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Abstract
It is proved that the vertex set of any simple graph G can be equitably partitioned into
k subsets for any integer k ≥ max{⌈�(G)+1

2

⌉
,
⌈ |G|

4

⌉} so that each of them induces a
linear forest.
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1 Introduction

All graphs in this paper are simple and finite. A tree- (resp.path-) k-coloring of a
graph G is a function c from V (G) to the set {1, 2, . . . , k} so that c−1(i), the color
class i , induces a forest (resp. linear forest) for each integer 1 ≤ i ≤ k. Here a linear
forest is a forest with each component being a path.

A tree- (resp. path-) k-coloring is equitable if the sizes of any two color classes differ
by at most one. The minimum integer k such that a graph G admits an equitable tree-
(resp. path-) k-coloring is the equitable vertex arboricity (resp.equitable linear vertex
arboricity) ofG, denoted by va=(G) (resp. lva=(G)). Note that the complete bipartite
graph K9,9 has equitable vertex arboricity (resp. equitable linear vertex arboricity)
two, but it is impossible to construct an equitable tree- (resp. path-) 3-coloring of K9,9.
This motivates us to define another chromatic parameter so-called the equitable vertex
arborable threshold (resp.equitable linear vertex arborable threshold). Formally, it is
theminimum integer k such thatG admits an equitable tree- (resp. path-) k′-coloring for
every integer k′ ≥ k, denotedbyva≡(G) (resp. lva≡(G)).Clearly,va=(G) ≤ va≡(G)

and lva=(G) ≤ lva≡(G).
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For the complete bipartite graph Kn,n , it is trivial that va=(Kn,n) = 2. For its
equitable vertex arborable threshold, Wu et al. (2013) showed that va≡(Kn,n) =
2
⌊
(
√
8n + 9− 1)/4

⌋
if 2n = t(t + 3) and t is odd. This implies that the gap between

va=(G) and va≡(G) can be any large. Since 2 = lva=(Kn,n) = va=(Kn,n) ≤
va≡(Kn,n) ≤ lva≡(Kn,n), the gap between lva=(G) and lva≡(G) can also be any
large.

The notions of the equitable vertex arboricity and the equitable vertex arborable
threshold were introduced byWu et al. (2013) in 2013, who put forward the following
two conjectures.

Conjecture 1.1 (Equitable vertex arboricity conjecture) va≡(G) ≤ ⌈
�(G)+1

2

⌉
for

every graph G.

Conjecture 1.2 There is a constant C such that va≡(G) ≤ C for every planar graph
G.

In 2015, Esperet et al. (2015) confirmed Conjecture 1.2 by showing that va≡(G) ≤
4 for every planar graph G. Recently, Niu et al. (2019) proved that va≡(G) ≤ 8 for
every IC-planar graph G (a graph is IC-planar if it has embedding in the plane so that
each edge is crossed by at most one other edge and each vertex is incident with at most
one crossing edge).

For Conjecture 1.1, it is still widely open, and there are some partial results in the
literature. For example, Zhang (2016) verified it for subcubic graphs and Chen et al.
(2017) confirmed it for 5-degenerate graphs.

In many papers, including (Chen et al. 2017; Zhang 2015, 2016), the authors
announced that Conjecture 1.1 has been confirmed for graphs G with �(G) ≥ |G|/2
by Zhang and Wu (2014). However, one can look into that paper and then find that
Zhang and Wu just proved a weaker result that va=(G) ≤ ⌈

(�(G) + 1)/2
⌉
for

every graph G with �(G) ≥ |G|/2, and their result (even their proof) cannot implies
va≡(G) ≤ ⌈

(�(G) + 1)/2
⌉
for such a graph G. This motivates us to write this paper

to give a detailed proof of the following theorem, which confirms Conjecture 1.1 for
graphs G with �(G) ≥ (|G| − 1)/2.

