and Škrekovski
[10] proved χ′′(G) = ∆(G)+1 for planar graphs with maximum degree at least 9,
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and Zhang, Wu and Liu [20] showed χ′′(G) = ∆(G) + 1 for 1-planar graphs with
maximum degree at least 21 (this lower bound 21 has recently been improved to
18 by Zhang, Niu and Yu in an upcoming paper [18]).

For p ≥ 2, Montassier and Raspaud [12] proved (1) for graphs with a given
maximum average degree. Bazzaro, Montassier and Raspaud proved (1) for pla-
nar graphs with large girth and with high maximum degree — especially for
planar graphs with maximum degree ∆(G) ≥ 8p + 2. Yu et al. [17] proved for
planar graphs with maximum degree ∆(G) ≥ 12 that λT

2 (G) ≤ ∆(G) + 2. Re-
cently, Sun and Wu [14] proved that λT

p (G) ≤ ∆(G) + 2p − 2 for planar graphs
with maximum degree ∆(G) ≥ 4p + 4 and p ≥ 2, which improved both the re-
sult of Bazzaro, Montassier and Raspaud, and the result of Yu et al. mentioned
above. The (p, 1)-total labelling of 1-planar graphs was first considered in 2011
by Zhang, Yu and Liu [21]. They proved the following result.

Theorem 3 [21], Theorem 1.5. Let p ≥ 2 be an integer and let G be a 1-planar
graph with maximum degree ∆ and girth g. If ∆ ≥ 8p + 4 or ∆ ≥ 6p + 2 and

g ≥ 4, then λT
p (G) ≤ ∆ + 2p− 2.

In the paper [21], the authors actually feel that the two lower bounds 8p+ 4
and 6p + 2 for ∆ in Theorem 3 may not be sharp. This motivates us to ask
whether those lower bounds can be improved and how much they can be lowered.
In this paper, we are to prove the following Theorem 4, which pulls the first
and the second lower bounds for ∆ in Theorem 3 down to 6p + 7 and 4p + 6,
respectively. Note that 6p + 7 < 8p + 4 and 4p + 6 ≤ 6p + 2 if p ≥ 2.

Theorem 4. Let p ≥ 2 be an integer and let G be a 1-planar graph with maximum

degree ∆ and girth g. If ∆ ≥ 6p + 7 or ∆ ≥ 4p + 6 and g ≥ 4, then λT
p (G) ≤

∆ + 2p− 2.

In the next sections, we are to give the detailed proof of the above theorem.

2. The Proof of Theorem 4

Alternatively, we set an integer M such that ∆ ≤ M and prove λT
p (G) ≤ M+2p−2

while M ≥ 6p + 7 or M ≥ 4p + 6 and g ≥ 4. This will imply Theorem 4.

We prove the required conclusion by contradiction. First, assume that there
is a 1-planar graph G with maximum degree at most M such that

(1) G admits no (p, 1)-total (M + 2p− 2)-labelling, and

(2) any proper subgraph of G has a (p, 1)-total (M + 2p− 2)-labelling.

We call such a graph G an (M + 2p − 2)-critical graph. The following are two
useful properties on the (M + 2p− 2)-critical graphs, which are given by Zhang,
Yu and Liu [21].
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Lemma 5 [21, Lemmas 2.1 and 2.2]. Let G be an (M+2p−2)-critical graph. For

any edge uv ∈ E(G), if min{dG(u), dG(v)} ≤
⌊

M+2p−2
2p

⌋

, then dG(u) + dG(v) ≥

M + 2, and otherwise, dG(u) + dG(v) ≥ M − 2p + 3.

A k-alternator of G for some 2 ≤ k ≤
⌊

∆
2

⌋

is a bipartite subgraph F of
G with partite sets X,Y such that dF (x) = dG(x) ≤ k for each x ∈ X, and
dF (y) ≥ dG(y) + k − ∆ for each y ∈ Y .

Lemma 6 [21, Lemma 2.4]. If G is an (M + 2p− 2)-critical graph, then there is

no k-alternator in G for any integer 2 ≤ k ≤
⌊

M+2p−2
2p

⌋

.

Using Lemmas 5 and 6, we conclude the following two corollaries.

Corollary 7. If G is an (M + 2p− 2)-critical graph with M ≥ 4p+ 6 and p ≥ 2,
then

(a) dG(x) + dG(y) ≥ 13 for every edge xy ∈ E(G);

(b) dG(x) + dG(y) ≥ 16 for every edge xy ∈ E(G) with min{dG(x), dG(y)} ≤ 3;

(c) there is no 2-alternator or 3-alternator in G.

Proof. By Lemma 5, dG(x) + dG(y) ≥ M − 2p + 3 ≥ 2p + 9 ≥ 13 for every edge

xy ∈ E(G). Since
⌊

M+2p−2
2p

⌋

≥
⌊

6p+4
2p

⌋

≥ 3, dG(x)+dG(y) ≥ M+2 ≥ 4p+8 ≥ 16

for every edge xy ∈ E(G) with min{dG(x), dG(y)} ≤ 3 by Lemma 5, and there is
no 2-alternator or 3-alternator in G by Lemma 6.

Corollary 8. If G is an (M + 2p− 2)-critical graph with M ≥ 6p+ 7 and p ≥ 2,
then

(a) dG(x) + dG(y) ≥ 18 for every edge xy ∈ E(G);

(b) dG(x) + dG(y) ≥ 21 for every edge xy ∈ E(G) with min{dG(x), dG(y)} ≤ 4;

(c) there is no 2-alternator or 3-alternator or 4-alternator in G.

Proof. By Lemma 5, dG(x) + dG(y) ≥ M − 2p+ 3 ≥ 4p+ 10 ≥ 18 for every edge

xy ∈ E(G). Since
⌊

M+2p−2
2p

⌋

≥
⌊

8p+5
2p

⌋

≥ 4, dG(x)+dG(y) ≥ M+2 ≥ 6p+9 ≥ 21

for every edge xy ∈ E(G) with min{dG(x), dG(y)} ≤ 4 by Lemma 5, and there is
no 2-alternator or 3-alternator or 4-alternator in G by Lemma 6.

The following Theorems 9 and 10 are two structural theorems on 1-planar
graphs. We move their proofs to the next section.

Theorem 9. If G is a triangle-free 1-planar graph with minimum degree at least

2, then G contains

(a) an edge xy with dG(x) + dG(y) ≤ 12, or
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(b) an edge xy with min
{

dG(x), dG(y)
}

≤ 3 and dG(x) + dG(y) ≤ 14, or

(c) a k-alternator for some k ∈
{

2, 3
}

.

Proof. See Subsection 3.1.

