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Abstract. A graph is outer-1-planar if it has a drawing in the plane
so that its vertices are on the boundary face and each edge is crossed
at most once. Zhang (2013) proved that the total chromatic number
of every outer-1-planar graph with maximum degree Δ ≥ 5 is Δ + 1,
and showed that there are graphs with maximum degree 3 and total
chromatic number 5. For outer-1-planar graphs with maximum degree 4,
Zhang (2017) confirmed that its total chromatic number is at most 5 if
it admits an outer-1-planar drawing in the plane so that any two pairs
of crossing edges share at most one common end vertex. In this paper,
we prove that the total chromatic number of every Anicop graph with
maximum degree 4 is at most 5, where an Anicop graph is an outer-1-
planar graph that admits a drawing in the plane so that if there are two
pairs of crossing edges sharing two common end vertices, then any of
those two pairs of crossing edges would not share any end vertex with
some other pair of crossing edges. This result generalizes the one of Zhang
(2017) and moves a step towards the complete solving of the cold case.

Keywords: Outer-1-planar graph · Total coloring · Maximum degree

1 Introduction

A total k-coloring of a graph G is an assignment of k colors to all vertices and
edges of G so that no two adjacent or incident elements receive the same color.
The total chromatic number χ′′(G) of a graph G is the minimum integer k so
that G has a total k-coloring. In any total coloring of a graph G with maximum
degree Δ, it is easy to see that we shall use Δ + 1 colors to color the vertex of
degree Δ and its incident edges. This implies that χ′′(G) ≥ Δ(G) + 1 for every
graph G. On the other hand, looking for a general upper bound in terms of Δ(G)
for χ′′(G) seems interesting and challenging. Actually, Behzad [3] and Vizing [10]
independently conjectured at least fifty years ago that χ′′(G) ≤ Δ(G) + 2 for
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every graph G. This conjecture was now confirmed for graphs with maximum
degree at most 3 by Rosenfeld [7] and Vijayaditya [9], 4 and 5 by Kostochka [5,6],
and verified for planar graphs with maximum degree 7 by Sanders and Zhao [8],
8 by Andersen [1], and at least 9 by Borodin [4]. However, the conjecture itself
is still quite open, even for planar graphs with maximum degree 6.

In the literature, there are some well-established subclasses of planar graphs
including

– outerplanar graphs: graphs that can be drawn in the plane so that all the
vertices are on the outer face (equivalently, graphs that do not contain K2,3

or K4 as a minor);
– series-parallel graphs: graphs that do not contain K4 as a minor;
– outer-1-planar graphs: graphs that can be drawn in the plane so that all the

vertices are on the outer face and each edge is crossed at most once.

Outplanar graphs and series-parallel graphs are planar due to the well-known
Wagner’s theorem which says that a graph is planar if and only if it does not
contain K3,3 or K5 as a minor. But the planarity of outer-1-planar graphs is not
trivially proved—such a proof was given by Auer et al. [2], who also pointed out
that the class of outer-1-planar graphs is not minor-closed. A graph is quasi-
Hamiltonian if each of its block is Hamiltonian. Zhang, Liu, and Wu [19] showed
that the intersection of the class of quasi-Hamiltonian outer-1-planar graphs and
the class of series-parallel graphs is indeed the class of outerplanar graphs.

Zhang, Zhang, and Wang [20] showed in 1988 that the χ′′(G) = Δ(G)+1 for
every outerplanar graph with maximum degree at least 3. The same result also
holds for series-parallel graphs, which was proved in 2004 by Wu and Hu [12]. In
2011, Zhang and Liu [18] proved the total coloring conjecture for outer-1-planar
graphs, and moreover, showed that χ′′(G) = Δ(G) + 1 for every outer-1-planar
graph with maximum degree at least 5, and this result was later generalized to
its list version by Zhang [13] in 2013. In [13,18], the authors also pointed out
that there are outer-1-planar graphs G with Δ(G) = 3 and χ′′(G) = 5, and
whether outer-1-planar graphs G with Δ(G) = 4 satisfy χ′′(G) = Δ(G) + 1 = 5
is unknown.