Theorem 1.3 If G is a graph with �(G) ≥ |G|−1
2 and k ≥ ⌈

�(G)+1
2

⌉
is an integer,

then V (G) can be equitably partitioned into k subsets so that each of them induces a
linear forest.

Actually, Theorem 1.3 implies the following

Theorem 1.4 lva≡(G) ≤ ⌈
�(G)+1

2

⌉
for graphs G with �(G) ≥ |G|−1

2 .

Since the complete graph Kn satisfies that �(Kn) = n − 1 ≥ |Kn|/2 and
lva≡(Kn) = ⌈

n/2
⌉ = ⌈

(�(G) + 1)/2
⌉
, the lower bound for k in Theorem 1.3

and the upper bound for lva≡(G) in Theorem 1.4 are sharp in this sense.
The proof of Theorem 1.3 will be given in Section 2. In Section 3 , we will give a

slightly stronger result that omits the restriction �(G) ≥ (|G| − 1)/2 in Theorem 1.4
but replaces the upper bound for lva≡(G) with max{⌈(�(G) + 1)/2

⌉
,
⌈|G|/4⌉}.

Notations: we use standard notations that come from the book on Graph Theory
contributed by Bondy and Murty (2008). In the next section there are two notations
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α′(G) and Gc that are frequently used. They respectively denote the largest size of the
matching in the graph G and the completement graph of G.

2 A constructive proof of Theorem 1.3

In order to give the proof of Theorem 1.3, we collect some useful structural lemmas.
For convenience, we list them here in advance.

Lemma 2.1 If G is a connected graph with minimum degree δ ≤ |G|−1
2 , then G

contains a path of length 2δ.

Proof Let P = x0x1 · · · xk be the longest path ofG. It is sufficient to prove that k ≥ 2δ
and thus the required path is contained in P . Suppose, to the contrary, that k ≤ 2δ −1.
Since P is the longest path, the neighbors of x0 or xk are all on P . Let S = {i | x0xi+1 ∈
E(G), 0 ≤ i ≤ k − 1} and let T = {i | xi xk ∈ E(G), 0 ≤ i ≤ k − 1}. It is clear that
2δ ≤ dG(x0)+dG(xk) = |S|+ |T | = |S∪ T |+ |S∩ T | ≤ k+|S∩ T |, which implies
that |S ∩ T | ≥ 2δ − k ≥ 1. Suppose j ∈ S ∩ T . It follows that x0x j+1, x j xk ∈ E(G)

and thus there is a cycle C on k + 1 vertices, say x0x j+1x j+2 · · · xkx j x j−1 · · · x1x0.
Since G is connected and |G| ≥ 2δ + 1 ≥ k + 2, outside the cycle C there is a
vertex y that connects to some vertex xr of C , where 0 ≤ r ≤ k. In this case, one can
immediately find a path on k + 2 vertices from the graph induced by E(C) ∪ {yxr },
contradicting the assumption that P is the longest path in G. 
�
Lemma 2.2 If G is a connected graph such that |G| > 2δ(G), then α′(G) ≥ δ(G).

Proof By Lemma 2.1, G contains a path P = x0x1 · · · x2δ(G) of length 2δ(G).
Hence there exists amatching {x0x1, x2x3, . . . , x2δ(G)−2x2δ(G)−1} of size δ(G), which
implies that α′(G) ≥ δ(G). 
�
Lemma 2.3 If G is a graph with δ(G) ≥ 2, then G contains a cycle of length at least
δ(G) + 1.

Proof Let P = x0x1 · · · xk be the longest path of G. It is clear that all neighbors of x0
are on P . Let xi be a neighbor of x0 so that i is maximum (actually i is exactly the
degree of v0 in G, and thus is at least δ(G)). Since δ(G) ≥ 2, C = x0x1 . . . xi x0 is a
cycle of length i + 1 ≥ δ(G) + 1, as required. 
�
Lemma 2.4 If G is a disconnected graph, then α′(G) ≥ δ(G).

