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Abstract
This paper studies the parameterized complexity of the tree-coloring problem and
equitable tree-coloring problem. Given a graph G = (V , E) and an integer r ≥ 1, we
give an FPT algorithm to decide whether there is a tree-r -coloring of graph G when
parameterized by treewidth. Moreover, we prove that to decide the existence of an
equitable tree-r -coloring of graph G is W[1]-hard when parameterized by treewidth;
and that it is polynomial solvable in the class of graphs with bounded treewidth.

Keywords Tree-coloring · Equitable tree-coloring · Nice tree decomposition ·
Bounded treewidth

1 Introduction

A tree-coloring of a graph G is a vertex coloring of G such that the subgraph induced
by each color class is a forest. Given an integer r ≥ 1, a tree-r -coloring of G is a
tree-coloring of G with at most r colors. Moreover, an equitable tree-r -coloring of
G is a tree-r -coloring of G such that the sizes of any two color classes differ by at
most one. Note that this implies that equitable tree-r -coloring of any graph with at
least r vertices contains exactly r colors. For any graph G, the minimum r such that G
has an equitable tree-r -coloring is called the equitable vertex arboricity of G; and the
threshold of equitable vertex arboricity of G, denoted as va∗

eq(G), is the minimum r
such that for any r ′ ≥ r , G has an equitable tree-r ′-coloring. We mainly consider the
following two problems:
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Tree- coloring Problem (TCP)
Instance: A graph G and a positive integer r .
Question: Is there a tree-r -coloring of G?

Equitable tree-r -coloring Problem (ETCP)
Instance: A graph G and an integer r .
Question: Is there an equitable tree-r -coloring of graph G?

Related work The model of graph coloring has many practical applications. For
example, it can be used in the case when a system with binary conflict relations needs
to be divided into some equal size of conflict-free subsystems; also it was applied
in solving scheduling problems (Meyer 1973; Kubale 1989; Furmanczyk 2006). In
the theoretical viewpoint, as many coloring problems, both the TCP and ETCP are
NP-Complete (Nakprasit and Nakprasit 2016). Kronk and Mitchem (1975) proved
that every graph has a tree-r -coloring for some r ≤ ��(G)+1

2 �, where �(G) is the
maximum degree of the graph G. It is well known that every planar graph has a tree-
3-coloring (Chartrand and Kronk 1969). Wu et al. (2013) proved that every planar
graph with girth at least 5 has an equitable tree-3-coloring, while Esperet et al. (2015)
showed that every planar graph has an equitable tree-r -coloring for every r ≥ 4 (i.e.,
va∗

eq(G) ≤ 4). Moreover, Chen et al. (2017) proved that any 5-degenerate graphG has

an equitable tree-r -coloring for any r ≥ ��(G)+1
2 � (i.e., va∗

eq(G) ≤ ��(G)+1
2 �). Many

NP-Complete coloring problems have been studied in the parameterized complexity
view (Fiala et al. 2011).
Main contributions In the rest of the paper, we prove that Tree- coloring Problem
is Fixed Parameter Tractable (FPT) when parameterized by treewidth in Sect. 2.
Moreover, the W[1]-hardness of the Equitable tree-r -coloring Problem when
parameterized by treewidth is proved in Sect. 3; and for the positive side, it is proved
that ETCP is polynomial solvable in the class of graphs with bounded treewidth or
vertex cover number. Finally, we summarize our results and some remaining open
questions in Sect. 4.
PreliminaryNote that it is sufficient to consider connectedgraph.A tree-decomposition
of a graph (Robertson and Seymour 1986) G is a way to represent G by a family of
subsets of its vertex-set organized in a tree-like manner and satisfying some connectiv-
ity property. The treewidth of G measures the proximity of G to a tree. More formally,
a tree-decomposition of G = (V , E) is a pair (T ,X ) where X = {Xi |i ∈ V (T )} is a
family of subsets of V , called bags, and T is a tree, such that:

• ⋃
i∈V (T ) Xi = V ;

• for any edge uv ∈ E , there is a bag Xi (for some node i ∈ V (T )) containing both
u and v;

• for any vertex v ∈ V , the set {i ∈ V (T )|v ∈ Xi } induces a subtree of T .
The width of a tree-decomposition (T ,X ) is maxi∈V (T )|Xi | − 1 and its size is the
order |V (T )| of T . The treewidth of G, denoted by tw(G), is the minimumwidth over
all possible tree-decompositions of G.

It is well known that every graph of treewidth at most w has a so-called nice tree
decomposition of width at most w, i.e. a tree decomposition with a rooted tree T , with
root l ∈ V (T ) such that
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• T is a binary tree.
• If a node i ∈ V (T ) has two children j1 and j2, then Xi = X j1 = X j2 . The node i
is called the join node.

• If a node i ∈ V (T ) has one child j , then either Xi = X j ∪ {v} (introduce node),
or Xi = X j − {v} (forget node) for some vertex v of G.

Given a graph G and an integer k > 0, to decide whether there exists a tree
decomposition of width at most k of G is FPT (Bodlaender et al. 2013). Given a tree
decomposition of width at most k of G, a nice tree decomposition of the same width
of G can be obtained in linear time.