For this cold case, Zhang [15] considered the Nicop graphs, i.e., outer-1-plane
graphs so that any two pairs of crossing edges share at most one common end
vertex. Here, an outer-1-plane graph is a drawing of outer-1-planar graph in the
plane so that its outer-1-planarity is preserved and the number of crossings is as
small as possible. Zhang [15] proved the following

Theorem 1 [15]. If G is a Nicop graph with Δ(G) = 4, then χ′′(G) = 5.

In this paper, we aim to generalize this result to a larger class of graphs G.
Here, a graph G belongs to G if and only if

– G is an outer-1-plane graph, and
– if there are two pairs of crossing edges sharing two common end vertices, then

any of those two pairs of crossing edges would not share any end vertex with
some other pair of crossing edges.
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From now on, a graph G ∈ G is called an outer-1-plane graph with almost-
near-independent crossings, or an Anicop graph for short. Our main result is
stated as follows:

Theorem 2. If G is an Anicop graph with Δ(G) = 4, then χ′′(G) = 5.

Since Nicop graphs are Anicop graphs, Theorem 2 implies Theorem 1. Actu-
ally, we believe that the same conclusion holds for every outer-1-planar graph
with maximum degree 4, so we end this section with the following conjecture.

Conjecture 3. If G is an outer-1-planar graph with Δ(G) = 4, then χ′′(G) = 5.

2 Reducibilities: The Proof of Theorem 2

From now on, when we mention an outer-1-planar graph G, we always refer to
its outer-1-planar diagram, i.e, a drawing of G in the plane so that the outer-
1-planarity of G is preserved and this drawing has the minimum number of
crossings among all such outer-1-planar drawings.

To begin with, we define base graphs Π1
i and Π2

i with 1 ≤ i ≤ 3 by Fig. 1.
In each picture of this figure besides Π1

1 , all vertices are lying consecutively
in an outer-1-planar diagram G as where they are drawn in that picture (i.e.,
the boundary edges incident with the black vertices in that picture form a sub-
drawing of the outer-face of G). The two white vertices in each picture of Fig. 1
are called the handles.

Fig. 1. Base graphs

Given two base graphs, say Πj
i with handles u, v, and Πj′

i′ with handles u′, v′,
we have two operations:

Πj
i ◦ Πj′

i′ Identifying v with v′, see Fig. 2, and in the resulting graph let the degree
of the vertex w corresponding v and v′ be the number of edges incident with
it in this partial drawing. The vertices u and u′ in the resulting graph are
called linking handles;

Πj
i ⊗ Πj′

i′ Adding edges vv′, uv′ and u′v so that uv′ crosses u′v, see Fig. 2, and
in the resulting graph let the degree of the vertex v or v′ be the number of
edges incident with it in this partial drawing. The vertices u and u′ in the
resulting graph are called crossed-linking handles.
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Fig. 2. Two operations generated by Πj
i and Πj′

i′

Note that Πj
i ◦ Πj′

i′ or Πj
i ⊗ Πj′

i′ is still an outer-1-planar diagram. We prove
the following

Theorem 4. Every 2-connected Anicop graph with maximum degree at most 4
contains one of the configurations among

(C1) a vertex u of degree 2 adjacent to a vertex v of degree at most 3;
(C2) a cycle of length 4 with two nonadjacent vertices of degree 2;
(C3) a triangle uvw with d(v) = 2 and u adjacent to a vertex x of degree 2;
(C4) Π1

1 ⊗ Π2
1 ;

(C5) Π2
1 ⊗ Π2

1 ;
(C6) Π1

3 ;
(C7) Π1

2 or Π2
2 or Π2

3 , with a handle of degree at most 3;
(C8) Π1

2 or Π2
2 or Π2

3 , with a handle adjacent to a vertex of degree 2;
(C9) Π1

2 or Π2
2 or Π2

3 , with the two handles being adjacent;
(C10) Π1

2 ◦ Π1
2 , or Π1

2 ◦ Π2
2 , or Π2

2 ◦ Π2
2 ;

(C11) Π1
1 ⊗ Π1

2 , or Π1
1 ⊗ Π2

2 , or Π2
1 ⊗ Π1

2 , or Π2
1 ⊗ Π2

2 .