Proof If δ(G) ≤ 1, then there is nothing to prove. Hence we assume δ(G) ≥ 2. Let
G1 and G2 be two components of G. It follows that min{δ(G1), δ(G2)} ≥ δ(G) ≥ 2.
By Lemma 2.3, G1 or G2 contains a cycle C1 = x0x1 · · · xr x0 or C2 = y0y1 · · · ys y0
with r ≥ δ(G) or s ≥ δ(G), respectively. Under this condition, we can construct a
matching

{x0x1, x2x3, . . . , x2�(δ(G)+1)/2−2x2�(δ(G)+1)/2−1, y0y1, y2y3, . . . ,

y2�δ(G)/2−2y2�δ(G)/2−1}

of size � δ(G)+1
2  + � δ(G)

2  = δ(G), which implies α′(G) ≥ δ(G). 
�
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Combining Lemma 2.1 with Lemma 2.3, we immediately have the following

Lemma 2.5 If G is a graph with 2 ≤ δ(G) ≤ |G|−1
2 , then G contains two vertex-

disjoint paths P1 and P2 such that |P1| = δ(G) + 1 and |P2| = δ(G).

Proof IfG is connected, then by Lemma 2.1,G contains a path of length 2δ(G), which
can be split into the required two vertex-disjoint paths. If G is disconnected, then G
contains at least two components G1 and G2, and the minimum degree of G1 and G2
are both at least δ(G) ≥ 2. By Lemma 2.3, there are cycles C1 ⊆ G1 and C2 ⊆ G2
of length at least δ(G) + 1. Clearly, we can choose P1 ⊆ C1 and P2 ⊆ C2 such that
|P1| = δ(G) + 1 and |P2| = δ(G), as required. 
�

We are ready to prove Theorem 1.3. Note that V (G) can be equitably partitioned
into k subsets if and only if V (G) can be partitioned into k subsets so that each subset
contains either

⌊ |G|
k

⌋
or

⌈ |G|
k

⌉
vertices. We spit the proof into three parts according to

the value of k.
Case 1. k ≥ |G|

2 .
In this case, we have

⌈ |G|
k

⌉
≤ 2.

Hence we arbitrarily partition V (G) into k subsets so that each subset consists of one
or two vertices (and thus induces a linear forest), as required.

Case 2. |G|
3 ≤ k <

|G|
2 .

In this case, we have

2 ≤
⌊ |G|

k

⌋
≤

⌈ |G|
k

⌉
≤ 3.

In the following, we partition V (G) into k subsets so that each subset contains two or
three vertices.

Using �(G)+ δ(Gc) = |G|− 1 and �(G) ≥ |G|−1
2 , we deduce that |G| = |Gc| ≥

2δ(Gc)+1. According to Lemmas 2.2 and 2.4, we immediately have α′ := α′(Gc) ≥
δ(Gc), which implies the existence of a matching M = {x1y1, . . . , xα′ yα′ } in Gc.

Since k ≥ ⌈
�(G)+1

2

⌉
,

α′ ≥ δ(Gc) = |G| − (�(G) + 1) ≥ |G| − 2k.

Hence we can obtain a subset M ′ = {x1y1, . . . , x|G|−2k y|G|−2k} of M . Let
z1, z2, . . . , z|G|−2k be distinct vertices in V (G)\V (M ′) and let Ui = {xi , yi , zi }
with 1 ≤ i ≤ |G| − 2k. Clearly, each Ui induces a linear forest in G. Since
|V (G)\⋃|G|−2k

i=1 Ui | = |G| − 3(|G| − 2k) = 6k − 2|G| ≥ 0, we arbitrarily par-

tition V (G)\⋃|G|−2k
i=1 Ui into 3k − |G| disjoint subsets W1,W2, . . . ,W3k−|G| so that

each of them contains exactly two vertices. Note that each Wi induces a linear forest
in G. Hence
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U1,U2, . . . ,U|G|−2k,W1,W2, . . . ,W3k−|G|

is the desired partition of V (G).

