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Abstract
A graph is 1-planar if it can be drawn on a plane so that each edge is crossed by at
most one other edge. In this paper, we first give a useful structural theorem for 1-planar
graphs, and then apply it to the list edge and list total coloring, the (p, 1)-total labelling,
and the equitable edge coloring of 1-planar graphs. More precisely, we verify the well-
known List Edge Coloring Conjecture and List Total Coloring Conjecture for 1-planar
graph with maximum degree at least 18, prove that the (p, 1)-total labelling number
of every 1-planar graph G is at most �(G) + 2p − 2 provided that �(G) ≥ 8p + 2
and p ≥ 2, and show that every 1-planar graph has an equitable edge coloring with
k colors for any integer k ≥ 18. These three results respectively generalize the main
theorems of three different previously published papers.

Keywords 1-Planar graph · List edge coloring · List total coloring · (p, 1)-Total
labelling · Equitable edge coloring

Mathematics Subject Classification 05C15 · 05C10

1 Introduction

Throughout the paper, all graphs arefinite, simple andundirected.ByV (G), E(G), δ(G)

and �(G), we denote the set of vertices, the set of edges, the minimum degree and the
maximum degree of a graph G. If G is a plane graph, then F(G) denotes the set of
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faces of G. A k-, k+- and k−-vertex (resp. face) is a vertex (resp. face) of degree k, at
least k and at most k, respectively. For undefined concepts we refer the reader to [2].

A proper edge (resp. total) k-coloring of G is a function ϕ from E(G) (resp.V (G)

∪ E(G)) to {1, 2, . . . , k} so that ϕ(x) �= ϕ(y) if x and y are two adjacent edges
(resp. adjacent/incident elements) inG. The minimum k such that G has a proper edge
(resp. total) k-coloring is the edge (resp. total) chromatic number of G, denoted by
χ ′(G) (resp.χ ′′(G)).

An edge assignment L for the graph G is a function so that for any edge e ∈ E(G),
L(e) is a list of possible colors that can be used on e. If G has a proper edge coloring
ϕ such that ϕ(e) ∈ L(e) for each edge e of G, then we say that G is edge-L-colorable
and ϕ is an edge-L-coloring of G. A graph G is edge f -choosable if, whenever
we give lists L(e) of f (e) colors (where f is a function from E(G) to N) to each
edge e of G, G is edge-L-colorable. If G is edge f -choosable and f (e) = k for each
edge e ∈ E(G), then G is edge k-choosable. The minimum k such that G is edge
k-choosable is the list edge chromatic number or edge choosability of G, denoted by
χ ′
l (G). The list total chromatic number or total choosability of G, denoted by χ ′′

l (G),
is defined similarly.

Concerning the edge choosability and the total choosability of graphs, there are two
well-known conjectures.

Conjecture 1.1 (List Edge Coloring Conjecture) χ ′
l (G) = χ ′(G) for any graph G.

Conjecture 1.2 (List Total Coloring Conjecture) χ ′′
l (G) = χ ′′(G) for any graph G.

The List Edge Coloring Conjecture (LECC) was independently posed by Vizing,
and by Gupta, and by Albertson and Collins, and by Bollobás and Harris (see [11] for
the history of this problem). The List Total Coloring Conjecture (LTCC) was posed
by Borodin, Kostochka andWoodall [5]. Until now, the above two conjectures are still
widely open, and particular research on some special but nontrivial classes of graphs
is carried on. For example, Borodin, Kostochka and Woodall [5] proved in 1997 that
LECC and LTCC hold for planar graphs with maximum degree at least 12. Although
this is a result of two decades ago, the bound 12 for the maximum degree there is still
the best known bound at this moment.

The aim of this paper is to study these conjectures for the family of 1-planar graphs.
A graph is 1-planar if it can be drawn on a plane so that each edge is crossed by at most
one other edge, and this drawing is a 1-plane graph. Usually, the number of crossings
in a 1-plane graph is assumed to be as few as possible. The notion of 1-planarity
was introduced by Ringel [13] while trying to simultaneously color the vertices and
faces of a plane graph such that any pair of adjacent or incident elements receive
different colors. Ringel [13] proved that every 1-planar graph is 7-colorable, and this
bound for the chromatic number was later improved to 6 (being sharp) by Borodin
[3,4]. Recently in 2017, Kobourov, Liotta and Montecchiani [12] reviewed the current
literature covering various research streams about 1-planarity, such as characterization
and recognition, combinatorial properties, and geometric representations.