In this section, we apply Theorem 4 to prove the following theorem, which is
slightly stronger than Theorem2.

Theorem 5. If G is an Anicop graph with maximum degree at most 4, then
χ′′(G) ≤ 5.

Proof. (sketch). Let G be a counterexample with the minimum number of ver-
tices. Clearly, G is 2-connected. It is sufficient to prove that G does not contain
the configuration (Ci) for each 1 ≤ i ≤ 11, contradicting Theorem 4. The proof
of each item proceeds as follows. First, we construct a graph G′ with Δ(G′) ≤ 4
and |G′| < |G| via removing some vertices appearing in (Ci) from G (we sup-
pose, to the contrary, that (Ci) occurs), and after that, adding non-crossed edges
inside the outer boundary (this operation applies sometimes, not always). Next,
we prove that a total 5-coloring of G′ can be extended to a total 5-coloring of
G (sometimes the recoloring shall be involved). Note that if we remove vertices
from an Anicop graph, or add non-crossed edges inside the outer boundary of an
Anicop graph, the resulting graph is still an Anicop graph. So, by the minimality
of G, G′ is total-5-colorable, which implies χ′′(G) ≤ 5, a contradiction.
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3 Structures: The Proof of Theorem4

3.1 Preliminaries

We first review some useful notations that were often used in many papers
including [13–19].

Given a 2-connected Anicop graph G, by v1, v2, . . . , v|G| we denote the
vertices of G that lie in a clockwise sequence on the outer boundary. Let
V[vi, vj ] = {vi, vi+1, . . . , vj} and V(vi, vj) = V[vi, vj ]\{vi, vj}, where the sub-
scripts are taken modulo |G|. Set V[vi, vi] = V (G) and V(vi, vi) = V (G) \ {vi}.

A vertex set V[vi, vj ] is a non-edge if j = i + 1 (mod |G|) and vivj �∈ E(G),
and is a path if vivi+1 · · · vj (the subscripts are taken modulo |G|) forms a path.
An edge vivj is a chord if j = i + 1 (mod |G|). By C[vi, vj ], we denote the set of
chords xy with x, y ∈ V[vi, vj ].

Let vivj and vkvl be two chords in an Anicop graph G so that vivj crosses
vkvl and vi, vk, vj and vl lie in a clockwise sequence on the outer boundary
of G. We say that vivj co-crosses vkvl, and vivj , vkvl are co-crossed chords, if
vivk, vkvj , vjvl ∈ E(G), l − j = k − i = 1 (mod |G|), and j − k = 1 and d(vk) =
d(vj) = 3 (see the 1st picture of Fig. 3), or j − k = 2, vkvk+1, vk+1vj ∈ E(G),
d(vk) = d(vj) = 4 and d(vk+1) = 2 (see the 2nd picture of Fig. 3).

Fig. 3. vivj co-crosses vkvl

By the partial drawings of G as showed in Fig. 4, we define different types of
clusters that will be frequently used in the following arguments. In any picture
of this figure, vertices are all distinct, the edges drawn as crossed have to be
crossed in G, and the curving edges are chords. Note that any graph in Fig. 4
contains a base graph as a subgraph.