A k-tree is the graph constructed recursively: a complete graph of k + 1 vertices
is a k-tree; for any given k-tree G and a clique of size k in G, adding a new vertex
adjacent to all vertices of this clique gives another k-tree. Any subgraph of a k-tree is
called a partial k-tree. It is proved that any graph G is a partial k-tree if and only if
tw(G) ≤ k. More details can be found in Bodlaender (1998).

A proper r -coloring (the vertices of every color class induces an independent set)
of the vertices of a graph G is called acyclic if every subgraph induced by vertices
of any two color classes is acyclic, i.e., a forest (Grünbaum 1973). The minimum r
such that G has an r -acyclic-coloring is called acyclic chromatic number, denoted as
χa(G).

By induction, it is easy to prove that for any k-tree G = (V , E), χa(G) ≤ k + 1:
if |V | = k + 1, then each color class of the k + 1 colors contains exactly one vertex.
Assume that any k-tree G with n vertices has a k+1-acyclic-coloring. Note that every
vertex of a clique has different color. Adding a new vertex u adjacent to a clique K
of size k in G, then color u with the only one left color different from the k colors
of the k vertices in K . One can check that, this is a k + 1-acyclic-coloring satisfying
the assumption. Thus χa(G) ≤ tw(G) + 1. Since Esperet et al. (2015) proved that
va∗

eq(G) ≤ χa(G) − 1 for every graph G, we deduce the following

Theorem 1 Given a graph G with at least one edge, we have va∗
eq(G) ≤ tw(G). 
�

2 FPT algorithms for tree-coloring problem

In this section, we prove the following theorem.

Theorem 2 TheTree- coloring Problem is FPTwhen parameterized by treewidth.

For easier description, we give some notations, inspired from the notations in Bod-
laender and Fomin (2005), we will see that adding connectivity (compare forest with
independent set) in the standard dynamic programming makes the proof more com-
plicated.

Given a graph G = (V , E) of treewidth k, for any subset S ⊆ V , G[S] denotes
the induced subgraph of G. Let (T ,X ) be a nice tree decomposition of G of width
k. Without confusion, we identify any vertex in T with its corresponding bag in X .
Suppose that the root bag of T is R ∈ X . For any bag X ∈ X , let VX be the vertex
set of all vertices in bags X and its descendant in T ; and GX denotes the induced
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subgraph G[VX ]. For any set U , a partition U of U is a set of subsets of U such that
the union of all subsets in U is U and any two of the subsets do not intersect.

For a bag X ∈ X , let F = {F1, F2, . . . , Ff } be a partition of X , where 1 ≤ f ≤ k;
and let T = {Ti |i = 1, 2, . . . , f }, where for each 1 ≤ i ≤ f , Ti = {Ti1, Ti2 , . . . , Titi }
is a partition of Fi , 1 ≤ ti ≤ k. We call such F , T as a pair of X . For every such pair
of X , we compute a Boolean value BX [F , T ]. This Boolean value is TRUE if and
only if there exists a-tree-r -coloring of GX such that, for 1 ≤ i ≤ f :

(I) every Fi is contained in one color class differently from each other. This implies
that each G[Fi ] is an induced forest in G;

(II) in each subgraph induced by the color class of Fi , every Ti j , 1 ≤ j ≤ ti , is
contained in one connected component, i. e. amaximal induced subtree, differently
from each other.

Lemma 3 Let X ∈ X be a forget node in T and let Y be the unique child of X; and
X = Y − {v} for some vertex v ∈ VX . Let F = {F1, F2, . . . , Ff } be a partition of
X, where 1 ≤ f ≤ min{k, r}; and let T = {Ti |i = 1, 2, . . . , f }, where for each
1 ≤ i ≤ f , Ti = {Ti1, Ti2 , . . . , Titi } is a partition of Fi , 1 ≤ ti ≤ k.

Then BX [F , T ] = T RUE if andonly if there exist partitionF ′ = {F ′
1, F

′
2, . . . , F

′
f ′ }

of Y and T ′ = {T ′
i is a partition of F ′

i |i = 1, 2, . . . , f ′} such that:

(i) BY [F ′, T ′] = T RUE;
(ii) if v ∈ F ′

i and F ′
i = {v}, then F ′\{F ′

i } = F and T ′\{T ′
i } = T ;

(iii) if v ∈ F ′
i and F ′

i ⊃ {v}, then there exists F ∈ F , with the partition T j ∈ T of F,
satisfying thatF ′\{F ′

i } = F\{F} and T ′\{T ′
i } = T \{T j }; and that F ′

i −{v} = F
and any T ′ ∈ T ′

i satisfying one of the three cases: (1) T
′ is a union of some element

of T j and {v}; (2) T ′ ∈ T j ; (3) T ′ = {v}.
Proof If BX [F , T ] = T RUE , then let cX : VX → {1, 2, . . . , r} be a tree-r -coloring
of GX satisfying the two properties (I) (II). Since GX = GY , cX is a tree-r -coloring
of GY . According to the color classes, one gets the partition F ′ = {F ′

1, F
′
2, . . . , F

′
f ′ }

of Y . In each subgraph induced by the color class of F ′
h , h = 1, 2, . . . , f ′, according

to the connected components intersecting with Y , one gets the partition T ′
h of F ′

h . Let
T ′ = {T ′

h |h = 1, 2, . . . , f ′}. One can check that F ′, T ′ satisfy (i), (ii), (iii) in the
lemma.