Theorem 10. If G is a 1-planar graph with minimum degree at least 2, then G

contains

(a) an edge xy with dG(x) + dG(y) ≤ 16, or

(b) an edge xy with min
{

dG(x), dG(y)
}

≤ 4 and dG(x) + dG(y) ≤ 20, or

(c) a k-alternator for some k ∈
{

2, 3, 4
}

.

Proof. See Subsection 3.2.

Combining Theorem 9 with Corollary 7, and Theorem 10 with Corollary 8,
we conclude the following two corollaries, respectively.

Conjecture 11. There is no (M + 2p − 2)-critical triangle-free 1-planar graph

with M ≥ 4p + 6 and p ≥ 2.

Proof. If G is an (M + 2p − 2)-critical triangle-free 1-planar graph, then by
Lemma 5, δ(G) ≥ 2. By Theorem 9, G contains (i) an edge xy with dG(x) +
dG(y) ≤ 12, or (ii) an edge xy with min

{

dG(x), dG(y)
}

≤ 3 and dG(x) + dG(y) ≤
14, or (iii) a k-alternator for some k ∈

{

2, 3
}

. However, the local structures (i)
and (ii) cannot appear in G by Corollaries 7(a) and 7(b), and the local structure
(iii) is absent form G by Corollary 7(c).

Conjecture 12. There is no (M+2p−2)-critical 1-planar graph with M ≥ 6p+7
and p ≥ 2.

Proof. If G is an (M +2p−2)-critical 1-planar graph, then by Lemma 5, δ(G) ≥
2. By Theorem 10, G contains (i) an edge xy with dG(x) + dG(y) ≤ 16, or (ii)
an edge xy with min

{

dG(x), dG(y)
}

≤ 4 and dG(x) + dG(y) ≤ 20, or (iii) a k-
alternator for some k ∈

{

2, 3, 4
}

. However, the local structures (i) and (ii) cannot
appear in G by Corollaries 8(a) and 8(b), and the local structure (iii) is absent
form G by Corollary 8(c).

Corollaries 11 and 12 imply that there is no counterexample to Theorem 4.
Hence Theorem 4 has been proved.

3. The Proofs of Theorems 9 and 10

The associated plane graph G× of a 1-plane graph G is the plane graph obtained
from G by turning all crossings of G into new vertices of degree four. These new
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vertices are false vertices in G×, and the original vertices of G are true vertices
in G×. A face in G× is false if it is incident with at least one false vertex, and
true otherwise.

We will mainly use the discharging method to prove Theorems 9 and 10.
As we know, the discharging method is a technique used to prove theorems in
structural graph theory. Discharging is most well-known for its central role in the
proof of the Four Color Theorem. The discharging method is used to prove that
every graph in a certain class contains some subgraph from a specified list (see
the statements of Theorems 9 and 10 for examples). The presence of the desired
subgraph is then often used to prove a coloring result, which likes what we have
done in Section 2. Most commonly, discharging is applied to plane graphs, so in
this paper the discharging will be applied to the associated plane graph G× of G.

Lemma 13 [15, Lemma 2.4]. Let 2 ≤ k ≤
⌊

∆
2

⌋

be a fixed integer and let G be

a graph without k-alternator. Let Xk =
{

x ∈ V (G) | dG(x) ≤ k
}

and Yk =
⋃

x∈Xk
NG(x). If Xk 6= ∅, then there exists a bipartite subgraph Mk of G with

partite sets Xk, Yk such that dMk
(x) = 1 for each x ∈ Xk and dMk

(y) ≤ k− 1 for

each y ∈ Yk.

Following Lemma 13, we call y the k-master of x if xy ∈ Mk and x ∈ Xk.

Sketch proofs of Theorems 9 and 10. Suppose, to the contrary, that G is
a minimal counterexample to Theorem 9 (respectively Theorem 10) in terms of
|V (G)| + |E(G)|. If ∆(G) ≤ 6 (respectively ∆(G) ≤ 8), then dG(x) + dG(y) ≤
2∆(G) ≤ 12 (respectively dG(x)+dG(y) ≤ 2∆(G) ≤ 16) for any edge xy ∈ E(G),
and thus the configuration (a) occurs. Hence ∆(G) ≥ 7 (respectively ∆(G) ≥ 9).

We apply the discharging method to the associated plane graph G× of G.
Formally, for each vertex v ∈ V (G×), let c(v) = dG×(v) − 6 be its initial charge,
and for each face f ∈ F (G×), let c(f) = 2dG×(f)−6 be its initial charge. Clearly,

∑

x∈V (G×)∪F (G×)

c(x) =
∑

x∈V (G×)

(

dG×(v) − 6
)

+
∑

x∈F (G×)

(

2dG×(f) − 6
)

= 6
(

|E(G×)| − |V (G×)| − |F (G×)|
)

= −12 < 0

by the well-known Euler’s formula.
At this stage, we need the so-called discharging rules that only move charge

around the vertices and faces of G× so that c′(x) ≥ 0 for every x ∈ V (G×) ∪
F (G×), where c′(x) denotes the charge of x ∈ V (G×)∪F (G×) after applying the
discharging rules. This therefore implies

∑

x∈V (G×)∪F (G×)

c′(x) =
∑

x∈V (G×)∪F (G×)

c(x) < 0

a contradiction.
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The idea to define the discharging rules. From the above sketch proofs,
one can find that the most important and complicated task is to define the dis-
charging rules. It is easy to see that c(x) < 0, where x ∈ V (G×) ∪ F (G×), only
if x is a 5−-vertex of G× (hence it may be a false 4-vertex). Hence 5−-vertices
need charges, which may be obtained from elements from V (G×) ∪ F (G×) that
have “rich” initial charge. Such rich elements includes 7+-vertices and 4+-faces.

If G is a minimal counterexample to Theorem 9, then 2-alternator or 3-
alternator is absent from G. We conclude, by Lemma 13, that (i) every 3−-vertex
of G has a 3-master, and (ii) every vertex of G can be 3-masters of at most two
vertices. If a vertex u is a 3-master of a 3−-vertex v, then uv ∈ E(G) and thus
dG×(u) = dG(u) ≥ 12, because otherwise dG(u) + dG(v) ≤ 3 + 11 = 14 and the
configuration (b) occurs. Hence it is natural to propose the following requests
while defining the discharging rules:

(1) any 5−-vertex receives charge from rich elements including 7+-vertices
and 4+-faces;

(2) any 3−-vertex receives additional charge from its adjacent 3-master, which
is a 12+-vertex.