For the edge and the total colorings of 1-planar graphs, Zhang and Wu [19] proved
that the edge chromatic number of every 1-planar graphwithmaximumdegree� ≥ 10
is equal to�, and Zhang and Liu [18] conjectured that the bound for� can be lowered
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to 8, which is best possible. Zhang, Hou and Liu [17] proved that the total chromatic
number of every 1-planar graph with maximum degree � ≥ 13 is at most � + 2. In
2012, Zhang, Wu and Liu [20] proved the following theorem, which confirms LECC
and LTCC for 1-planar graphs with large maximum degree.

Theorem 1.1 [20, Zhang,Wu and Liu] If G is a 1-planar graph with maximum degree
� ≥ 21, then χ ′(G) = χ ′

l (G) = � and χ ′′(G) = χ ′′
l (G) = � + 1.

A (p, 1)-total k-labelling of a graph G, introduced by Havet and Yu [7,8], is a
function f fromV (G)∪E(G) to the color set {0, 1, · · · , k} such that | f (u)− f (v)| ≥ 1
if uv ∈ E(G), | f (e1) − f (e2)| ≥ 1 if e1 and e2 are two adjacent edges in G, and
| f (u)− f (e)| ≥ p if the vertex u is incident to the edge e. The minimum k such thatG
has a (p, 1)-total k-labelling, denoted by λT

p (G), is the (p, 1)-total labelling number

of G. It is easy to see that λT
1 (G) = χ ′′(G) − 1. Havet and Yu [8,9] put forward the

following conjecture.

Conjecture 1.2 ((p, 1)-Total Labelling Conjecture) λT
p (G) ≤ min{�(G) + 2p

− 1, 2�(G) + p − 1}.
For p = 1, the above conjecture is nothing but the well-known Total Coloring

Conjecture, which states that χ ′′(G) ≤ �(G) + 2. Since �(G) + 1 is a natural lower
bound for χ ′′(G), and the (p, 1)-total labelling is a generalization of the total coloring,
it is interesting to consider when we have λT

p (G) ≤ �(G) + 2p − 2. Concerning this
problem, Bazzaro, Montassier and Raspaud [1] proved that if G is a planar graph with
�(G) ≥ 8p + 2 and p ≥ 2, then λT

p (G) ≤ �(G) + 2p − 2. The lower bound for the
maximum degree in this result was recently improved to 4p + 4 by Sun and Wu [14].
For 1-planar graphs, Zhang, Yu and Liu [21] proved the following result.

Theorem 1.3 [21, Zhang,Yu and Liu] If G is a 1-planar graph with �(G) ≥ 8p + 4
and p ≥ 2, then λT

p (G) ≤ �(G) + 2p − 2.

Let ϕ be a function from E(G) to {1, 2, . . . , k}. For each vertex v ∈ V (G), let
ci (ϕ, v) = |{uv ∈ E(G) | ϕ(uv) = i}|. An edge k-coloring ϕ is equitable if for each
v ∈ V (G), we have

|ci (ϕ, v) − c j (ϕ, v)| ≤ 1 (1 ≤ i < j ≤ k).

The equitable edge chromatic number χ ′=(G) of a graph G is the smallest number k
such that G has an equitable edge k-coloring. However, the notion χ ′=(G) is somehow
trivial since every graph has an equitable edge 1-coloring. Therefore, we need another
notion to characterize the equitability of an edge coloring .

The equitable edge chromatic threshold χ ′≡(G) of G is the smallest k such that
G has an equitable edge k′-coloring for any k′ ≥ k. For example, the equitable edge
chromatic threshold of any odd cycle is exactly 3.

From the above definitions, one can easily find that a proper edge coloring of G is
trivially equitable. Hence we immediately conclude that χ ′≡(G) ≤ χ ′(G). However,
χ ′(G) may be a too large upper bound for χ ′≡(G). For example, Song, Wu and Liu
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[15] proved for series-parallel graphs G that χ ′≡(G) = 1 if and only if G is not a
connected graph with the number of edges being odd in which each vertex has even
degree. Hu et al. [10] proved that χ ′≡(G) ≤ 12 for any planar graph G. For 1-planar
graphs, Hu et al. [10] gave the following result.

Theorem 1.4 [10, Hu et al.] If G is a 1-planar graph, then χ ′≡(G) ≤ 21.