If there existF ′, T ′ satisfying (i), (ii), (iii) in the lemma, let cY : VY → {1, 2, . . . , r}
be a tree-r -coloring of GY satisfying the two properties (I) (II). Then cY is also a tree-
r -coloring of GX since GX = GY . If v ∈ F ′

i and F ′
i = {v}, then F ⊂ F ′ and

T ⊂ T ′. So the tree-r -coloring cY of GX satisfies (I) (II), i.e. BX [F , T ] = T RUE .
Otherwise, v ∈ F ′

i and F ′
i ⊃ {v} as described in (iii) in the lemma. Then each

Fi ∈ F\{F} = F ′\{F ′
i } with its corresponding partition Ti ∈ T \{T j } = T ′\{T ′

i }
satisfies (I) (II). In the rest, we prove that F = F ′

i − {v} and its partition T j satisfy (I)
(II). Since F ⊂ F ′

i , F is contained in the same color class with F ′
i , differently from

other sets in F . For any T ∈ T j , it satisfies either T ∈ T ′
i or T = T ′ − {v} for some

T ′ ∈ T ′
i . So in both cases, T is contained in one connected component of the subgraph

induced by the color class of F , which is the same as the one of F ′
i . The lemma is

proved. 
�
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Lemma 4 Let X ∈ X be an introduce node in T and let Y be the unique child of X;
and X = Y ∪ {v} for some vertex v ∈ VX . Let F = {F1, F2, . . . , Ff } be a partition
of X, where 1 ≤ f ≤ min{k, r}; and let T = {Ti |i = 1, 2, . . . , f }, where for each
1 ≤ i ≤ f , Ti = {Ti1, Ti2 , . . . , Titi } is a partition of Fi , 1 ≤ ti ≤ k. Without loss of
generality, assume that v ∈ F1 and v ∈ T11 . Let the neighborhood of v in G[F1] be
N1(v) = {v1, v2, . . . , vd}, 0 ≤ d ≤ k and d = 0 when N1(v) = ∅.
(i) If F1 �= {v}, then BX [F , T ] = T RUE if and only if for the partition F ′ =

{F1\{v}, F2, . . . , Ff } of Y , there exists a partition {T1, T2, . . . , Td} of T11\{v}
such that (1) for each 1 ≤ p ≤ d, vp ∈ Tp; (2) and that BY [F ′, T ′] = T RUE,
where T ′ = {{T1, T2, . . . , Td , T12 , T13 , . . . , T1t1 }} ∪ {Ti |i = 2, 3, . . . , f }.

(ii) Otherwise, BX [F , T ] = T RUE if and only if BY [{F2, F3, . . . , Ff },
{T2, T3, . . . , T f }] = T RUE.

Proof (i) First we prove the case F1 �= {v}, which implies F1 ⊃ {v}. If BX [F , T ] =
T RUE , then let cX : VX → {1, 2, . . . , r} be a tree-r -coloring ofGX satisfying the two
properties (I) (II). Restrict cX in VY . Then cX |VY is a tree-r -coloring ofGY = GX\{v}.
According to the color classes, one gets the partition F ′ = {F1\{v}, F2, . . . , Ff } of
Y , since Y = X − {v} and v ∈ F1. In each subgraph induced by the color class of Fi ,
every Ti j , 1 ≤ j ≤ ti , is contained in one connected component differently from each
other. Since v ∈ T11 , we have N1(v) ⊆ T11 . In T11\{v}, the connected component
Cv
X , containing T11 in the subgraph induced by the color class of F1 in GX , is divided

into d connected components in Cv
X\{v}, each of which contains a subset of T11 and

exactly one vertex of N1(v). This gives a partition of T11\{v}, put as {T1, T2, . . . , Td}
satisfying that vp ∈ Tp for each 1 ≤ p ≤ d and that Tp is contained in one connected
component, differently from each other, of the subgraph induced by the color class of
F1\{v} in GY . So BY [F ′, T ′] = T RUE .

If there exists a partition {T1, T2, . . . , Td} of T11\{v} such that (1) vp ∈ Tp for
each 1 ≤ p ≤ d; (2) BY [F ′, T ′] = T RUE , where T ′ = {{T1, T2, . . . , Td , T12 ,
T13, . . . , T1t1 }} ∪ {Ti |i = 2, 3, . . . , f }, let cY : VY → {1, 2, . . . , r} be a tree-r -
coloring of GY satisfying the two properties (I) (II) for the pair F ′, T ′. Then define
cX : VX = VY ∪ {v} → {1, 2, . . . , r} such that cX (u) = cY (u) for any u ∈ VY ; and
cX (v) = cY (w), where w is any vertex in F1\{v} �= ∅. So the tree-r -coloring cX of
GX satisfies (I) (II), i.e. BX [F , T ] = T RUE .

