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1. Introduction

In this paper, all graphs are simple and undirected. For a vertex v of a graph G, we denote by N;(v) the set of vertices
that are adjacent to v in G. The degree of v in G, denoted by d;(v), is exactly the value of |[N;(v)|. By V(G), E(G), A(G) and
8(G), we denote the vertex set, the edge set, the maximum degree and the minimum degree of a graph G, respectively.
Sometimes we use A and § instead of A(G) and §(G) for convenience, respectively. The order of G is |V(G)| and the size
of G is |E(G)|. For two disjoint subset A, BCV(G), e(A, B) is the number of edges that have one end-vertex in A and the
other in B. If G; and G, are two disjoint graphs, then G; + G, denotes the graph with vertex set V(G;)UV(G,) and edge set
E(G1) UE(Gy) U{uv | u e V(Gy),v € V(G,)}. For other undefined notation, we refer the readers to [4].

It is well-known that the sum of the degrees of the vertices of a graph G with order n and size m is twice the num-
ber of edges. Formally, }",cy () dc(V) = 2m < n(n - 1). Actually, we are also interested in upper bounds on the expres-
sion 34 (G) := Y ey (o) dé(v) for all integers k>2. Note that X,(G) is well-known as the first general Zagreb index [17],
or the general zeroth-order Randi¢ index [18,29], which is an important molecular descriptor and has been closely corre-
lated with many chemical properties [11]. It attracts more and more attention from chemists and mathematicians including
[1,2,7,14,15,19,21-24,30].

In [6], De Caen proved that ) ,(G) < m(nzf’“1 +n—2), which is tight for complete graphs. This bound was generalized to
hypergraphs by Bey [3] and improved to m(n%“1 + Z%%A +(A-868)(0- n%])) by Das [10]. De Caen’s inequality was used by
Li and Pan [16] to provide an upper bound on the largest eigenvalue of the Laplacian of a graph. In [8], Cioaba generalized
Das’s bound to ;.1 (G) < 2 (3" (G) + (n — 1) (A¥ — §k)) — ((AK - 8¥)/n) ¥, (G) for a positive integer. In [5], Brandt, Harant
and Naumann gave an upper bound on X;(G) with k> 2 if G is a triangle-free k-chromatic graph.

We now focus on graphs with few crossings per edge. A graph is g-planar if it can be drawn in the plane so that each
edge is crossed by at most q other edges. Obviously, a O-planar graph is just a planar graph. Harant, Jendrol’ and Madaras

E-mail addresses: xzhang@xidian.edu.cn, xdu.zhang@gmail.com

https://doi.org/10.1016/j.amc.2019.01.002
0096-3003/© 2019 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.amc.2019.01.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2019.01.002&domain=pdf
mailto:xzhang@xidian.edu.cn
mailto:xdu.zhang@gmail.com
https://doi.org/10.1016/j.amc.2019.01.002

164 X. Zhang / Applied Mathematics and Computation 350 (2019) 163-169

[12] proved that Y, (G) <2(n— 1)k +4k(n —4) + 2.3k _2((§ + H¥ = 8%)(3n —6 —m) if G is a planar graph with order n
and size m. This implies

Y (6) <2(n— 1)+ o(n) (11)
k

for a planar graph G. The upper bound on the sum of the k-th powers of the degrees of 1-planar graphs was investigated
by Xu et al. [27], and by Czap, Harant and Hudak [9]. In particular, Czap, Harant and Hudak [9] showed that (1.1) holds for
1-planar graphs, and guessed that (1.1) holds for g-planar graphs with any integer g > 2. In this paper, we solve this open
problem. In other words, we prove

Theorem 1.1. If G is a g-planar graph with q > 1, then 3_,,(G) < 2(n — 1)* + o(n), and this bound is asymptotically tight.
2. Preliminaries