We call H an I-cluster in G if H is either a left I1-cluster, or a right I1-cluster,
or a left I2-cluster, or a right I2-cluster. The II-cluster, III-cluster and IV-cluster
are defined similarly. The width of a cluster is the value of |V[vL, vR]|, where L
and R are the subscripts of the far left vertex and the far right vertex on the
outer boundary (see in a clockwise direction from left to right). For convenience,
we use {vL, vR}1, {vL, vR}2, {vL, vR}3, and {vL, vR}4 to represent a I-cluster,
II-cluster, III-cluster, and IV-cluster, respectively. For example, the width of the
left I1-cluster {vj , vi+3}1 is (i + 3) − j + 1 = i − j + 4 (mod |G|), and the width
of the right I1-cluster {vi, vj}1 is j − i+1 (mod |G|). Note that for a cluster, say
a III-cluster for example, the left-type can be transferred to the right-type just
by taking inversion.
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Fig. 4. The definitions of different types of clusters

The following three lemmas were originally proved for outer-1-plane graphs
or Nicop graphs, and there is no double that their proofs also work for Anicop
graphs.

Lemma 6 [19, Claim 1]. Let vi and vj be vertices of a 2-connected outer-1-plane
graph (or Anicop graph) G. If there is no crossed chord in C[vi, vj ] and no edge
between V(vi, vj) and V(vj , vi), then V[vi, vj ] is either a non-edge or a path.

Lemma 7. Let vivj and vkvl with i < k < j < l be two crossed chords in a
2-connected outer-1-plane graph (or Anicop graph) G with Δ(G) ≤ 4 so that
vivj crosses vkvl and there is no other pair of crossed chords contained in the
drawing induced by V[vi, vl]. We have

(1) at most one of V[vi, vk],V[vk, vj ] and V[vj , vl] is a non-edge [19, Claim 3];
(2) if one of V[vi, vk],V[vk, vj ] and V[vj , vl] is a non-edge, then G has a subgraph

isomorphic to one of the configurations among (C1), (C2), and (C3) [19,
Claims 2 and 4];

(3) if all of V[vi, vk],V[vk, vj ] and V[vj , vl] are paths, then either vivj co-crosses
vkvl in G, or G has a subgraph isomorphic to one of the configurations
among (C1), (C2), (C3), (C4), and (C5) [19, Claims 2 and 5].

Lemma 8 [15, Lemma 2.2]. Let V[vi, vj ] with j−i ≥ 3 be a path in a 2-connected
Nicop graph (or Anicop graph) G with Δ(G) ≤ 4. If there is no crossed chord in
C[vi, vj ] and no edges between V(vi, vj) and V(vj , vi), then G contains (C1) or
(C2).

3.2 Proofs by Combinatorial Analyses

Let G be a 2-connected Anicop graph with Δ(G) ≤ 4. If G does not contain a
crossing, then G is an outerplane graph, and the following is immediate.
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Lemma 9 [11, Corollary 2.5]. If G does not contain a crossing, then it contains
(C1) or (C3).

If G contains a crossing, then choose one pair of crossed chords vivj and vkvl
such that vivj crosses vkvl, and C[vi, vl] contains no other crossed chord besides
vivj and vkvl. Applying Lemmas 6 and 7, one can conclude that vivj co-crosses
vkvl unless G contains one of the configurations among (C1), (C2), (C3), (C4),
and (C5).

Hence in the following we assume that vivj co-crosses vkvl with 1 = i < k <
j < l, and G does not contain any configurations among (C6)—(C11) (otherwise
we win).

Since (C7) and (C7) are absent, d(vl) ≥ 4 and thus there is a chord vlvs
with l < s ≤ n. In this case the drawing induced by V[vi, vl] and vlvs is a I-
cluster {vi, vs}1. We make the following assumption, otherwise we can choose
the shorter one I-cluster to replace {vi, vs}1.
Assumption 1. {vi, vs}1 is the shortest I-cluster contained in the drawing
induced by V[vi, vs].

Lemma 10. Suppose that va and vb are two vertices with l ≤ a < b ≤ s. If there
is no edge between V(va, vb) and V(vb, va), and there is a pair of chords vi′vj′

and vk′vl′ with a ≤ i′ < k′ < j′ < l′ ≤ b, then there is a II-cluster contained
in the drawing induced by V[va, vb] unless {i′, l′} = {a, b} and vi′vj′ co-crosses
vk′vl′ .