(ii) If F1 = {v}, then the necessariness follows directly from the proof above. In the
following, we prove the sufficiency. Since BY [{F2, F3, . . . , Ff }, {T2, T3, . . . , T f }] =
T RUE , let cY : VY → {1, 2, . . . , r} be a tree-r -coloring of GY satisfying the two
properties (I) (II) for the pair {F2, F3, . . . , Ff }, {T2, T3, . . . , T f }. Then define cX :
VX = VY ∪ {v} → {1, 2, . . . , r} such that cX (u) = cY (u) for any u ∈ VY ; and cX (v)

is any color different from the colors of F2, F3, . . . , Ff . Since f ≤ r , we have that
f −1 ≤ r −1 and that cX (v) exists. The color class of v induces a forest in GX , since
X ∩Y = Y is a separator between {v} and VX\Y and v is not adjacent to any vertex in
VX\Y . So cX is a tree-r -coloring of GX satisfying (I) (II), i.e. BX [F , T ] = T RUE .


�
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In the following, we deal with the case that X is a join node in T . To be simple, we
consider only the pairF , T of X , whose Boolean value is possible true. The following
fact tells the Boolean value of some pairs cannot be true.

Fact 1 For any pair F , T of X, if one of the following cases occurs, then B[F , T ] =
FALSE: (1) |F | > r; (2) for some F ∈ F , G[F] is not a forest; (3) for some F ∈ F ,
a maximal induced subtree in G[F] is not contained in any H ∈ TF , where TF ∈ T
is a partition of F.

Define proper pair of X as the pair F , T such that none of the three cases in Fact 1
occurs. So in any proper pair F , T of X , for each F ∈ F , a partition TF ∈ T of F ,
G[F] is a forest; and any connected component ofG[F] is contained in some H ∈ TF ,
which also implies that each H ∈ TF induces a forest in G[F].

Suppose that vertex subsetU ⊂ V induces a forest inG. LetU = {U1,U2, . . . ,Ut }
be the set of all vertex sets of the connected components of G[U ]. Denote L =
{U1,U2, . . . ,Us} as a partition of U . We call such a partitionR as a join partition of L
with respect toU , ifR = {{Ui1,Ui2 , . . . ,Uis }, {Uis+1}, {Uis+2}, . . . , {Uit }}, where for
each j = 1, 2, . . . , s, Ui j ∈ U j and {Uis+1,Uis+2 , . . . ,Uit } = U\{Ui1,Ui2 , . . . ,Uis }.
JoinL andR to obtain another partition, denoted asL�R, of U in the following way:
in L � R, if any two sets L, R ∈ L ∪ R intersects, then replace L, R with L ∪ R in
L�R; and repeat this until any two sets do not intersect. One sees that L�R = {U }.
This is because {Ui1,Ui2 , . . . ,Uis } intersects all sets in L and then their union gives
U .

Given two proper pairs F , T and F , T ′ of X , we say that T ′ is smaller that T ,
denoted as T ′ ≺ T , if they satisfy that, for any F ∈ F and a partition TF ∈ T
(resp. T ′

F ∈ T ′) of F and any H ∈ TF , there exist T ′
1, T

′
2, . . . , T

′
qH ∈ T ′

F such
that H = ∪i=1,2,...,qH T

′
i . Without confusion, we also say that {T ′

1, T
′
2, . . . , T

′
qH } is a

partition of H in T ′. Then the following claim holds.

Claim 4.1 Given a proper pair F , T of X, for any F ∈ F and a partition TF ∈ T of
F and H ∈ TF , letF , T ′ be a proper pair of X such that T ′ ≺ T . LetL be a partition
of H in T ′ and R be a join partition of L respect to H. Then L � R = {H}.
Definition 1 Given a proper pair F , T of X , two proper pairs of X , F , T ′ and F , T ′′
consist a join pair of F , T if they satisfy that: (1) T ′ ≺ T and T ′′ ≺ T ; and that (2)
for any F ∈ F and a partition TF ∈ T of F , for any H ∈ TF , let L (resp. R) be the
partition of H in T ′ (resp. T ′′), then R is a join partition of L respect to H .

Then we can give the equivalent condition for BX [F , T ] = T RUE for join node
X in the following lemma.

Lemma 5 Let X ∈ X be a join node in T and let Y , Z be the two children of X (Note
that X = Y = Z). Then for any proper pair F , T of X, BX [F , T ] = T RUE if and
only if there exist a join pairF , T ′ andF , T ′′ ofF , T , such that BY [F , T ′] = T RUE
and BZ [F , T ′′] = T RUE.

Proof If BX [F , T ] = T RUE , let cX : VX → {1, 2, . . . , r} be a tree-r -coloring of
GX satisfying the two properties (I) (II). Restrict cX in VY . Then cX |VY is a tree-r -
coloring of GY = GX\{VZ\Z}. According to the color classes, one gets the partition
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F = {F1, F2, . . . , Ff } of Y = X . In each subgraph induced by the color class of Fi ,
according to the connected components intersecting with Y , one gets the partition T ′

i
of Fi . Let T ′ = {T ′

i |i = 1, 2, . . . , f }. One can check that BY (F , T ′) = T RUE . Note
that T ′ ≺ T . Similarly, restricting cX in VZ we get T ′′ ≺ T such that BZ (F , T ′) =
T RUE . One sees that F , T ′ and F , T ′′ consist a join pair of F , T .