The crossing number cr(G) is the minimum number of edge crossings of a plane drawing of the graph G. The study of
crossing numbers originated in Turan’s brick factory problem, in which Turdn [26] asked for a factory plan that minimized
the number of crossings between tracks connecting brick kilns to storage sites. Mathematically, this problem can be formal-
ized as asking for the crossing number of a complete bipartite graph. Concerning this problem, Zarankiewicz [28] gave a
drawing of Kp,  which demonstrates that

cr(Knn) < Z(m,n) := [%J Lmz_ lJ GJ Ln 2 1J

and conjectured that cr(Kmn n) = Z(m, n). Kleitman [13] showed that

cr(Knpn) =Z(m,n), m<6 (2.1)
and gave a lower bound on cr(Kp, ) as follows:
1 njln-1
cr(Km.n) > gm(m -1) {EJ LTJ m>5, (2.2)

Let G; be the class of graphs G with the property that

cr(H) <r-e(H) for every subgraph H of G,

where r is a nonnegative real number. Suppose that Ky, , € Gr. By the definition of G, and by (2.1) and (2.2), if m>5, then
rmn > tm(m—-1)[ ]| %5 | = Im(m - 1)"%2 which implies that

20r
n<
“m-1

if m=4, then 4rn > 2| 4 || "5 | = "% which implies that

+2, (2.3)

n<8r+2, (2.4)

and if m = 3, then 3rn > L%J L”z;lJ > %, which implies that

n<12r+2, (2.5)
Let s;; denote the maximum integer such that K s,, € Gr. It is now easy to conclude from (2.3), (2.4) and (2.5) that
sm—1< 22r1+1, m> 5, (2.6)
s4—1<8r+1, (2.7)
s3—1<12r—-1. (2.8)

Lemma 2.1. [20] If G is a g-planar graph with q>1, and with order n and size m, then

m < ,/16.875q - n.

By Lemma 2.1, the average degree of any g-planar is 27”7 < ,/67.5q. Hence we conclude
Lemma 2.2. If G is a g-planar graph with q> 1, then §(G) < \/ﬁ O

For the crossing number of g-planar graph with g > 1, it is not hard to deduce the following
Lemma 2.3. [9] If G is a g-planar graph with q>1 and with size m, then cr(G) < 0.5gm.

Hence, if G is a g-planar graph, then G € Gy 5.
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Let P(M, a, b, c, k) be the following optimization problem on variables x1, ..., Xc.
Cc
max’y " (xi< — (% — 1)k>
i=1
st.a<x;<bie{l,2,...,c} (2.9)
c
Y x<M (2.10)
i=1
ac <M
M,a,b,c, k, xq,...,X: are positive integers (2.11)
Lemma 2.4. [9] If (xq,...,Xc) is a feasible solution of P(M, a, b, c, k) such that a <x; <b for at most one value i € {1,...,c} and

Yi_1x; =M, then it is an optimal solution of P(M, a, b, c, k).
Lemma 2.5. If k, p and § are positive integers such that § >4 and p > §(6 —3) — 1, then
(ak_ - 1)’<)(3 ~3)4 (p+2—5(5 _3))’<— (p+ 12805 _3)>'<

<@-3)+(+2)*—(p+D

Proof. Consider the optimization problem P(M,a,b,c, k) with M=p+8—-1,a=1, b=p+2 and c =5 —2. It is easy to
see thatac=8§ -2 < p+6 —1=M and then (2.11) holds.

First, choose x; =---=X5_3 =4, and x5_, = p+2 —6(5 — 3). It is easy to check that (x;,...,x5_,) is a feasible solution
of P(M,a,b,c k). Second, choose X; =---=X5_3 =1 and X5_, = p + 2. Clearly, (X7,...,Xs_,) is also a feasible solution of
P(M, a, b, c, k), and moreover, it satisfies the condition in Lemma 2.4. Therefore, (X7,...,Xs_,) is an optimal solution. This
implies

5-2 5-2
(- =) = 3 (- ® - ¥,
i=1 i=1

as desired. O

3. Sum of Powers of the Degrees

Lemma 3.1. Let G be a graph in G, with order n. If v is a vertex of G with the minimum degree § > 1, then
> de(x) <2n+ (20r +8)2°.
xeNg (V)

Proof. If § <2, then 2 xeNe ) dc(x) <2A(G) <2n— 2. Hence we assume that § > 3. For a vertex u e V(G) not belonging to
Ng(v) U {v}, t(u) denotes the value of |[Ng(u) N Ng(v)|. Clearly, 0 < t(u) < 4.