Case 3. ��(G)+1
2 � ≤ k <

|G|
3

In this case, we have

3 ≤
⌊ |G|

k

⌋
≤

⌈ |G|
k

⌉
≤

⌈ |G|
��(G)+1

2 �
⌉

≤
⌈ |G|

|G|+1
4

⌉
= 4. (2.1)

Moreover, we have

|G| ≤ 4k − 1. (2.2)

Otherwise, |G| = 4k by (2.1) and thuswehave�(G) ≥ �|G|−1
2 � = 2k (note that�(G)

shall be an integer), which implies |G|− (�(G)+1) ≤ 2k−1. However, we have, on
the other hand, that |G|−(�(G)+1) ≥ |G|−2k = 2k, since k ≥ ��(G)+1

2 � ≥ �(G)+1
2 .

This results in a contradiction.
In the following, we are to partition V (G) into k subsets so that each subset contains

three or four vertices. Since �(G) + δ(Gc) = |G| − 1 and �(G) ≥ |G|−1
2 , |G| =

|Gc| ≥ 2δ(Gc) + 1. By Lemma 2.5, Gc contains two vertex-disjoint paths P1 =
x0x1 · · · xδ and P2 = y0y1 · · · yδ−1, where δ := δ(Gc).

Let β = |G| − 3k and μ = 4k − |G|. By (2.1) and (2.2), β,μ ≥ 1. Since
|G| − 2k ≤ |G| − (�(G) + 1) = δ, we conclude

2β + 1 ≤ 2β + μ ≤ δ. (2.3)

Let ρ = 2�β
2 � − β and let

V 1
i = {x4i−4, x4i−3, x4i−2, x4i−1}, 1 ≤ i ≤

⌈
β

2

⌉
(2.4)

U 1
i = {x2i , x2i+1}, 2

⌈
β

2

⌉
≤ i ≤ 2

⌈
β

2

⌉
+

⌊
μ + 1

2

⌋
− ρ − 1 (2.5)

V 2
i = {y4i−4, y4i−3, y4i−2, y4i−1}, 1 ≤ i ≤

⌊
β

2

⌋
(2.6)

U 2
i = {y2i , y2i+1}, 2

⌊
β

2

⌋
≤ i ≤ 2

⌊
β

2

⌋
+

⌊
μ

2

⌋
+ ρ − 1 (2.7)

Note that 0 ≤ ρ ≤ 1 and the upper bound for i in (2.5) or (2.7) may be less than its
lower bound, in which case we naturally ignore the definition of U 1

i or U 2
i , and also

the definition of W 1
i or W 2

i that will be introduced later.
Since

4

⌈
β

2

⌉
− 1 ≤ 4 · β + 1

2
− 1 = 2β + 1 ≤ δ
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2

(
2

⌈
β

2

⌉
+

⌊
μ + 1

2

⌋
− ρ − 1

)
+ 1 = 2

(⌊
μ + 1

2

⌋
+ β − 1

)
+ 1

≤ 2

(
μ + 1

2
+ β − 1

)
+ 1 = 2β + μ ≤ δ

4

⌊
β

2

⌋
− 1 ≤ 4 · β

2
− 1 = 2β − 1 ≤ δ − 2 < δ − 1

2

(
2

⌊
β

2

⌋
+

⌊
μ

2

⌋
+ ρ − 1

)
+ 1 = 2

(⌊
μ

2

⌋
+ β − 1

)
+ 1

≤ 2

(
μ

2
+ β − 1

)
+ 1 = 2β + μ − 1 ≤ δ − 1

by (2.3), the vertex sets described by (2.4)–(2.7) are well-defined. Let S be the set of
vertices that are not belong to any of the sets described by (2.4)–(2.7). Since �β

2 � +
�β
2  = β and �μ+1

2  + �μ
2  = μ,

|S| = |G| − 4

⌈
β

2

⌉
− 2

(⌊
μ + 1

2

⌋
− ρ

)
− 4

⌊
β

2

⌋
− 2

(⌊
μ

2

⌋
+ ρ

)

= |G| − 4β − 2μ = μ.