If there exist a join pair F , T ′ and F , T ′′ of F , T , such that BY [F , T ′] = T RUE
and BZ [F , T ′′] = T RUE , then let cY : VY → {1, 2, . . . , r} (resp. cZ : VZ →
{1, 2, . . . , r}) be a tree-r -coloring of GZ satisfying the two properties (I) (II). Without
loss of generality, assume that cY (v) = cZ (v) for each v ∈ X = Y = Z . Then define
cX : VX = VY ∪ VZ → {1, 2, . . . , r} such that cX (y) = cY (y) for any y ∈ VY ; and
cX (z) = cZ (z) for any z ∈ VZ\Y . Since X , F , T ′ and F , T ′′ are a join pair of F , T ,
cX is a tree-r -coloring of GX with the pair F , T satisfying the two properties (I) (II).
So BX [F , T ] = T RUE . 
�

Algorithm 1: FPT Algorithm for TCP with parameter treewidth

Input: G = (V , E), and a nice tree decomposition (T ,X ) of G with width k; r colors denoted by
{1, 2, . . . , r};

Output: Answ;

1 Answ ← Y ES;
2 for a leaf bag X in T do
3 if there exists no tree-r-coloring in the induced subgraph G[W ], then
4 Output NO

5 else
6 compute BX [F ,T ] for each proper pair F ,T of X ;
7 (Then we say the bag X is computed.)

8 for a bag X in T with all its children bags computed do
9 if X is a forget node then

10 compute BX [F ,T ] for each proper pair F ,T of X according to Lemma 3;

11 if X is an introduce node then
12 compute BX [F ,T ] for each proper pair F ,T of X according to Lemma 4;

13 if X is a join node then
14 compute BX [F ,T ] for each proper pair F ,T of X according to Lemma 5;

15 if BR [F ,T ] = NO for each proper pair F ,T of the root bag R then
16 Output NO;

17 Output Answ.

[Proof of Theorem 2] From Lemmas 3–5, we see that Algorithm 1 outputs Y ES if and
only if there exists a tree-r -coloring of the graph G. In the rest, we analyze the time
complexity of Algorithm 1. There are O(n) bags in X . Each bag X has at most k + 1
vertices, so there are at most f (k) proper pairs of X , for some function f . Then the
time complexity of Algorithm 1 is O( f 2(k)n). The theorem is proved. 
�
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Note that in the above proof, f (k) ≤ B(k + 1), which is the (k+1)-st Bell num-
ber counting the number of partitions of a set with k+1 elements. From Theorem 1
Algortihm 1 always outputs Y ES if r ≥ k.

Since the treewidth of any graph is at most its vertex cover number, from the above
theorem, the following corollary is true:

Corollary 6 The Tree- coloring Problem is FPT when parameterized by the vertex
cover number.

3 Complexity of equitable-tree-coloring problem

3.1 W[1]-hardness of ETCP parameterized by treewdith

For the formal definition of the W-hierarchy (not needed in our proof) and related
problems, please see in Downey and Thilikos (2011) for a survey. In this subsection,
we prove the following result:

Theorem 7 The Equitable Tree-Coloring Problem is W[1]-hard when parameterized
by treewidth.

Proof We do reduction from the following problem:

Equitable coloring Problem (ECP)
Instance: A graph G with treewidth k and an integer r .
Parameter: k + r
Question: Is there an equitable coloring of graph G with at most r colors?

The above ECP is proved to be W[1]-hard in Fellows et al. (2011).
Given a graphG = (V , E)with treewidth k and integer r , construct a graph H with

V (H) = V (G)∪ V (Kr ) and E(H) = E(G)∪ E(Kr )∪ {uv|u ∈ V (G), v ∈ V (Kr )},
where Kr is a complete graph with r vertices. Then the treewidth of H is at most k+r .
To prove the theorem, it is sufficient to show that there is an equitable coloring of G
with at most r colors if and only if there is an equitable tree-r -coloring of H .

If there is an equitable coloring c of G with at most r colors, then in H we color
V (G) as c and color each vertex in V (Kr ) with one color differently. Then this is an
equitable tree-r -coloring of H .

Now suppose that there is an equitable tree-r -coloring of H . In the following, we
prove that there is an equitable coloring of G with at most r colors. Let c be an
equitable tree-r -coloring of H , which maximizes the number of color classes of c
inducing respectively independent sets in G.

Claim 7.1 c|V (G) is a proper coloring of G.

If each color class induces an independent set in G, then c|V (G) is a proper coloring
of G. Otherwise, there is a color class Vi containing two vertices u, v ∈ V (G) and
uv ∈ E(G). This implies that Vi ∩ V (Kr ) = ∅, since for any vertex w ∈ V (Kr ),
{u, v, w} induces a triangle. So V (Kr ) are colored by at most r − 1 colors. Then
there exists a color class Vj = {x, y}, where x, y ∈ V (Kr ), because that add any

123



164 Journal of Combinatorial Optimization (2020) 39:156–169

other vertex of V (H) to Vj inducing a triangle. Since c is equitable and |Vi | ≥ 2,
|Vj | = 2, we have that |Vi | = 2 or 3. If |Vi | = 2, then Vi = {u, v}. Replacing the
color class Vi , Vj by V ′

i = {x, u}, V ′
j = {y, v} in c, we get an equitable tree-r -coloring

of H , which has twomore color classes inducing independent sets inG respectively. If
|Vi | = 3, then let Vi = {u, v, z}, where z ∈ V (G). Without loss of generality, suppose
that vz /∈ E(G). Replacing the color class Vi , Vj by V ′

i = {x, u}, V ′
j = {y, v, z} in c,

we get an equitable tree-r -coloring of H , which has two more color classes inducing
independent sets in G respectively.