If G is a minimal counterexample to Theorem 10, then G does not have 2-
alternator or 3-alternator or 4-alternator. We conclude, by Lemma 13, that (i)
every 2-vertex of G has a 2-master, a 3-master and a 4-master, (ii) every 3-vertex
of G has a 3-master and a 4-master, (iii) every 4-vertex of G has a 4-master, and
(iv) every vertex of G can be 2-master of at most one vertex, 3-masters of at most
two vertices, and 4-masters of at most three vertices. If a vertex u is a 2-master of
a 2-vertex v, then uv ∈ E(G) and thus dG×(u) = dG(u) ≥ 19, because otherwise
dG(u)+dG(v) ≤ 2+18 = 20 and the configuration (b) occurs. If a vertex u is a 3-
master of a 3−-vertex v, then uv ∈ E(G) and thus dG×(u) = dG(u) ≥ 18, because
otherwise dG(u)+dG(v) ≤ 3+17 = 20 and the configuration (b) occurs. If a vertex
u is a 4-master of a 4−-vertex v, then uv ∈ E(G) and thus dG×(u) = dG(u) ≥ 17,
because otherwise dG(u) + dG(v) ≤ 4 + 16 = 20 and the configuration (b) occurs.
Hence it is natural to propose the following requests while defining the discharging
rules:

(1) any 5−-vertex receives charge from rich elements including 7+-vertices
and 4+-faces;

(2) any 4−-vertex receives additional charge from its adjacent 4-master, which
is a 17+-vertex;

(3) any 3−-vertex receives additional charge from its adjacent 3-master, which
is a 18+-vertex;

(4) any 2-vertex receives additional charge from its adjacent 2-master, which
is a 19+-vertex.

However, this is just the idea to define the discharging rules but it is not
meticulous enough. Actually, in order to define the discharging rules precisely,
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careful analysis on the local structures of the associated plane graph G× and the
original graph G are necessary. For example, the following lemma will be used
frequently latter.

Lemma 14 [19, Lemma 1]. If G is a 1-plane graph, then

(a) false vertices in G× are not adjacent;

(b) false 3-face in G× is not incident with 2-vertex;

(c) if a 3-vertex v is incident with two 3-faces and adjacent to two false vertices

in G×, then v is incident with a 5+-face;

(d) there exists no edge uv in G× such that dG×(u) = 3, v is a false vertex, and

uv is incident with two 3-faces.

The detailed discharging rules will be released in the next subsections.

3.1. Detailed proof of Theorem 9

Let G be a minimal counterexample to Theorem 9 in terms of |V (G)| + |E(G)|.
A true vertex v of G× is big if dG×(v) ≥ 8, middle if 6 ≤ dG×(v) ≤ 7, and small

if dG×(v) ≤ 5. By the absence of the configuration (a), any neighbor of a small
vertex in G× is a big vertex. For convenience, we use F,B,M and S to represent
false vertex, big vertex, middle vertex and small vertex, respectively, and then
use these notations to represent the structure of a face of G×. For example, we
say that a face is an (F,M,B, S)-face if it is a 4-face with vertices u1, u2, u3 and
u4 lying clockwise on the boundary of f such that u1 is false, u2 is middle, u3 is
big and u4 is small. A face in G× is burdened if it is incident with at least one
small vertex.

A special burdened 4-face in G× is a 4-face of type (F, S, F, ∗), where ∗
represents either B or M or S, see Figure 1, where hollow vertices represent false
vertices. A false vertex v in G× is BFS-incident with a face f if one neighbor
of v in the cycle induced by f is big, and the other is small. In this case, we
also say that f is BFS-incident with a false vertex v. Similarly, we can define
“BFB-incident”, “SFM-incident”, etc.

Figure 1. Three kinds of special burdened 4-face.

The promised discharging rules are defined as follows.
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R1. Every big vertex of G× sends 1
4 to each of its incident faces.

R2. Let v be a false vertex incident with a 4+-face f .

R2.1. If v is SFS-incident with f , then f sends 1
4 to v.

R2.2. If v is BFB-incident with f , then f sends 5
4 to v.

R2.3. If v is BFS-incident with f , then f sends 3
4 to v.

R2.4. If v is BFM-incident with f , then f sends 3
4 to v.

R2.5. If v is MFM-incident with f , then f sends 1 to v.

R2.6. If v is SFM-incident with f , then f sends 5
8 to v.

R3. Every 3-face of G× sends all of its received charge after applying R1 to its
incident false vertex.

R4. Every 4+-face of G× redistributes it remaining charge after applying R1 and
R2 equitably to each of its incident small vertices (if exists).

R5. Every 3−-vertex of G receives 3
2 from its 3-master.

Figure 2. The discharging rule R2 for the proof of Theorem 9.

In the following, we check c′(x) ≥ 0 for every x ∈ V (G×) ∪ F (G×), and then
complete the proof.

Since every 4+-face f of F (G×) is incident with at most
⌊

d
G× (f)
2

⌋

false vertices

by Lemma 14(a), the remaining charge of f after applying R1 and R2 is at least

2dG×(f) − 6 − max

{

1

4
,

3

4
, 1,

5

8

}

×

⌊

dG×(f)

2

⌋

≥ 0

if R2.2 is not applied to f , and is at least

2dG×(f) − 6 + 2 ×
1

4
−

5

4
×

⌊

dG×(f)

2

⌋

≥ 0
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otherwise. Hence, R1–R4 guarantee that c′(f) ≥ 0 for each f ∈ F (G×).
Before calculating the final charge of each vertex v ∈ V (G×), we count first

how many charge v can receive from its incident faces if v is false or small.
By R1 and R3, it is easy to conclude the following two claims, respectively.

Claim 15. Every (B,F,B)-face sends 1
2 to its incident false vertex.

Claim 16. Every (B,F,M)-face or (B,F, S)-face sends 1
4 to its incident false

vertex.

Now we consider burdened 4+-faces.

Claim 17. Every burdened 4-face sends to each of its incident small vertices 3
4

if f is a special 4-face, 1 if f is an (F, S,B, S)-face, and at least 5
4 otherwise.

Proof. If f is an (F, S, F, S)-face, then by R2.1 and R4, f sends

1

2
×

(

2 × 4 − 6 − 2 ×
1

4

)

=
3

4

to each of its incident small vertices. If f is an (F, S, F,M)-face, then by R2.6
and R4, f sends

2 × 4 − 6 − 2 ×
5

8
=

3

4

to its incident small vertex. If f is an (F, S, F,B)-face, then by R1, R2.3 and R4,
f sends

2 × 4 − 6 +
1

4
− 2 ×

3

4
=

3

4

to its incident small vertex. If f is an (F, S,B, S)-face, then by R1, R2.1 and R4,
f sends

1

2
×

(

2 × 4 − 6 +
1

4
−

1

4

)

= 1

to each of its incident small vertices.
By symmetry, f can be of another types among (S,B,B,B), (S,B, S,B),

(F, S,B,M), (F,B, S,B), (S,B,M,B) and (F, S,B,B). In each case we can sim-
ilarly calculate that f sends at least 5

4 to each of its incident small vertices.