Proof. Suppose that vi′vj′ does not co-cross vk′vl′ . By Lemmas 6 and 7, there
is another pair of crossed chords besides vi′vj′ and vk′vl′ , say vi′′vj′′ and vk′′vl′′
with i′ ≤ i′′ < k′′ < j′′ < l′ ≤ l′, in C[vi′ , vl′ ]. We choose vi′′vj′′ and vk′′vl′′

carefully so that there is no other pair of crossed chords in C[vi′′ , vj′′ ] besides
them. This implies that vi′′vj′′ co-crosses vk′′vl′′ , because otherwise one of the
configurations among (C1), (C2), (C3), (C4), and (C5) would appear by Lemmas
6 and 7. Since {i′′, l′′} �= {i′, l′}, {i′′, l′′} �= {a, b}. By the absences of (C7) and
(C9), and by Assumption 1, there are chords vi′′vt′′ and vl′′vs′′ with l′′ < t′′ ≤ b
and a ≤ s′′ < i′′. Therefore, a II-cluster {vs′′ , vt′′}2 is found in the drawing
induced by V[va, vb].

On the other hand, we assume that vi′vj′ co-crosses vk′vl′ but {i′, l′} �= {a, b}.
Actually, one can see that vi′vj′ and vk′vl′ play the same role as vi′′vj′′ and
vk′′vl′′ in the previous paragraph. Therefore, we can again find a II-cluster in
the drawing induced by V[va, vb].

In the following proofs, we distinguish two major cases.

The First Case: vlvs is Non-crossed

Lemma 11. There exists a II-cluster contained in the drawing induced by
V[vl, vs].
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Proof. If there is no crossed chord in C[vl, vs], then V[vl, vs] is a path by Lemma 6.
If s − l = 2, then d(vl+1) = 2 and (C8) appears. If s − l ≥ 3, then (C1) or (C2)
appears by Lemma 8. Hence there is a pair of crossed chords vi′vj′ and vk′vl′

with l ≤ i′ < k′ < j′ < l′ ≤ s, and by Lemma 10, there is a II-cluster contained
in the drawing induced by V[vl, vs] unless {i′, l′} = {l, s} and vi′vj′ co-crosses
vk′vl′ , which case would not occur because otherwise d(vl) ≥ 5.

By Lemma 11, there are chords vi′vj′ and vk′vl′ with l < i′ < k′ < j′ <
l′ < s so that vi′vj′ co-crosses vk′vl′ , and moreover, there are chords vi′vt′ with
l′ < t′ ≤ s and vl′vs′ with l ≤ s′ < i′. In other words, this structure is indeed a
II-cluster {vs′ , vt′}2. Typically, the following assumption is natural.

Assumption 2. {vs′ , vt′}2 is the shortest II-cluster contained in the drawing
induced by V[vs′ , vt′ ].

Lemma 12. The drawing induced by V[vs′ , vt′ ] has a copy of Π2
3 with handles

vs′ and vt′ .

Proof. By Lemma 10 and by the fact that Δ(G) ≤ 4, there is no crossed chord in
C[vl′ , vt′ ], because otherwise we would find in the drawing induced by V[vs′ , vt′ ]
a shorter II-cluster than V[vs′ , vt′ ], contradicting Assumption 2. By Lemma 6,
V[vl′ , vt′ ] is non-edge or path. If V[vl′ , vt′ ] is a non-edge, then d(vl′) = 3 and (C7)
appears. Hence V[vl′ , vt′ ] is a path. If t′ − l′ ≥ 3, then by Lemma 8, G contains
(C1) or (C2). If t′ − l′ = 2, then d(vl′+1) = 2 and (C8) appears. Hence t′ − l′ = 1
and vl′vt′ ∈ E(G). By symmetry, i′ −s′ = 1 and vs′vi′ ∈ E(G). This implies that
the drawing induced by V[vs′ , vt′ ] contains either Π1

3 or Π2
3 with handles vs′ and

vt′ . However, Π1
3 is forbidden in G, so it must be a copy of Π2

3 with handles vs′

and vt′ .