Let By, B, ..., Bp be all m-subsets of N¢(v), where p = (r‘il) and let T;; be the set of vertices u € V(G) \ (Ng(v) U {v}) such
that t(u) = m, where 0 <m <34. Set ay, = |Tpn|. It follows that

Qo4+ +om+8+1=n. (3.1)

Construct a bipartite graph H = (A, B) such that A=Ty, and B = {By,B,,...,Bp}. If a vertex u € A has m neighbors in
N¢(v) that forms an m-set S; € B, then add an edge between u and S;. Clearly, in the graph H, every vertex in A has exactly
one neighbor in B, which implies

e(A.B) = |A| = |Tal. (3.2)

On the other hand, in the graph H, every vertex in B has at most s;; — 1 neighbors in A. Otherwise, there is a vertex in
B, say B;, that has s, neighbors uq,us, ..., Us, in A. Therefore, the graph induced by {uq,us,..., us,,, v} and B; contains a
Kmn.sn+1 in G. However, Kp, 5 .1 € Gr by the definition of sp, a contradiction. Hence we conclude that

e(A, B) < (sm — 1)|B| = (sm — 1)p. (3.3)
Combine (3.2) with (3.3), and then with (2.6), (2.7) and (2.8), we immediately have

20r 1)
o = Tl < (m—l +1>(m>, m>5

m
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8
as =Tl = Br+ 1| ,

)
az = T3] < (12r+1)<3)~

For the convenience of the next computations, we write the above three inequalities into a common one (although it is
weaker):

20r )
am = |Tn| < (m—2+1>(m>’ m>3,

which implies

(m—-2)am < (20r+m-2) (31) <(20r+6-2) (31) (3.4)
By e(v) we denote the number of edges in the subgraph induced by N¢(v) U {v}. Clearly,
e() < (5 : 1) = 256+ 1) (35)

Using (3.1), (3.4) and (3.5), we conclude
> de(x) =2e(v) -8+ > t(u)
xeNg (v) ueV (G)\(Ne )u{v})
=2e(V) =6+ oy 420 + 303 + ... + 8
)
=2(xo+ 01+ +om+8+1)+2e() =38 -2 2a0 — 1 + Y _ (M —2)am
m=3
)
=2n+2e(V) =38 -2 - 20—y + »_ (M —2)an
m=3
5. (8
52n+8(872)+(20r+8—2)2 ( )

m=3 m

:2n+5(5—2)+(20r+8—2)<25—1—8—%5(8—1))
§2n+8(8—2)+(20r+8—2)25—(8—2)(1+8+%8(8—1)>

— 20+ (207 48— 2)2° — (5_2)(1 +%5(a_1))

<2n+ (201 + 8)28,
as desired. O

Lemma 3.2. Let G be a graph in G, with order n and minimum degree § >1, and let p := p(r,§) = L(20r+8)2‘3J. Ifvisa
vertex of G with the minimum degree and n > p + 3, then

> (det = @ot) = 1) =2((n=DF = (1-2)) + 6 =3) + (p+2)F = (o + D,

xeNg (v)

Proof. If k = 1, then it is trivial. Therefore we assume that k> 2. If § <2, then

Y (dot0¥ - @0 - 1) =2(AG) = (A©G) - DF) =2((n- 1) - (n-2)¥)

xeNg (V)

and the desired result holds. Note that § =3+ (0 +2)¥— (p+ 1k >8 -3 +k(p+1)¥1>8 -3 +2(p+1) > 0. Hence we
assume in the following that § > 3.

Consider the optimization problem P(M,a,b,c, k) with a=c=8, b=n—-1 and M =2n+ p. Since M> p >§-2% > §2,
(2.11) holds.