Claim 18. Every burdened 5-face sends at least 13
8 to each of its incident small

vertices.

Proof. Note that f is incident with at most two false vertices and at most two
small vertices.

If f is incident with exactly one small vertex, then f sends at least

2 × 5 − 6 − 2 × 1 = 2
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to this small vertex by R2 and R4.
If f is incident with exactly two small vertices and at most one false vertex,

then f sends at least

1

2
×

(

2 × 5 − 6 +
1

4
− 1

)

=
13

8

to each of its incident small vertices by R1, R2 and R4. Note that in this case f

is incident with at least one big vertex.
If f is incident with exactly two small vertices and exactly two false vertices,

then f shall be an (F, S,B, F, S)-face. Therefore, by R1, R2.1, R2.3 and R4, f
sends at least

1

2
×

(

2 × 5 − 6 +
1

4
−

1

4
−

3

4

)

=
13

8

to each of its incident small vertices.

Claim 19. Every burdened 6+-face sends at least 7
4 to each of its incident small

vertices.

Proof. First, suppose that f is not BFB-incident or MFM-incident with any

false vertex. If f is incident with at most
⌊

d
G× (v)
2

⌋

− 1 small vertices, then f

sends at least

2dG×(f) − 6 − 3
4

⌊

d
G× (v)
2

⌋

⌊

d
G× (v)
2

⌋

− 1
≥

15

8
>

7

4

to each of its incident small vertices by R2 and R4, for dG×(G) ≥ 6. If f is

incident with
⌊

d
G× (v)
2

⌋

small vertices and dG×(v) is even, then any false vertex

on f is SFS-incident with f , thus f sends at least

2dG×(f) − 6 − 1
4

⌊

d
G× (v)
2

⌋

⌊

d
G× (v)
2

⌋ ≥
7

4

to each of its incident small vertices by R2.1 and R4, for dG×(G) ≥ 6. If f is

incident with
⌊

d
G× (v)
2

⌋

small vertices and dG×(v) is odd, that is, dG×(v) ≥ 7,

then f sends at least

2dG×(f) − 6 − 3
4

⌊

d
G× (v)
2

⌋

⌊

d
G× (v)
2

⌋ ≥
7

4

to each of its incident small vertices by R2 and R4.
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Second, suppose that f is BFB-incident with a false vertex. In this case, f

is incident with at most
⌈

d
G× (v)−3

2

⌉

small vertices, and thus f sends at least

2dG×(f) − 6 − 5
4

(⌊

d
G× (v)
2

⌋

− 1
)

+ 2 × 1
4

⌈

d
G× (v)−3

2

⌉ ≥ 2 >
7

4

to each of its incident small vertices by R1, R2 and R4 provided that f is incident

with at most
⌊

d
G× (v)
2

⌋

− 1 false vertices. If f is incident with exactly
⌊

d
G× (v)
2

⌋

false vertices and at most
⌈

d
G× (v)−3

2

⌉

− 1 small vertices, then f sends at least

2dG×(f) − 6 − 5
4

⌊

d
G× (v)
2

⌋

+ 2 × 1
4

⌈

d
G× (v)−3

2

⌉

− 1
≥

11

4
>

7

4

to each of its incident small vertices by R1, R2 and R4. If f is incident with

exactly
⌊

d
G× (v)
2

⌋

false vertices and exactly
⌈

d
G× (v)−3

2

⌉

small vertices, then

⌊

dG×(v)

2

⌋

+

⌈

dG×(v) − 3

2

⌉

+ 2 ≤ dG×(v)

implying that dG×(v) ≥ 7. Note that f is incident with at least two big vertices.
Now, we conclude that f sends at least

2dG×(f) − 6 − 5
4

⌊

d
G× (v)
2

⌋

+ 2 × 1
4

⌈

d
G× (v)−3

2

⌉ ≥
11

6
>

7

4

to each of its incident small vertices by R1, R2 and R4, for dG×(v) ≥ 7.

Third, suppose that f is MFM-incident with a false vertex and not BFB-

incident with any false vertex. In this case, f is incident with at most
⌈

d
G× (v)−5

2

⌉

small vertices (note that any neighbor of a middle vertex cannot be a small
vertex), and thus f sends at least

2dG×(f) − 6 −
⌊

d
G× (v)
2

⌋

⌈

d
G× (v)−5

2

⌉ ≥ 3 >
7

4

to each of its incident small vertices by R1, R2 and R4, for dG×(f) ≥ 6.

Now we calculate the final charge of each vertex v ∈ V (G×).
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Case 1. If v is a false vertex, then v is incident with at most two 3-faces,
because otherwise a triangle occurs in G.

(1.1) If v is incident only with 4+-faces, then v is SFS-incident with at most
one face, since small vertices are not adjacent in G. Therefore, by R2, we have

c′(v) ≥ 4 − 6 +
1

4
+ 3 × min

{

5

4
,

3

4
, 1,

5

8

}

> 0.

(1.2) If v is incident with one 3-face and three 4+-faces, we distinguish two
subcases.

If v is incident with a (B,F, ∗)-face, where ∗ represents B or M or S, then v is
SFS-incident with at most one 4+-face, since small vertices are not adjacent in G.
If v is SFS-incident with exactly one 4+-face, then either v is BFS-incident with
a 4+-face and BFB-incident with a 4+-face, or BFS-incident with two 4+-faces
and incident with a (B,F,B)-face. In the former case, we have

c′(v) ≥ 4 − 6 +
3

4
+

5

4
= 0

by R2.2 and R2.3, and in the latter case, we conclude

c′(v) ≥ 4 − 6 +
1

2
+

1

4
+ 2 ×

3

4
> 0

by Claim 15, R2.1 and R2.3. If v is not SFS-incident with any 4+-face, then by
R2.2–R2.6, we have

c′(v) ≥ 4 − 6 + 2 ×
5

8
+ min

{

5

4
,
3

4
, 1

}

= 0.

Note that in this case v is SFM-incident with at most two faces (otherwise two
small vertices are adjacent in G).

If v is incident with an (M,F,M)-face, then v is not SFS-incident or SFM-
incident with any 4+-face. Hence by R2.2–R2.5,

c′(v) ≥ 4 − 6 + 3 × min

{

5

4
,

3

4
, 1

}

> 0.

(1.3) If v is incident with two 3-faces and two 4+-faces, then the two 3-faces
are not adjacent in G×, because otherwise G contains a triangle.