Since (C7) and (C9) are absent from G, there are chords vt′vp and vs′vq
with p �= s′, i′ and q �= t′, l′. Since s′ �= l and vt′vp cannot cross vs′vq by the
definition of the Anicop graphs, either t′ < p ≤ s or l ≤ r < s′. We assume,
without loss of the generality, the former, and in this case there is a III-cluster,
say {vs′ , vp}3, contained in the drawing induced by V[vs′ , vp]. Again, we do the
following natural assumption.

Assumption 3. {vs′ , vp}3 is the shortest III-cluster contained in the drawing
induced by V[vs′ , vp].

Lemma 13. There is no crossed chord in C[vt′ , vp].

Proof. Suppose, to the contrary, that there is a pair of crossed chords there.
By Lemma 11, there exists a II-cluster contained in the drawing induced by
V[vt′ , vp]. Here one shall note that t′ would not be incident with any crossed
edge in the drawing induced by V[vt′ , vp] by the definition of the Anicop graphs.
Assume that {vs′′ , vt′′} with t′ < s′′ < t′′ is the shortest II-cluster contained
in the drawing induced by V[vt′ , vp]. By similar arguments as in the proof of
Lemma 12, the drawing induced by V[vs′′ , vt′′ ] contains a copy of Π2

3 with handles
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vs′′ and vt′′ . Again, by the absences of (C7) and (C9) and by the definition of the
Anicop graphs, there is a chord vt′′vp′ with t′′ < p′ ≤ p or a chord vs′′vq′ with
t′ ≤ q′ < s′′. In each case we find in the drawing induced by V[vt′ , vp] ⊂ V[vs′ , vp]
a shorter III-cluster than {vs′ , vp}3, contradicting Assumption 3.

By Lemmas 6 and 13, V[vt′ , vp] is a path. If p− t′ = 2, then d(vt′+1) = 2 and
(C8) appears. If p − t′ ≥ 3, then (C1) or (C2) appears by Lemma 8. This is the
end of the discussions for the first case.

The Second Case: vlvs is Crossed. Suppose that vlvs is crossed by a chord
vrvt with l < r < s, where t = i is possible. Recall that when Assumption 1 is
applied (in the proof of Lemma 10, for example), we actually only use the fact
that there is no I-cluster in the drawing induced by V[vl, vs] with width at most
s− l. Therefore, if we assume that there is no I-cluster in the drawing induced by
V[vs, vt] with width at most t − s, then Lemma 10 still holds while l is replaced
by s and s is replaced by t.

Lemma 14.

(1) There is no crossed chord in C[vl, vr];
(2) There is no crossed chord in C[vr, vs];
(3) If there is no I-cluster in the drawing induced by V[vs, vt] with width at most

t − s, then there is no crossed chord in C[vs, vt].

Proof. The proof can be completed by similar arguments as we had presented
in Sect. 3.2. We summary the idea for the readers.

Suppose that there is a pair of crossed chords vi′vj′ and vk′vl′ with i′ < k′ <
j′ < l′ in C[vl, vr] (or C[vr, vs], or C[vs, vt]). If there is a II-cluster contained in the
drawing induced by V[vl, vr] (or V[vr, vs], or V[vs, vt]), then we choose one, say
{vs′ , vt′}2, with the shortest width. Next, we prove that the drawing induced by
V[vs′ , vt′ ] has a copy of Π2

3 with handles vs′ and vt′ (note that by the definition
of the Anicop graphs, s′ �= l, r, s), based on which we can find a III-cluster in
the drawing induced by V[vl, vr] (or V[vr, vs], or V[vs, vt]). Again, choose the
shortest III-cluster, say {vs′ , vp}3, and we can finally find some configuration
that is forbidden in the graph induced by V[vs′ , vp].

On the other hand, if no II-cluster is contained in the drawing induced by
V[vl, vr] (or V[vr, vs], or V[vs, vt]), then by Lemma 10, we conclude that {i′, l′} =
{l, r} (or {i′, l′} = {r, s}, or {i′, l′} = {s, t}) and vi′vj′ co-crosses vk′vl′ , which is
impossible by the definition of the Anicop graphs.