In this paper, we first present in Sect. 2 an useful structural theorem for 1-planar
graphs, which can be used to consider not only the list edge and list total coloring
problems, but also some other coloring problems such as the (p, 1)-total labelling
and the equitable edge coloring. In Sect. 3, we prove that LECC and LTCC hold for
1-planar graphs with maximum degree at least 18, which improves Theorem 1.1. In
Sect. 4, we consider the (p, 1)-total labeling of 1-planar graph G by proving λT

p (G)

≤ �(G)+2p−2 if�(G) ≥ 8p+2 and p ≥ 2. This improves Theorem 1.3. Actually,
this result also generalizes the previously mentioned result of Bazzaro, Montassier
and Raspaud on planar graphs to the same result on 1-planar graphs. In Sect. 5, we
improve the upper bound for the equitable edge chromatic threshold of 1-planar graphs
in Theorem 1.4 to 18.

2 Structural Theorem

The associated plane graph G× of a 1-plane graphG is the plane graph that is obtained
from G by turning all crossings of G into new vertices of degree four. These new
vertices in G× are false vertices, and the original vertices of G are true ones. A face
in G× is false if it is incident with at least one false vertex, and true otherwise.

Lemma 2.1 [19, Lemma 1] If G is a 1-plane graph, then

(a) false vertices in G× are not adjacent;
(b) false 3-face in G× is not incident with 2-vertex;
(c) if a 3-vertex v is incident with two 3-faces and adjacent to two false vertices in

G×, then v is incident with a 5+-face;
(d) there exists no edge uv in G× such that dG×(u) = 3, v is a false vertex, and uv

is incident with two 3-faces.

A bipartite subgraph F of G is a k-alternator of G with partite sets X ,Y for
some 2 ≤ k ≤ 	�(G)

2 
 if dF (x) = dG(x) ≤ k for each x ∈ X , and dF (y)
≥ dG(y) + k − �(G) for each y ∈ Y .

A bipartite subgraph F of G is a k-alternating subgraph of G with partite sets X ,Y
for some 2 ≤ k ≤ 	�(G)

2 
 if dF (x) = dG(x) ≤ k for each x ∈ X , and dF (y) ≥ k for
each y ∈ Y .

Lemma 2.2 [16, Lemma 2.4] (resp. [10, Lemma 7]) Let 2 ≤ k ≤ 	�
2 
 be a fixed

integer and let G be a graph without k-alternator (resp. k-alternating subgraph). Let
Xk = {x ∈ V (G) | dG(x) ≤ k} and Yk = ⋃

x∈Xk
NG(x). If Xk �= ∅, then there exists

a bipartite subgraph Mk of G with partite sets Xk,Yk such that dMk (x) = 1 for each
x ∈ Xk and dMk (y) ≤ k − 1 for each y ∈ Yk.
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Remark The second result (while k-alternating subgraph is forbidden in G) of the
above lemma comes from the first three paragraphs of the proof of Lemma 7 in [10].
Although k is assumed to be at most 5 in [10], the upper bound for k can actually be
relaxed to 	�

2 
 without changing any word in their proof.

Following Lemma 2.2, we call y the k-master of x if xy ∈ Mk and x ∈ Xk . By
Lemma 2.2, we conclude that

each d-vertex

(

2 ≤ d ≤
⌊

�

2

⌋)

has a k-master for each d ≤ k ≤
⌊

�

2

⌋

(2.1)

and

each vertex of G may be a k-master

(

2 ≤ k ≤
⌊

�

2

⌋)

of at most k − 1 vertices.

(2.2)

Theorem 2.3 If G is a 1-planar graph with minimum degree at least 2, then G contains

(a) an edge xy with dG(x) ≤ 5 and dG(x) + dG(y) ≤ 19, or
(b) an edge xy with dG(x), dG(y) ≥ 6 and dG(x) + dG(y) ≤ 16, or
(c) a k-alternator (resp. k-alternating subgraph) for some k ∈ {2, 3, 4, 5}.
Proof Suppose, to the contrary, that G is a minimal counterexample (in terms of
|V (G)| + |E(G)|) to this theorem. Clearly, G is connected.