Let S =
{
z1i

∣∣∣
∣ 2

⌈
β
2

⌉
≤ i ≤ 2

⌈
β
2

⌉
+

⌊
μ+1
2

⌋
− ρ − 1

}
⋃

{
z2i

∣∣∣
∣ 2

⌊
β
2

⌋
≤ i ≤

2

⌊
β
2

⌋
+

⌊
μ
2

⌋
+ ρ − 1

}
and let

W 1
i = U 1

i ∪ {z1i }, 2
⌈

β

2

⌉
≤ i ≤ 2

⌈
β

2

⌉
+

⌊
μ + 1

2

⌋
− ρ − 1

W 2
i = U 2

i ∪ {z2i }, 2
⌊

β

2

⌋
≤ i ≤ 2

⌊
β

2

⌋
+

⌊
μ

2

⌋
+ ρ − 1.

Since the graph induced by V 1
i or V 2

i or W 1
i or W 2

i induce a linear forest in G,

V 1
1 , . . . , V 1�β/2�, V 2

1 , . . . , V 2�β/2,W 1
2�β/2�, . . . ,

W 1
2�β/2�+�(μ+1)/2−ρ−1,W

2
2�β/2, . . . ,W 2

2�β/2+�μ/2+ρ−1

is the desired partition of V (G). Note that there are exactly �β
2 � + �β

2  + (�μ+1
2  −

ρ) + (�μ
2  + ρ) = β + μ = k subsets in this partition.

3 A slightly stronger result

In this section, we give a slightly stronger result than Theorem 1.4. To begin with, we
prove the following lemma.
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Lemma 3.1 If G is a graph with �(G) <
|G|−1

2 and k ≥ ⌈ |G|
4

⌉
is an integer, then

V (G) can be equitably partitioned into k subsets so that each of them induces a linear
forest.

Proof First of all, we notice that

⌈ |G|
k

⌉
≤

⌈ |G|
⌈ |G|

4

⌉
⌉

≤ 4.

Since

δ(Gc) = |G| − 1 − �(G) >
|G| − 1

2

and δ(Gc) is an integer, we conclude

δ(Gc) ≥ |G|
2

= |Gc|
2

,

which implies by the well-known Dirac’s Theorem that Gc contains a hamiltonian
cycle C (note that we then have |C | = |Gc| = |G|). Clearly, we can split C into k
vertex-disjoint subpaths on three or four vertices if k ≤ |G|

3 , or on two or three vertices

if |G|
3 < k ≤ |G|

2 , or on one or two vertices if k >
|G|
2 . In each of the above three cases,

the vertices of any of the k subpaths induce a linear forest in G. This just proves the
theorem. 
�

Combining Theorem1.3with Lemma 3.1, we conclude the following result towards
the Equitable Vertex Arboricity Conjecture.

Theorem 3.2 For every graph G, V (G) can be equitably partitioned into k subsets so
that each of them induces a linear forest whenever k ≥ max{⌈�(G)+1

2

⌉
,
⌈ |G|

4

⌉}, i.e.,

va≡(G) ≤ lva≡(G) ≤ max

{⌈
�(G) + 1

2

⌉
,

⌈ |G|
4

⌉}
.

Proof If �(G) ≥ |G|−1
2 , then k ≥ max{⌈�(G)+1

2

⌉
,
⌈ |G|

4

⌉} = ⌈
�(G)+1

2

⌉
. By Theo-

rem 1.3, we can construct an equitable partition of V (G) into k subsets so that each
of them induces a linear forest. If �(G) <

|G|−1
2 , then k ≥ max{⌈�(G)+1

2

⌉
,
⌈ |G|

4

⌉} =
⌈ |G|

4

⌉
and V (G) can be equitably partitioned into k subsets so that each of them

induces a linear forest by Lemma 3.1. 
�
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