If v is adjacent to at least two big vertices in G×, then those big vertices lie
on the 3-faces that are incident with v. If v is BFB-incident with a 4+-face, then

c′(v) ≥ 4 − 6 + 2 ×
1

4
+

5

4
+

1

4
= 0
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by R1, R2.1, R2.2 and R3. If v is not BFB-incident with any 4+-face, then v

is BF*-incident with a 4+-face and BF#-incident with another 4+-face, where *
and # represent M or S. Therefore,

c′(v) ≥ 4 − 6 + 2 ×
1

4
+ 2 ×

3

4
= 0

by R1, R2.1, R2.2 and R3.
If v is adjacent to at most one big vertex in G×, then v is not adjacent to any

small vertex in G×, since the neighbor of any small vertex in G× is a big vertex.
Now, if v is not adjacent to any big vertex in G×, then v is MFM-incident with
two 4+-faces, which implies

c′(v) ≥ 4 − 6 + 2 × 1 = 0

by R2.5. If v is adjacent to exactly one big vertex in G×, then v is incident with
a (B,F,M)-face, BFM-incident with one 4+-face and MFM-incident with one
4+-face. This implies, by Claim 16, R2.4 and R2.5, that

c′(v) ≥ 4 − 6 +
1

4
+

3

4
+ 1 = 0.

Case 2. If v is a 2-vertex, then v is not incident with any 3-face by Lemma
14(b) and by the fact that G is triangle-free.

(2.1) If v is incident only with 5+-faces, then by Claims 18, 19 and R5, we
have

c′(v) ≥ 2 − 6 +
13

8
× 2 +

3

2
> 0.

(2.2) If v is incident with one 4-face and one 6+-face, then by Claims 17, 19
and R5, we have

c′(v) ≥ 2 − 6 +
3

4
+

7

4
+

3

2
= 0.

(2.3) If v is incident with one 4-face and one 5-face, then the 4-face incident
with v is a non-special 4-face (otherwise a triangle occurs in G). Therefore, by
Claims 17, 18 and R5 we have

c′(v) ≥ 2 − 6 + 1 +
13

8
+

3

2
> 0.

(2.4) If v is incident with two 4-faces, then none of the two 4-faces incident
with v is a special 4-face or an (F, S,B, S)-face (otherwise a multi-edge or a
triangle appears in G). This implies, by Claim 17 and R5, that

c′(v) ≥ 2 − 6 + 2 ×
5

4
+

3

2
= 0.
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Case 3. If v is a 3-vertex, then v is incident with at most two 3-faces since
G is triangle-free. In other words, v is incident with at least one 4+-faces in G×.

(3.1) If v is incident with exactly one 4+-face, then by Lemmas 14(c) and
14(d), this 4+-face shall be a 5+-face. Hence

c′(v) ≥ 3 − 6 +
13

8
+

3

2
> 0

by Claims 18, 19 and R5.

(3.2) If v is incident with at least two 4+-faces in G×, then

c′(v) ≥ 3 − 6 + 2 ×
3

4
+

3

2
= 0

by Claims 17, 18, 19 and R5.

Case 4. If v is a true 4-vertex, then v is incident with at most two 3-faces
since G is triangle-free. In other words, v is incident with at least two 4+-faces
in G×.

(4.1) If v is incident with at least one 5+-face, then

c′(v) ≥ 4 − 6 +
3

4
+

13

8
> 0

by Claims 17, 18 and 19.

(4.2) If v is incident with at least three 4-faces, then

c′(v) ≥ 4 − 6 + 3 ×
3

4
> 0

by Claim 17.

(4.3) If v is incident with exactly two 4-faces, then the two 4-faces incident
with v cannot be both special 4-faces (otherwise a triangle appears in G).

If none of them is a special 4-face, then by Claim 17, we have

c′(v) ≥ 4 − 6 + 2 × 1 = 0.

If one of them is a special 4-face, then v is not incident with (F, S,B, S)-face
(otherwise a triangle occurs in G or v is incident with three 4-faces). This implies,
by Claim 17, that

c′(v) ≥ 4 − 6 +
3

4
+

5

4
= 0.

Case 5. If v is a 5-vertex, then v is incident with at most three 3-faces in G×

since G is triangle-free. Therefore, v is incident with at least two 4+-faces, and
thus

c′(v) ≥ 5 − 6 + 2 ×
3

4
> 0
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by Claims 17, 18 and 19.

Case 6. If v is a vertex of degree between 6 and 11, then by the absence of
the configuration (b), v cannot be a master of any 3−-vertex. If v is a 6-vertex
or a 7-vertex, then v does not give out any charge by R1–R5, and thus

c′(v) = c(v) = dG×(v) − 6 ≥ 0.

If v is a big vertex, that is, dG×(v) ≥ 8, then by R1,

c′(v) ≥ dG×(v) − 6 −
1

4
dG×(v) =

1

4
×
(

3dG×(v) − 24
)

≥ 0.

Case 7. If v is a 12+-vertex, then v can be 3-masters of at most two vertices.
By R1 and R5,

c′(v) ≥ dG×(v) − 6 −
1

4
dG×(v) − 2 ×

3

2
=

1

4
×

(

3dG×(v) − 36
)

≥ 0.

3.2. Detailed proof of Theorem 10

Let G be a minimal counterexample to Theorem 10 in terms of |V (G)|+ |E(G)|.
A true vertex v of G× is big if dG×(v) ≥ 12, is middle if 6 ≤ dG×(v) ≤ 11, and is
small if dG×(v) ≤ 5. A middle vertex is an M9+-vertex if 9 ≤ dG×(v) ≤ 11, and
is an M8−-vertex if 6 ≤ dG×(v) ≤ 8. By the absence of the configuration (a),
any neighbor of a small vertex in G× is a big vertex. For convenience, we also
use F,B,M and S to represent false vertex, big vertex, middle vertex and small
vertex, respectively, and then use these notations to represent the structure of a
face of G×. For example, we say that a face is an (F,M,B, S)-face if it is a 4-face
with vertices u1, u2, u3 and u4 lying clockwise on the boundary of f such that u1
is false, u2 is middle, u3 is big and u4 is small. A face in G× is burdened if it is
incident with at least one small vertex.

A special burdened 4-face in G× is a 4-face of type (F, S, F, ∗), where ∗
represents either B or M or S, see Figure 1. A false vertex v in G× is BFS-

incident with a face f if one neighbor of v in the cycle induced by f is big, and
the other is small. In this case, we also say that f is BFS-incident with a false
vertex v. Similarly, we can define “BFB-incident”, “SFM-incident”, etc.

The promised discharging rules are defined as follows.

R1. Every M9+-vertex of G× sends 1
3 to each of its incident faces.

R2. Every big vertex of G× sends 1
2 to each of its incident faces.

R3. Let v be a false vertex incident with a 4+-face f .