If �(G) ≤ 9, then choose an edge uv of G such that dG(u) = δ(G). Since G is a
1-planar graph, δ(G) ≤ 7 (see [6]). This implies that dG(u)+ dG(v) ≤ δ(G)+�(G)

≤ 16 < 19. Hence configuration (a) or (b) occurs in G, a contradiction.
Hence,�(G) ≥ 10. By (2.1) and the absence of the configuration (c), each d-vertex

with 2 ≤ d ≤ 5 (if it exists) of G has a k-master for each d ≤ k ≤ 5.
We apply the discharging method to the associated plane graph G× of G. For-

mally, for each vertex v ∈ V (G×), let c(v) := dG×(v) − 6 be its initial charge, and
for each face f ∈ F(G×), let c( f ) := 2dG×( f ) − 6 be its initial charge. Clearly,∑

x∈V (G×)∪F(G×) c(x) = −12 < 0 by the well-known Euler’s formula.
In what follows, we call a true vertex of G× big if dG×(G) ≥ 9, and small if

dG×(G) ≤ 8. Since (a) and (b) are forbidden in G, any two small vertices are not
adjacent inG. We use F, B and S to represent false vertex, big vertex and small vertex,
respectively, and then use these notations to represent the structure of a face of G×.
For example, we say that a face is an (F, S, B, S)-face if it is a 4-face with vertices
u1, u2, u3 and u4 lying cyclically on the boundary of f such that u1 is false, u2 is
small, u3 is big, and u4 is small.

If a face f ∈ F(G×) is incident with a false vertex u so that the two neighbors of
u in the subgraph induced by the edges of f are big vertices, then u is a hungry false
vertex incident with f . A face in G× is burdened if it is incident with at least one
small vertex. �


We define discharging rules as follows.
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R1 every big vertex of G× sends 1
3 to each of its incident faces.

R2 every 4+-face of G× sends 4
3 to each of its incident hungry false vertices, and 2

3
to each of its incident false vertices that are not hungry.

R3 every false 3-face of G× sends all of its received charge after applying R1 to its
incident false vertex.

R4 every true 3-face of G× sends all of its received charge after applying R1 to its
incident small vertex (if it exists).

R5 every 4+-face of G× redistributes it remaining charge after applying R1 and R2
equitably to each of its incident small vertices (if it exists).

R6 every 2-vertex of G receives 2
3 ,

1
2 ,

1
2 and 2

3 from its 2-master, 3-master, 4-master
and 5-master, respectively.

R7 every 3-vertex of G receives 1
2 ,

1
2 and 2

3 from its 3-master, 4-master and 5-master,
respectively.

R8 every 4-vertex of G receives 1
2 and

2
3 from its 4-master and 5-master, respectively.

R9 every 5-vertex of G receives 2
3 from its 5-master.

Here one shall note that if uv ∈ E(G) and 2 ≤ dG(v) ≤ 5, then u may simultane-
ously be a k-master of v for several values k with dG(v) ≤ k ≤ 5.

Let c′(x) be the charge of x ∈ V (G×) ∪ F(G×) after applying the above rules.
Since our rules only move charge around, and do not affect the sum, we have

∑

x∈V (G×)∪F(G×)

c′(x) =
∑

x∈V (G×)∪F(G×)

c(x) < 0.

Next, we prove that c′(x) ≥ 0 for each x ∈ V (G×) ∪ F(G×). This leads to∑
x∈V (G×)∪F(G×) c

′(x) ≥ 0, a contradiction.

Since every 4+-face f of F(G×) is incident with at most 	 dG× ( f )
2 
 false vertices by

Lemma 2.1(a), the charge of f after applying R2 is at least 2dG×( f )−6− 4
3	 dG× ( f )

2 

> 0 for dG×( f ) ≥ 5. On the other hand, if f is a 4-face incident with
at least one hungry false vertex, then it is incident with at least two big ver-
tices and thus c′( f ) ≥ 2 × 4 − 6 + 2 × 1

3 − 2 × 4
3 = 0 by R1 and

R2, and if f is a 4-face incident with none hungry false vertex, then c′( f )
≥ 2 × 4 − 6 − 2 × 2

3 > 0 by R2. Hence, R1–R5 guarantee that c′( f ) ≥ 0 for
each f ∈ F(G×).

By R1, R3 and R4, it is easy to conclude the following three claims.

Claim 1 Every (F, B, B)-face sends 2
3 to its incident false vertex. �


Claim 2 Every (F, B, S)-face sends 1
3 to its incident false vertex. �


Claim 3 Every burdened true 3-face sends 2
3 to its incident small vertex. �


Now we consider burdened 4+-faces.