Choose x1, ..., x5 to be the degrees of the § neighbors of v in G, respectively, and then substitute them into P(M, a, b, c, k).
Clearly, (2.9) is trivially satisfied. By Lemma 3.1, (2.10) is verified. Hence (x;,..., Xs) is a feasible solution of P(2n+ p, §,
n—1,6 k).
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We now construct another one feasible solution (xi,...,Xs) of P(2n+p,8,n—1,8,k) as follows. If § =3, then let
Xi=p+2, X=x3=n-1, and if §>4, then let X; =... =X5_3=08, X5, =p+2-8(8—3), and X5_; =X5 =n — 1. Since
Nn-1>p+2>p+2-866-3)>8-28-6(-3)>34, (2.9) holds and § <X; <n—1 for at most one value ie {1,...,c}.
Since Y0 | X; =2n+ p =M, by Lemma 2.4, (%;, ..., X3) is an optimal solution of P(2n + p,8,n— 1,6, k).

Hence,
de (0 — (da(x) — D) = 3 (%= - DF) = 3 (R - ®@ - DY), (36)
X (ot ot - ) = 33 )=2( )
If § =3, then
§
> (R- ®- 1) =2((-DF = -2)) + (0 +2) = (p+ 1 (37)

i=1
and if § > 4, then by Lemma 2.5 (note that p > §2% > §(§ — 3) — 1), we conclude
s

> (% - G- 1¥)

i=1

:2((n—1)"—(n—2)">+(8"—(8—1)")(6—3)+(,0+2—8(8—3))"— (,0+1 _5(3_3))’<

< 2((n k- (n— 2)’<) F -3+ (p+2)—(p+ D (3.8)
Combine (3.6) and (3.7) with (3.8), we prove the desired inequality. O
Lemma 3.3. [12] If a, b and k are positive integers with a <b and k> 2, then

a— (a—1* < b — (b— 1)k

Lemma 34. Let G be a graph in G, with order n and minimum degree 8y <&, where § is a fixed positive integer, and let
p = p(r,8) = | (20r +8)2% |. If v is a vertex of G with the minimum degree 8o>1 and n > p +3, then

> (dott - @0~ 1) =2((n-DF = 1-2)) + =3+ (p+2 - (p+ 1
xeNg(v)
Proof. If k = 1, then there is nothing to prove. If k> 2, then by Lemmas 3.2 and 3.3,
> (de = o) = D) =2((n =1 = (1=2)F) + 6o = 3) + (p(r:80) +2) = (p(r.80) + 1)

xeNg (v)

< 2((n 1)k —(n— 2)’<) +(6-3)+ (p(r, 5) +2)’< - (,o(r, 5) + 1)’<

=2((1= 1) = (1=2)) + (6 =3) + (0 +2)* = (o + D~
as desired. Note that p(r, §g) < p(r, §), since 8o <6. O

Theorem 3.5. Let G be a graph in G, with order n and minimum degree §y <48, where § is a fixed positive integer, and let
p=pr8)=|Q0r+82 |, 0= 8)=8-3+(+2) = (p+ DX Ifn > p+2, then

Y6 =2n- D+ (@+8)(M—p-2)+p(p+ D (3.9)
k

Proof. Obviously, we can assume that there is no isolate vertex in G, since such a vertex contribute nothing to X(G).
Therefore, we assume & > 3§ >1 in the following.

We prove (3.9) by induction on n. If n=p +2, then >, (G) <n(n— Dk = (p+2)(p + 1k, and (3.9) holds. Hence we
assume that n > p + 3.

Let v be a vertex in G with minimum degree §qy. Clearly, H := G — v € G, is a graph with order n — 1. By the induction
hypothesis and by Lemma 3.4,

Y@ =X H +de@F+ Y (de0* - (do) - 1F)
k k

xeNg (V)
<22+ @+8)(n-p-3)+pp+ D+ 85 +2((-DF = (1-2)}) + o

<2m-Df+(@+8)M-p-2)+p(p+ Dk
as desired. O
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4. Conclusions and remarks
Recall that p := p(r,8) = | (20r +8)2% | and w := w(1,8) =8 =3+ (p +2)* — (p + 1)*. One can easily see that

P+~ (@+8) = (p+ 1)k — (Bk+8+3) > ((20r+5)25>k_(3’<+5+3)

>8k2% -1)-6-3>6%4°-1)-6-3>0 (4.1)

for k>2 and 6 > 2.
Ifn>p+2, k>2and § >2, then by (4.1), n((0 +2)¥ — (w0 + %)) > (0 +2)((p + 2)¥ — (w + 8)), which implies that

(@+8)M-p-2)+p(p+D*<(p+2)*n+p(p+ 1" = (p+2)! (4.2)

Theorem 4.1. Let q>1 be an integer and let p := p(0.5q, \/67.5q) = | (10q + /67.5q)2V67>1| .= f(q). If G is a g-planar graph
with order n > p + 2, then

Y (© =201+ (£@ +2)n+ f@) (F@ + 1) = (@) +2)* (43)

k

=2(—-1*+o(n), (4.4)
moreover, the upper bound in (4.4) is asymptotically tight.