R3.1. If v is BFB-incident with f , then f sends 3
2 to v.

R3.2. If v is BFS-incident with f , then f sends 1
2 to v.
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R3.3. If v is BFM-incident with f , then f sends 2
3 to v.

R3.4. If v is MFM-incident with f , then f sends 2
3 to v.

R3.5. If v is SFM-incident with f , then f sends 1
2 to v.

R4. Every false 3-face of G× sends all of its received charge after applying R1
and R2 to its incident false vertex.

R5. Every true 3-face of G× sends all of its received charge after applying R2 to
its incident small vertex (if exists).

R6. Every 4+-face of G× redistributes it remaining charge after applying R1, R2
and R3 equitably to each of its incident small vertices (if exists).

R7. Every 2-vertex of G receives 1
2 ,

1
4 and 3

4 from its 2-master, 3-master, and
4-master, respectively.

R8. Every 3-vertex of G receives 1
4 and 3

4 from its 3-master and 4-master,
respectively.

R9. Every 4-vertex of G receives 3
4 from its 4-master.

Figure 3. The discharging rule R3 for the proof of Theorem 10.

In the following, we check c′(x) ≥ 0 for every x ∈ V (G×) ∪ F (G×), and then
complete the proof.

Since every 4+-face f of F (G×) is incident with at most
⌊

d
G× (f)
2

⌋

false vertices

by Lemma 14(a), the charge of f after applying R2 is at least

2dG×(f) − 6 − max

{

3

2
,
1

2
,

2

3

}

×

⌊

dG×(f)

2

⌋

> 0

for dG×(f) ≥ 5.

If dG×(f) = 4 and f is BFB-incident with a false vertex, then f is incident
with at least two big vertices and thus

c′(f) ≥ 2 × 4 − 6 + 2 ×
1

2
− 2 × max

{

3

2
,

1

2
,

2

3

}

= 0

by R2 and R3.
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If dG×(f) = 4 and f is not BFB-incident with any false vertex, then

c′(f) ≥ 2 × 4 − 6 − 2 × max

{

1

2
,
2

3

}

> 0

by R3. Hence, R1–R6 guarantee that c′(f) ≥ 0 for each f ∈ F (G×).

Claim 20. Let v be a false vertex on a face f ∈ F (G×) so that the neighbors of

v in the cycle induced by f are u and w (note that uw 6∈ E(G)).

(1) If at least one of u and w is a big vertex, then f sends at least 1
2 to v.

(2) If both u and w are big vertices, then f sends at least 1 to v.

(3) If u is a middle vertex and w is a small vertex, then f sends 1
2 to v.

(4) If u is an M9+-vertex and w is a big vertex, then f sends at least 2
3 to v.

(5) Let wy be a crossed edge of G so that v is a crossing on wy and let f ′ be the

face of G× incident with the path uvy. If u,w, y are middle vertices, then f

and f ′ totally send at least 1 to v unless uw, uy ∈ E(G), u is an M8−-vertex,

w and y are M9+-vertices, in which case f and f ′ totally send 2
3 to v.

Proof. (1) If f is a 3-face, then f sends at least 1
2 to v by R2 and R4. If f is a

4+-face, then f sends at least 1
2 to v by R3.1, R3.2 and R3.3.

(2) If f is a 3-face, then f sends 2 × 1
2 = 1 to v by R2 and R4. If f is a

4+-face, then f sends 3
2 to v by R3.1.

(3) Since small vertex is not adjacent to middle vertex in G×, f is a 4+-face.
By R3.5, f sends 1

2 to v.
(4) If f is a 3-face, then f sends 1

2 + 1
3 = 5

6 to v by R1, R2 and R4. If f is a
4+-face, then f sends 2

3 to v by R3.3.
(5) If f and f ′ are 4+-faces, then each of f and f ′ sends 2

3 to v by R3.4,
and thus they totally send 2 × 2

3 = 4
3 to v. If f is a 4+-face and f ′ is a 3-face

(the case that f is a 3-face and f ′ is a 4+-face can be similarly discussed), then
uy ∈ E(G), which implies that u or y is an M9+-vertex, because 8−-vertices are
not adjacent in G by the absence of the local configuration (a). By R1 and R4,
f ′ sends at least 1

3 to v, and f sends 2
3 to v by R3.4. Hence f and f ′ totally send

at least 1
3 + 2

3 = 1 to v. If f and f ′ are 3-faces, then uwy is a triangle in G. Since
8−-vertices are not adjacent in G, w or y, say w, is an M9+-vertex. If u is an
M9+-vertex, then f sends 1

3 + 1
3 = 2

3 to v by R1 and R4, and f ′ sends at least 1
3

to v by R1 and R4. Hence f and f ′ totally send at least 2
3 + 1

3 = 1 to v. If u is
an M8−-vertex, then y is an M9+-vertex. By R1 and R4, each of f and f ′ sends
1
3 to v. Hence f and f ′ totally send 1

3 + 1
3 = 2

3 to v.

By R2 and R5, we immediately conclude the following result. Note that
small vertices are adjacent only to big vertices in G.

Claim 21. Every burdened true 3-face sends 1 to its incident small vertex.
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Now we consider burdened 4+-faces.

Claim 22. Every burdened 4-face sends to each of its incident small vertices 1
if f is an (F, S, F, S)-face or an (F, S, F,M)-face, 5

4 if f is an (F, S,B, S)-face,
and at least 3

2 otherwise.

Proof. If f is an (F, S, F, S)-face, then by R6, f sends

1

2
×
(

2 × 4 − 6
)

= 1

to each of its incident small vertices. If f is an (F, S, F,M)-face, then by R3.5
and R6, f sends

2 × 4 − 6 − 2 ×
1

2
= 1

to each of its incident small vertices. If f is an (F, S,B, S)-face, then by R6, f
sends

1

2
×

(

2 × 4 − 6 +
1

2

)

=
5

4

to each of its incident small vertices.
By symmetry, f can be of another types among (S,B,B,B), (S,B, S,B),

(F, S,B,M), (F,B, S,B), (F, S, F,B), (S,B,M,B) and (F, S,B,B). In each case
we can similarly calculate that f sends at least 3

2 to each of its incident small
vertices.

Claim 23. Every burdened 5+-face sends at least 2 to each of its incident small

vertices.

Proof. Let f be a burdened 5+-face with degree d that is BFB-incident or BFM-
incident or MFM-incident with t false vertices. Under this condition, f is incident
with at least t + 1 big vertices or middle vertices. Since small vertices are not
adjacent in G, f is incident with at most

⌈

d−2t−1
2

⌉

small vertices. Since false

vertices are not adjacent in G×, there are at most
⌊

d
2

⌋

− t false vertices that are

BFS-incident or SFM-incident or SFS-incident with f . Note that t ≤
⌊

d
2

⌋

− 1
since f is burdened.