Lemma 15. r − l = 1.

Proof. By Lemmas 6 and 14(1), V[vl, vr] is a non-edge or a path. If V[vl, vr] is a
non-edge, then it is trivial that r − l = 1. If V[vl, vr] is a path, then by Lemma
8 and the absence of (C8), we also have r − l = 1.

Lemma 16. V[vr, vs] is a path such that s− r ≤ 2 and vrvs ∈ E(G). Moreover,
if s − r = 2, then vlvr ∈ E(G).
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Proof. By Lemmas 6 and 14(2), V[vr, vs] is a non-edge or a path. If it is a
non-edge, then vlvr ∈ E(G) by the 2-connectedness of G. Hence d(vr) = 2 by
Lemma 15, and thus (C8) occurs. If V[vr, vs] is a path, then s−r ≤ 2 by Lemma 8.
If s− r = 1, then vrvs ∈ E(G), because otherwise vlvr ∈ E(G) and d(vr) = 2 by
the 2-connectedness of G and by Lemma 15, which implies that (C8) occurs. If
s − r = 2, then d(vr−1) = 2. Since (C1) is forbidden, d(vr) ≥ 4, which implies
that vlvr, vrvs ∈ E(G).

Lemma 17. t �= i = 1.

Proof. Suppose, to the contrary, that t = i. If s − r = 2, then by Lemma 16,
one can see that the drawing induced by V[vi, vs] contains a copy of Π2

1 ⊗Π1
2 or

Π2
1 ⊗ Π2

2 with crossed-linking handles vi and vs. If s − r = 1, then vlvr ∈ E(G),
because otherwise d(vr) = 2. Since vivr ∈ E(G), (C8) appears. In this case, the
drawing induced by V[vi, vs] has a copy of Π1

1 ⊗ Π1
2 or Π1

1 ⊗ Π2
2 with crossed-

linking handles vi and vs. So we say that (C11) occurs.

Until now, we have actually proved the following result, which will be fre-
quently used during the remaining arguments.

Lemma 18. If vivj co-crosses vkvj and vlvs is a chord with i < k < j < l < s
such that {vi, vs}1 is the shortest I-cluster contained in the drawing induced by
V[vi, vs], then vlvs is crossed by a chord vrvt so that

(1) s < t �= i;
(2) r − l = 1;
(3) V[vr, vs] is a path with s − r ≤ 2 and vrvs ∈ E(G), and if s − r = 2, then

vlvr ∈ E(G).

Lemma 19. There is a I-cluster in the drawing induced by V[vs, vt] with width
at most t − s.

Proof. If the opposite holds, then by Lemmas 6 and 14(3), there is no crossed
chord in C[vs, vt], and thus V[vs, vt] is a non-edge or a path. If it is a non-edge,
then s − r = 1 and vrvs ∈ E(G), because otherwise d(vs−1) = 2 and d(vs) = 3,
which implies that (C1) occurs. However, if s − r = 1 and vrvs ∈ E(G), then
d(vr) ≤ 3 and d(vs) = 2 by Lemma 15, again implying the appearance of (C1).
Hence V[vs, vt] is a path, and by Lemma 8, t − s ≤ 2.

Suppose that t − s = 2. It follows that d(vs+1) = 2. If vsvt ∈ E(G), then
s − r = 1 and vrvs ∈ E(G), because otherwise vs−1vs ∈ E(G) and d(vs−1) = 2
by Lemma 16, which implies that (C3) appears. Similarly, vlvr ∈ E(G), because
otherwise d(vr) = 2 and (C3) occurs again. In this case, the drawing induced
by V[vl, vt] has a copy of Π1

1 ⊗ Π2
1 with crossed-linking handles vl and vt, and

thus (C11) occurs. On the other hand, if vsvt �∈ E(G), then s − r = 2 because
otherwise d(vs) = 3 and (C1) occurs. However, if s − r = 2, then vrvs ∈ E(G)
and d(vs−1) = 2, which implies the appearance of (C3).