Proof. By Lemma 2.3, G € Gy 54, and by Lemma 2.2, the minimum degree of G is at most ,/67.5¢q. Substitute r = 0.5q and
6 = /67.5q into Theorem 3.5, and then use (3.9) and (4.2), we obtain the desired result.

For the tightness, consider the planar (so also g-planar with g>1) graph H := K + P,_,. It has two vertices of degree
n—1, n—4 vertices of degree 4, and two vertices of degree 3. Therefore,

SeH) =2 - Dk + (n—-4)4k 4 2.3k =2(n— Dk + 4k .n 4 2.3k —4k+1—2(n — 1)k 1 o(n). O

Theorem 4.1 implies Theorem 1.1, which says that >, (G) < 2(n — 1)¥ + o(n) for any g-planar graph with q> 1. An inter-
esting problem is now to determine what does the o(n) part look like. Actually, (4.3) gives an expanded form of the o(n)
part, but the integer f(q) there is a bit large. Therefore, we naturally propose the following problem.

Open Problem: For a g-planar graph G, determine the smallest integer z(q) such that

3(6) =2(n—1)F + (z(q) + Z)kn +Z(q)(z(q) + 1)’< - (z(q) + 2)"“. (4.5)

k

Truszczynski [25] confirmed that z(0) = 2. In this paper we conclude for g > 1, from Theorem 4.1, that

2(@) = f(@) = | (10 -+ /6759)2vF5 | (46)

Actually, fixing z(q) or finding a better upper bound on z(q) are both interesting.

Specially, the main result of Czap et al. [9] showed that ¥, (G) < 2(n — 1)k + 607% - n + 605 - 606% — 607! if G is a 1-
planar graph, which implies that z(1) < 605.

Let P, be the graph derived from the path P, on n vertices by adding edges such that any two vertices with distance (in
Pp) at most 2 or exactly n — 1 are adjacent. It is easy to see that H := K; + P, is a 1-planar graph (see Fig. 1 for two special
examples) with two vertices of degree n — 1, n — 6 vertices of degree 6, and four vertices of degree 5, which results in

SeH) =2(n— 1Dk + (n-6)6K+4.5k=2(n - 1k + 6. n4 4.5k gkt
This implies z(1) > 4. Actually, we conjecture that z(1) = 4, that is, Y, (G) <2(n—1)¥ 4+ (n —6)6k + 4.5k =2(n — 1)k +
6%.n+4.5% — 6k+1 for any 1-planar graph G (being sharp).
For q>2, if z(q) has been fixed, then whether the upper bound in (4.5) is sharp? In order to confirm this guesswork
positively, let us look first at the following computation:

2(n— 1k + (z(q) + Z)kn +z(q)(z(q) + l)k - (z(q) + 2)"+1
=2(n-1k+ (n —(z(q) + 2)) (z(q) + 2)" +z(q)(z(q) + 1)".

Clearly, what we should now do is to construct an n-vertex g-planar graph Gq with two vertices of degree n — 1, z(q) vertices
of degree z(q) + 1, and n — (z(q) +2) vertices of degree z(q) + 2. If n is sufficiently large (note that z(q) is bounded by a
constant by (4.6)), then Gq4 has two vertices of maximum degree A =n—1, § — 1 vertices of minimum degree §, and A —§
vertices of degree § + 1, which looks like the pictures in Fig. 1 that show the case for g = 1. Therefore, it is interesting to
ask whether (or how) such a graph Gq with q>2 can be constructed.
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A

Fig. 1. Ko + P and Ko + P.
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