By R2, R3 and R6, f sends to each of its incident small vertices at least

∂ =
2d− 6 − 3

2 t−
1
2

(⌊

d
2

⌋

− t
)

⌈

d−2t−1
2

⌉ .

If d is odd, then

∂ =
2d− 6 − 3

2 t−
1
2

(

d−1
2 − t

)

d−2t−1
2

=
7d− 4t− 23

2d− 4t− 2
= 2 +

3d + 4t− 19

2d− 4t− 2
.
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If d is even, then

∂ =
2d− 6 − 3

2 t−
1
2

(

d
2 − t

)

d−2t
2

=
7d− 4t− 24

2d− 4t
= 2 +

3d + 4t− 24

2d− 4t
.

Hence if d ≥ 7, or d = 5 and t ≥ 1, or d = 6 and t ≥ 2, then ∂ ≥ 2.
Suppose that d = 5 and t = 0. If f is incident with exactly one small vertex,

then f sends to its incident small vertex at least

2 × 5 − 6 − 2 ×
1

2
= 3 > 2

by R3 and R6. If f is incident with exactly two small vertices, then v is incident
with at least one big vertex, and furthermore, v is incident with exactly one false
vertex, or incident with exactly two false vertices, one of which is SFS-incident
with f . In each case, f sends to each of its incident small vertices at least

1

2
×

(

2 × 5 − 6 +
1

2
−

1

2

)

= 2

by R2 and R3.
Suppose that d = 6. If v is incident with exactly three small vertices, then

any false vertex on f is SFS-incident with f . Therefore, by R3 and R6, f sends
to each of its incident small vertices at least

1

3
×
(

2 × 6 − 6
)

= 2.

Hence in the following we assume that v is incident with at most two small
vertices.

If t = 0, then f sends to each of its incident small vertices at least

1

2
×

(

2 × 6 − 6 − 3 ×
1

2

)

=
9

4
> 2

by R3 and R6.
If t = 1 and f is incident with exactly one small vertex, then f sends to this

incident small vertex at least

2 × 6 − 6 −
3

2
− 2 ×

1

2
=

7

2
> 2

by R3 and R6.
If t = 1 and f is incident with exactly two small vertices, then v is incident

with at most two false vertices. Hence f sends to each of its incident small vertices
at least

1

2
×

(

2 × 6 − 6 −
3

2
−

1

2

)

= 2

by R3 and R6.
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Now we calculate the final charge of each vertex v ∈ V (G×).

Case 1. Let v be a false vertex and let v1, v2, v3, v4 be neighbors of v in G×

lying on a clockwise order. Let fi with 1 ≤ i ≤ 4 be the face incident with the
path vivvi+1 (mod 4), see Figure 4.

Figure 4. The structure around a false vertex v.

(1.1) If at least two of vertices among v1, v2, v3, v4 are big vertices, then we
distinguish two subcases by symmetry. If v1 and v2 are big, then f1 sends at least
1 to v by Claim 20(2), and each of f2 and f4 sends at least 1

2 to v by Claim 20(1).
This implies that

c′(v) ≥ 4 − 6 + 1 + 2 ×
1

2
= 0.

If v1 and v3 are big, then every face incident with v sends at least 1
2 to v by Claim

20(1), which implies that

c′(v) ≥ 4 − 6 + 4 ×
1

2
= 0.

(1.2) If exactly one of the vertices among v1, v2, v3, v4, say v1, is a big vertex,
then v2 and v4 are middle vertices, because otherwise one vertex among v2 and
v4 is a small vertex and the other is either middle or small, which is impossible
since a small vertex is adjacent only to big vertices in G. By Claim 20(1), each
of f1 and f4 sends at least 1

2 to v. If v3 is a small vertex, then each of f2 and f3
sends 1

2 to v by Claim 20(3), which implies that

c′(v) ≥ 4 − 6 + 2 ×
1

2
+ 2 ×

1

2
= 0.

Now, suppose that v3 is a middle vertex. If f2 and f3 are 3-faces so that v3 is an
M8−-vertex, v2 and v4 are M9+-vertices, then each of f1 and f4 sends at least 2

3
to v by Claim 20(4), and f2 and f3 totally sends 2

3 to v by Claim 20(5), which
implies that

c′(v) ≥ 4 − 6 + 2 ×
2

3
+

2

3
= 0.
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Otherwise, by Claim 20(5), f2 and f3 totally sends at least 1 to v, and thus

c′(v) ≥ 4 − 6 + 2 ×
1

2
+ 1 = 0.

(1.3) If none of the vertices among v1, v2, v3, v4 is a big vertex, then they are
all middle vertices. Note again that a small vertex is adjacent only to big vertices
in G by the absence of the configuration (a). Since M8−-vertices are not adjacent
in G, there are at least two M9+-vertices among v1, v2, v3, v4. If three of them,
say v1, v2, v3, are M9+-vertices, then by Claim 20(5), f1 and f4 totally send 1 to
v, and f2 and f3 totally send 1 to v. Hence

c′(v) ≥ 4 − 6 + 1 + 1 = 0.

If exactly two vertices among v1, v2, v3, v4 are M9+-vertices, then we distinguish
two subcases: (i) v1 and v3 are M9+-vertices, and (ii) v1 and v2 are M9+-vertices,
and v3 and v4 are M8−-vertices. In each of the above two cases, we conclude by
Claim 20(5) that f1 and f4 totally send 1 to v, and f2 and f3 totally send 1 to v.
Therefore,

c′(v) ≥ 4 − 6 + 1 + 1 = 0.

Case 2. If v is a 2-vertex, then v is not incident with a false 3-face by Lemma
14(b).

(2.1) If v is incident with a true 3-face, then v is adjacent to two big vertices
in G×, and the other face f incident with v is either a 5+-face, or a (B,S,B, ∗)-
face, where ∗ stands for F or B or M or S. In either case, f sends at least 3

2 to
v by Claims 22 and 23. Hence by Claim 21 and R7, we have

c′(v) ≥ 2 − 6 + 1 +
3

2
+

1

2
+

1

4
+

3

4
= 0.

(2.2) If v is incident with two 4+-faces, one of which is a 5+-face, then

c′(v) ≥ 2 − 6 + 1 + 2 +
1

2
+

1

4
+

3

4
> 0

by Claims 22, 23 and R7.

(2.3) If v is incident with two 4-faces, then none of the two 4-faces inci-
dent with v is an (F, S, F, S)-face or an (F, S, F,M)-face (otherwise a multi-edge
appears in G). This implies

c′(v) ≥ 2 − 6 + 2 ×
5

4
+

1

2
+

1

4
+

3

4
= 0

by Claim 22 and R7.
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Case 3. Suppose that v is a 3-vertex.