Hence t − s = 1 and vsvt ∈ E(G). If s − r = 2, then by Lemma 16, the
drawing induced by V[vl, vt] is a copy of Π2

2 with handles vl and vt, and thus
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the drawing induced by V[vi, vt] has a copy of Π1
2 ◦ Π2

2 or Π2
2 ◦ Π2

2 with linking
handles vi and vt. If s−r = 1, then vlvr ∈ E(G) because otherwise d(vr) = 2 and
d(vs) = 3, which implies that (C1) appears. In this case, the drawing induced by
V[vl, vt] is a copy of Π1

2 with handles vl and vt, and thus the drawing induced
by V[vi, vt] has a copy of Π1

2 ◦ Π1
2 or Π1

2 ◦ Π2
2 with linking handles vi and vt. So

we say that (C10) occurs.

Note that the drawing induced by V[vi, vl] and chords vlvs, vrvt is a IV-
cluster, say {vi, vt}4, such that t �= i, and the drawing induced by V[vl, vs] has
the properties described by Lemmas 15 and 16. We call such a IV-cluster a
determined IV-cluster. We do the following assumption.

Assumption 4. {vi, vt}4 is the shortest determined IV-cluster contained in the
drawing induced by V[vi, vt].

According to Lemma 19, we assume, without loss of generality, that vi′vj′

co-crosses vk′vl′ and vl′vs′ is a chord such that s ≤ i′ < k′ < j′ < l′ < s′ ≤ t
(i.e., there is a I-cluster {vi′ , vs′}1 in the drawing induced by V[vs, vt]). Clearly,
we can carefully choose, in advance, i′, k′, j′, l′ and s′ so that

Assumption 5. {vi′ , vs′}1 is the shortest I-cluster contained in the drawing
induced by V[vi′ , vs′ ].

By Lemma 18, vl′vs′ is crosses by a chord vr′vt′ with l′ < r′ < s′. If s′ < t′ ≤ t,
then there is a determined IV-cluster with width t′−i′+1 < t−i+1, say {vi′ , vt′}4,
contained in the drawing induced by V[vi′ , vvt′ ], contradicting Assumption 4.
Hence s ≤ t′ < i′.

By the absences of (C7) and (C9), there is a chord vq′vi′ with t′ ≤ q′ < i′.
If the I-cluster {vq′ , vl′}1 is the shortest one contained in the drawing induced
by V[vq′ , vl′ ], then by Lemma 18, vq′vi′ is crossed by a chord vy′vp′ with t′ ≤
y′ < q′ < p′ < i′, and furthermore, there is a determined (left) IV-cluster
with width l′ − y′ + 1 < t − i + 1, say {vy′ , vl′}4, contained in the drawing
induced by V[vy′ , vvl′ ], contradicting Assumption 4. Hence there is a shorter I-
cluster contained in the drawing induced by V[vq′ , vl′ ]. Among those I-clusters
contained in the drawing induced by V[vq′ , vl′ ], we choose the shortest one, say
{vi′′ , vs′′}1 for example. Precisely, vi′′vj′′ co-crosses vk′′vl′′ and vl′′vs′′ is a chord
with q′ ≤ i′′ < k′′ < j′′ < l′′ < s′′ ≤ i′. By Lemma 18, vl′′vs′′ is crossed by
a chord vr′′vt′′ with l′′ < r′′ < s′′. If s′′ < t′′ ≤ i′, then there is a determined
IV-cluster with width t′′ − i′′ + 1 < t − i + 1, say {vi′′ , vt′′}4, contained in the
drawing induced by V[vi′′ , vvt′′ ], contradicting Assumption 4. Hence q′ ≤ t′′ < i′′.
We reset {t′, i′, k′, j′, l′, r′, s′} := {t′′, i′′, k′′, j′′, l′′, r′′, s′′} and come back to the
beginning of this paragraph. Since s′′ − t′′ < s′ − t′ and the graph is finite, this
iteration can stop somewhere.
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