• If each color class of c containing exactly one vertex of Kr , then c|V (G) is an
equitable coloring of G with at most r colors.

• If there is a color class Vi containing no vertex of Kr , i.e. Vi ∩ V (Kr ) = ∅, then
there exists a color class Vj = {x, y}, where x, y ∈ V (Kr ), as proved above; and
replace Vi , Vj in c with V ′

i , V
′
j such that x ∈ V ′

i , y ∈ V ′
j , V

′
i ∪ V ′

j = Vi ∪ Vj

and |V ′
i | = |Vi |, |V ′

j | = |Vj |. In this way, from c we can obtain an equitable
tree-r -coloring c′ of H such that each color class of c′ contains at least one vertex
of Kr . Since there are r vertices in Kr and r color classes in c′, each color class
contains exactly one vertex of Kr in c′. Then we are in the above case.

• Otherwise, there is a color class contains at least two vertices of Kr . Note that,
this is equivalent to the above case, in which there is a color class containing no
vertex of Kr , since there are exactly r color classes.

The theorem is proved. 
�

3.2 Polynomial time algorithm for ETCP in class of graphs with bounded treewidth

Consider the ETCP problem in this section. The basic idea is similar with the one for
ECP in Bodlaender and Fomin (2005): the main point is to solve the case in which
, the number of colors is bounded by some function of treewidth, maximum degree
and the order (the number of vertices) of the graph, because of the result in Kostochka
et al. (2005).

Theorem 8 [Kostochka et al. (2005)] Every n-vertex d-degenerate graph G with max-
imum degree � is equitably r-colorable for any r ≥ max{62d, 31d(n/(n − � + 1))}.

Every graph of treewidth at most d is d-degenerate and every equitable r -coloring
of a graph is also an equitable tree-r -coloring, so Theorem 8 implies the following
corollary.

Corollary 9 Every n-vertex graph of treewidth k with maximum degree � is equitably
tree-r-colorable for any r ≥ max{62k, 31k(n/(n − � + 1))}.

In Bodlaender and Fomin (2005), to solve the case with ’smaller’ (bounded by
some function) r , for any given subset S of vertices, they found several equitable
independent sets of each size � n

r � or � n
r � − 1 to cover S. They proved that it can be

done in polynomial time in the class of graphs with bounded treewidth if |S| or r is
bounded, by applying the dynamic programming based on a nice tree decomposition of
the graph. Instead, we will find several equitable forests of each size � n

r � or � n
r �−1 to
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cover S, which is more difficult because that some connectivity needs to be considered
comparing with the independent sets. To be easier understood, we give the details in
the following.

Let S ⊆ V be a set of vertices of a graphG = (V , E). We say that S can be covered
by forests of size � n

r � or � n
r � − 1 if there is a set of subsets Ai ⊆ V , i ∈ {1, 2, . . . , p},

p ≤ |S|, such that

(1) For every i ∈ {1, 2, . . . , p}, Ai induces a forest in G;
(2) For every i, j ∈ {1, 2, . . . , p} ,i �= j , Ai ∩ A j = ∅;
(3) For every i ∈ {1, 2, . . . , p}, |Ai | = � n

r � or � n
r � − 1;

(4) S ⊆ ∪1≤i≤p Ai .

Covering by forests is a natural generalization of an equitable tree-coloring: a graph G
has an equitable r-tree-coloring if and only if V can be covered by forests size � n

r � or
� n
r � − 1. As seen in Sect. 2, we find at most r forests ’covering’ V without restricting

the size of each forest. Details for restricting the size of each forest will be given later.
The following lemma will be used in the proof.

Lemma 10 Let S ⊆ V be a vertex subset of a graph G.

(a) If S cannot be covered by forests of size � n
r � or � n

r � − 1, then graph G is not
equitably r-colorable.

(b) If S can be covered by p forests A1, . . . , Ap of size � n
r � or � n

r � − 1 and the graph
G ′ = G[V \ ∪1≤i≤p Ai ] is equitably (r − p)-colorable, the graph G is equitably
r-colorable.

Proof (a) Let B1, . . . , Br be the color classes of an equitable tree-r -coloring of G.
Consider the collection of sets {Bi |1 ≤ i ≤ r , Bi ∩ S �= ∅}. Then S is covered by this
collection of forests of size � n

r � or � n
r � − 1. It is a contradiction.

(b) Use color classes A1, . . . , Ap, and partition the vertices ofG ′ as in the equitable
tree-(r − p)-coloring into color classes Ap+1, . . . , Ar . This gives an equitable tree-
r -coloring of G. 
�
Theorem 11 Let k be a constant. Let G = (V , E) be an n-vertex graph of treewidth
at most k, let S be a subset of V , and let r be an integer. When r or |S| is bounded by
a constant, one can either find in polynomial time a covering of S by forests of size
� n
r � or � n

r � − 1, or conclude that there is no such a covering.