(3.1) If v is incident with at least one 5+-face, then

c′(v) ≥ 3 − 6 + 2 +
1

4
+

3

4
= 0

by Claim 23 and R8. Therefore we assume that v is incident only with 4−-faces.

(3.2) If v is incident with at least two 4-faces, then by Claim 22 and R8,

c′(v) ≥ 3 − 6 + 2 × 1 +
1

4
+

3

4
= 0.

(3.3) If v is incident with one 4-face and two 3-faces, then the 4-face incident
with v is not of the (F, S, F, S)-type or the (F, S, F,M)-type (otherwise a multi-
edge occurs in G). If v is incident with a true 3-face, then

c′(v) ≥ 3 − 6 + 1 +
5

4
+

1

4
+

3

4
> 0

by Claims 21, 22 and R8. If v is incident with two false 3-faces, then v is adjacent
to two false vertices and incident with a 5+-face by Lemmas 14(c) and 14(d),
which is impossible in this case.

(3.4) If v is incident with three 3-faces, then all of those 3-faces are true by
Lemma 14(d). This implies

c′(v) ≥ 3 − 6 + 3 × 1 +
1

4
+

3

4
> 0

by Claim 21 and R8.

Case 4. Suppose that v is a true 4-vertex.

(4.1) If v is incident with at least one 5+-face, then by Claim 23 and R9,

c′(v) ≥ 4 − 6 + 2 +
3

4
> 0.

Therefore we assume that v is incident only with 4−-faces.

(4.2) If v is incident with four 3-faces, then at least two of them are true ones
(otherwise two false vertices are adjacent in G× or there exists a multi-edge in
G). Hence by Claim 21 and R9,

c′(v) ≥ 4 − 6 + 2 × 1 +
3

4
> 0.

(4.3) If v is incident with at least two 4-faces, then by Claim 22 and R9, we
have

c′(v) ≥ 4 − 6 + 2 × 1 +
3

4
> 0.
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(4.4) If v is incident with exactly one 4-face and it is not of (F, S, F, S)-type
or (F, S, F,M)-type, then by Claim 22 and R9, we have

c′(v) ≥ 4 − 6 +
5

4
+

3

4
= 0.

(4.5) If v is incident with one (F, S, F, ∗)-face and three 3-faces, where ∗
stands for S or M , then v is incident with a true 3-face. This implies that

c′(v) ≥ 4 − 6 + 1 + 1 +
3

4
> 0

by Claims 21, 22 and R9.

Case 5. Suppose that v is a 5-vertex.

(5.1) If v is incident with at least one 4+-face, then by Claim 22,

c′(v) ≥ 5 − 6 + 1 = 0.

(5.2) If v is incident with five 3-faces, then at least one of them is true, which
implies, by Claim 21, that

c′(v) ≥ 5 − 6 + 1 = 0.

Case 6. If v is a vertex of degree between 6 and 16, then v is adjacent only
to 5+-vertices in G by the absence of the configuration (b). Therefore, v cannot
be a master of any vertex.

(6.1) If v is an M8−-vertex, then v does not give out any charge by R1–R9,
and thus

c′(v) = c(v) = dG×(v) − 6 ≥ 0.

(6.2) If v is an M9+-vertex, then v sends 1
3 to each of its incident faces, thus

by R1,

c′(v) ≥ dG×(v) − 6 −
1

3
dG×(v) =

1

3
×
(

2dG×(v) − 18
)

≥ 0.

(6.3) If v is a big vertex, that is, dG×(v) ≥ 12, then by R2, we have

c′(v) ≥ dG×(v) − 6 −
1

2
dG×(v) =

1

2
×
(

dG×(v) − 12
)

≥ 0.

Case 7. If v is a 17-vertex, then by the absence of the configuration (b), v is
adjacent only to 4+-vertex in G. Therefore, v can be 4-masters of at most three
vertices, and cannot be 3-master or 2-master of any vertex, thus by R2 and R9,

c′(v) ≥ 17 − 6 −
1

2
× 17 − 3 ×

3

4
> 0.
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Case 8. If v is a 18-vertex, then by the absence of the configuration (b), v is
adjacent only to 3+-vertex in G. Therefore, v can be 4-masters of at most three
vertices, 3-masters of at most two vertices, and cannot be 2-master of any vertex,
thus by R2, R8 and R9,

c′(v) ≥ 18 − 6 −
1

2
× 18 − 3 ×

3

4
− 2 ×

1

4
> 0.

Case 9. If v is a 19+-vertex, then v can be 4-masters of at most three vertices,
3-masters of at most two vertices, and 2-master of at most one vertex, thus by
R2, R7, R8 and R9,

c′(v) ≥ dG×(v) − 6 −
1

2
dG×(v) − 3 ×

3

4
− 2 ×

1

4
−

1

2
=

1

4
×

(

2dG×(v) − 37
)

> 0.

4. Open Problem

As we know, λT
p (G) ≤ ∆(G) + 2p − 2 for planar graphs with maximum degree

∆(G) ≥ 4p + 4 and p ≥ 2, which is a result due to Sun and Wu [14]. In this
paper, we prove λT

p (G) ≤ ∆(G) + 2p − 2 for 1-planar graphs with maximum
degree ∆(G) ≥ 6p + 7 and p ≥ 2.

A graph G is d-degenerate if every subgraph of G contains a vertex of degree
at most d. It is well-known that planar graphs are 5-degenerate (see [2]) and 1-
planar graphs are 7-degenerate (see [6]). Therefore, a natural question is whether
λT
p (G) ≤ ∆(G) + 2p− 2 holds for every d-degenerate with large maximum degree

and p ≥ 2. Precisely, we propose the following problem.

Problem 24. Does there exist a constant k independent of G and p so that

λT
p (G) ≤ ∆(G) + 2p− 2

holds for every d-degenerate G with ∆(G) ≥ kdp?

An early result of Havet and Yu [9] says that λT
p (G) ≤ χ′(G) +χ(G) + p− 2,

where χ′(G) and χ(G) denote the chromatic index and chromatic number of G.
The well-known Vizing’s Theorem on edge coloring tells us that χ′(G) ≤ ∆(G)+1
(see [2]), and it is easy to see that χ(G) ≤ d + 1 for every d-degenerate graph.
Therefore, for every d-degenerate graph G, it holds that

λT
p (G) ≤ χ′(G) + χ(G) + p− 2 ≤ ∆(G) + d + p.

If p ≥ d + 2, then
∆(G) + d + p ≤ ∆(G) + 2p− 2.

Hence the above question is interesting when p ≤ d + 1.
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