In Sect. 2, we describe a polynomial algorithm, which either finds a collection of
≤ r forests covering V , or concludes that there is no such covering. Note that the size
of each forest is not precise. To prove Theorem 11, we need to record the size of each
forest in the covering, additionally. The proof will be given after the main result of
this section described in the following theorem.

Theorem 12 The Equitable Tree-Coloring Problem is polynomial solvable in the class
of graphs of bounded treewidth.

Proof The proof is similar with the one in Bodlaender and Fomin (2005). It is put here
for the convince of the readers.

123



166 Journal of Combinatorial Optimization (2020) 39:156–169

Let G = (V , E) be a graph of treewidth k maximum degree � and let r be an
integer. To determine if G has an equitable tree-r -coloring, we consider the following
cases.

Case 1 � ≤ n/2 + 1 and r ≥ 62k. Since max0≤�≤n/2+1
n

n−�+1 = 2, we have that

r ≥ 62k = max {62k, 2 · 31k} ≥ max

{

62k, 31k
n

n − � + 1

}

and by Corollary 9, G is equitably tree-r -colorable.
Case 2 � ≤ n/2 + 1 and r ≤ 62k. In this case, it follows from Theorem 11 that

the question whether G has an equitable tree-r -coloring can be solved in
polynomial time.

Case 3 � > n/2 + 1. Let S ⊆ V be the set of vertices in G of degree at least
n/2+ 2. Since the treewidth of G is k, G has at most kn edges. So |S| ≤ 4k.
Thus, by Theorem 11, it can be checked in polynomial time whether S can
be covered by forests of size � n

r � or � n
r � − 1. If S cannot be covered, then

by part (a) of Lemma 10, G has no equitable tree-r -coloring. Let Ai ⊆ V ,
i ∈ {1, 2, . . . , p}, p ≤ |S|, be a covering of S by forests of size � n

r � or
� n
r � − 1. We define a new graph G ′ = G[V \ ∪1≤i≤p Ai ]. The maximum

vertex degree �′ in G ′ is at most n/2 + 1 and the treewidth of G ′ is at most
k. Graph G ′ has

n′ = |V \ ∪1≤i≤p Ai | ≥ n − p
(
�n
r
� − 1

)
≥ n − 4k

(n

r
− 1

)
>

(

1 − 4k

r

)

n

vertices. Let r ′ = r − p. We need again to distinguish several cases.

Subcase A r ′ ≥ max{62k, 31k(n′/(n′ − n/2))}. Then

r ′ ≥ max

{

62k, 31k
n′

n′ − n/2

}

≥ max

{

62k, 31k
n′

n′ − �′ + 1

}

and by Corollary 9, G ′ is equitably tree-r ′-colorable. By part (b) of
Lemma 10, G has an equitable tree-r -coloring.

Subcase B r ′ < max{62k, 31k(n′/(n′ − n/2))} and r ′ < 62k. Since p ≤ 4k, we
have that r = r ′ + p < 66k. Then by Theorem 11, the question whether
G has an equitable tree-r -coloring, can be solved in polynomial time.

Subcase C r ′ < max{62k, 31k(n′/(n′ − n/2))} and r ′ ≥ 62k. Then

r ′ < 31k
n′

n′ − n/2
< 31k

n

(1 − 4k/r)n − n/2
= 31k

1/2 − 4k/r
.

Using r = r ′ + p ≥ 62k, we have that 4k/r ≤ 4k/62k = 2/31 and
1/2−4k/r ≥ 27/62. So r ′ < 72k andweconclude that r = r ′+p ≤ 76k.
Again, by Theorem 11 the question ifG has an equitable tree-r -coloring,
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can be solved in polynomial time. This ends the analysis of Case 3, and
the proof of the theorem.


�
Now we give the proof of Theorem 11, which plays an important role in the above

proof. This is also the main difference of our algorithm for ETCP with the algorithm
for ECP in Bodlaender and Fomin (2005).

[Proof of Theorem 11] We assume that min{|S|, r} = c for some constant c. We now
want to check if S can be covered by at most c forests of each size � n

r � or � n
r � − 1.

Recall some notations in Sect. 2: let (T ,X ) be a nice tree decomposition of G with
k. Without confusion, we identify any vertex in T with its corresponding bag in X .
Suppose that the root bag of T is R ∈ X . For any bag X ∈ X , let VX be the vertex set
of all vertices in bags X and its descendant in T ; andGX denotes the induced subgraph
G[VX ]. We use a dynamic programming algorithm, where we compute for each node
X ∈ X in the tree decomposition a table of triples, with each state associated to a
Boolean value.

For a bag X ∈ X , let F = {F1, F2, . . . , Fc} be a partition of X , where Fi can
be empty for any 1 ≤ i ≤ c; and let T = {Ti |i = 1, 2, . . . , c}, where for each
1 ≤ i ≤ c, Ti = {Ti1, Ti2 , . . . , Titi } is a partition of Fi , 1 ≤ ti ≤ k. Moreover, let
αi j be integers from 0 to � n

r �, 1 ≤ i ≤ c and 1 ≤ j ≤ ti + 1. For convenience,
put α as a vector consisting of all these αi j . We call such F , T , α as a triple of
X . Recall that B(k + 1) denotes the (k+1)-st Bell number. Thus there are at most
B2(k + 1)� n

r �c(k+1) triples for each X . For every such triple of X , we compute a
Boolean value BX [F , T , α]. This Boolean value is TRUE if and only if there is a set
of subsets Ai ⊆ VX , i ∈ {1, 2, . . . , p}, p ≤ c, such that:

(I’) For every i ∈ {1, 2, . . . , p}, Ai induces a forest in G;
(II’) For every j, l ∈ {1, 2, . . . , p}, j �= l, A j ∩ Al �= ∅;
(III’) S ∩ VX ⊆ ∪1≤i≤p Ai ;
(IV’) For every i ∈ {1, 2, . . . , p}, Ai ∩ X = Fi ;
(V’) In each subgraph induced by Ai , every Ti j , 1 ≤ j ≤ ti , is contained in one

connected component Ci j , i. e. a maximal induced subtree, differently from each
other. Furthermore, for every i ∈ {1, 2, . . . , p} and 1 ≤ j ≤ ti , |Ci j | = αi j , i.e.
the connected component containing Ti j contains αi j vertices; while, αiti+1 is the
sum number of vertices of all connected components in G[Ai ] not intersecting
with X .

Clearly, S can be covered by forests of each size � n
r � or � n

r � − 1 if and only
if BR[F , T , α] = T RUE for some triple of R satisfying for every 1 ≤ i ≤ p,∑

1≤ j≤ti+1 αi j = � n
r � or � n

r �− 1. Now, in bottom-up order, we compute for each bag
X ∈ X , for all its triples their Boolean values as shown in Sect. 2, but pay additionally
attention to the vectorα, which records the size of the subtrees of the forests.Adetailed,
but not difficult, argument shows that one can compute for join, introduce, and forget
bags its triple values in O(B2(k + 1)� n

r �2c(k+1)) time, when given all triple values for
the children of the bag. Thus, with O(nB2(k + 1)� n

r �2c(k+1)) time, we can compute
the triple values of the root R, and hence decide if there the desired covering exists.
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Table 1 Parameterize complexity of the Tree- coloring Problem and Equitable tree-r -coloring
Problem. “?” denotes that the Equitable tree-r -coloring Problem parameterized by vertex cover
number is not known to be FPT or W[1]-hard, even though this problem is polynomial solvable in graphs
with bounded vertex cover number

vetex cover number treewidth

Tree- coloring Problem FPT FPT

Equitable tree-r -coloring Problem ? W[1]-hard

Finally, using additional bookkeeping one can also solve the construction variant of
the problem and find, if existing, the covering of S by forests of each size � n

r � or
� n
r � − 1. 
�
Since the treewidth of any graph is at most its vertex cover number, from the above

theorem, the following corollary is true:

Corollary 13 The Equitable Tree-Coloring Problem is polynomial solvable in the class
of graphs of bounded vertex cover number.

4 Conclusion

In this article, we gave some parameterize complexity of the Tree- coloring Prob-
lem and Equitable tree-r -coloring Problem. Table 1 summarizes our results
as well as the remaining open questions.

Besides, we look back at Theorem 1, which immediately imply the following

Theorem 14 va∗
eq(G) ≤ k for every graph G with treewidth at most k.

Now we claim that the upper bound for va∗
eq(G) in the above theorem is sharp. Let

H be a complete graph on k vertices, and let S be a set of independent vertices that are
adjacent to every vertex of H . By G, we denote the resulting graph, which is clearly
a k-tree, and thus has treewidth at most k. We next prove that G admits no equitable
tree-(k − 1)-colorings, and thus the upper bound k for va∗

eq(G) in Theorem 14 cannot
be improved. Suppose otherwise that c is an equitable tree-(k − 1)-coloring of G.
Since there are k − 1 colors in c and H has k vertices, at least two vertices of H are
monochromatic. But every color class in c induces a forest, so every color in c appears
on H at most twice. Therefore, there is a color in c appearing on H exactly twice, and
moreover, this color cannot be used by any vertex in S (otherwise a monochromatic
triangle occurs). This gives that there is a color in c that are used by G exactly twice.
Since c is equitable, every color in c appears on G at most three times, which implies
that the number of colored vertices is at most 2 + 3(k − 2) = 3k − 4. Choose |S| to
be at least 2k − 3, we conclude a contradiction.

A graph G is k-degenerate if every subgraph of G has minimum degree at most k.
Clearly, a graph with treewidth at most k is k-degenerate. Therefore, it is interesting
to ask whether Theorem 14 can be generalized to k-degenerate graphs. To end this
paper, we leave a conjecture.
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Conjecture 15 va∗
eq(G) ≤ k for every k-degenerate graph G.

Conjecture 15 holds for all 2-degenerate graphs G, which is an almost trivial result,
since it is easy to see that χa(G) ≤ 3 and thus va∗

eq(G) ≤ χa(G) − 1 ≤ 2. To our
knowledge, for k-degenerate graphs G, the best known upper bound for va∗

eq(G) is
3k−1, see (Esperet et al. 2015, Theorem 9). Therefore, finding two constant c and t
such that va∗

eq(G) ≤ ckt for every k-degenerate graph G is also a problem that can
be considered further, instead of proving Conjecture 15 directly.
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