Claim 4 Every burdened 4-face sends to each of its incident small vertices 1
3 if f is an

(F, S, F, S)-face, 5
6 if f is an (F, S, B, S)-face, 1 if f is an (F, S, F, B)-face, and

at least 4
3 otherwise.
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Proof If f is an (F, S, F, S)-face, then the false vertices incident with f are not
hungry, and thus by R2 and R5, f sends 1

2 × (2 × 4 − 6 − 2 × 2
3 ) = 1

3 to each of its
incident small vertices.

If f is an (F, S, B, S)-face, then the false vertex incident with f is not hungry, and
thus by R1, R2 and R5, f sends 1

2 × (2 × 4 − 6+ 1
3 − 2

3 ) = 5
6 to each of its incident

small vertices.
If f is an (F, S, F, B)-face, then the false vertices incident with f are not hungry,

and thus by R1, R2 and R5, f sends 2 × 4 − 6 + 1
3 − 2 × 2

3 = 1 to its incident small
vertex.

By symmetry, f can be of another types among (S, B, B, B), (S, B, S, B),
(F, S, B, B) and (F, B, S, B). In each case we can similarly calculate that f sends
at least 4

3 to each of its incident small vertices. �

Claim 5 Every burdened 5+-face sends at least 4

3 to each of its incident small vertices.

Proof If f is not incident with hungry false vertex, then f is incident with at most

	 dG× ( f )
2 
 false vertices and at most 	 dG× ( f )

2 
 small vertices. Hence f sends at least

(2dG×( f ) − 6 − 2
3	 dG× ( f )

2 
)/	 dG× ( f )
2 
 ≥ 4

3 to each of its incident small vertices by
R2 and R5.

If f is incident with a hungry false vertex, then f is incident with at most 	 dG× ( f )
2 


− 1 hungry false vertices (otherwise f is not burdened) and at most � dG× ( f )−3
2 � small

vertices. By R1, R2 and R5, f sends at least (2dG×( f ) − 6 − 4
3 (	 dG× ( f )

2 
 − 1) −
2
3 )/� dG× ( f )−3

2 � ≥ 4
3 to each of its incident small vertices. �


Now we calculate the final charge of each vertex v ∈ V (G×).
Case 1. v is a false vertex.
If v is incident with at least three (F, B, B)-faces, then by Claim 1, c′(v) ≥ 4

− 6 + 3 × 2
3 = 0.

If v is incident with exactly two (F, B, B)-faces, then each of another two faces
that are incident with v is an (F, B, S)-face or a 4+-face. Hence by Claims 1, 2 and
R2, we have c′(v) ≥ 4 − 6 + 2 × 2

3 + 2 × min{ 13 , 2
3 } = 0.

If v is incident with exactly one (F, B, B)-face, then v is incident with at least one
4+-face, because otherwise v is incident with an (F, S, S)-face, which is impossible
since small vertices are not adjacent in G. Under this condition, by Claims 1, 2 and
R2, we have c′(v) ≥ 4 − 6 + 2

3 + 2 × min{ 13 , 2
3 } + 2

3 = 0.
If v is incident with none (F, B, B)-face, then v is incident with at least two 4+-

faces, because otherwise v is incident with an (F, S, S)-face, which is impossible
since small vertices are not adjacent in G. Under this condition, by Claims 1, 2 and
R2, we have c′(v) ≥ 4 − 6 + 2 × min{ 13 , 2

3 } + 2 × 2
3 = 0.

Case 2. v is a 2-vertex.
By Lemma 2.1(b), v is not incident with a false 3-face, and by R6, v receives 2

3 ,
1
2 ,

1
2

and 2
3 from its 2-master, 3-master, 4-master and 5-master, respectively.

If v is incident with a true 3-face, then v is adjacent to two big vertices in G×,
and the other face f incident with v is either a 5+-face, or an (F, B, S, B)-face, or
a (B, B, S, B)-face, or a (S, B, S, B)-face. In either case, f sends at least 4

3 to v by
Claims 4 and 5. Hence c′(v) ≥ 2 − 6 + 2

3 + 4
3 + 2

3 + 1
2 + 1

2 + 2
3 > 0 by Claim 3.
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If v is incident with two 4+-faces, one of which is a 5+-face, then c′(v) ≥ 2 − 6
+ 1

3 + 4
3 + 2

3 + 1
2 + 1

2 + 2
3 = 0 by Claims 4 and 5.

If v is incident with two 4-faces, then none of the two 4-faces incident with v

is an (F, S, F, S)-face (otherwise a multi-edge appears in G). This implies c′(v)

≥ 2 − 6 + 2 × 5
6 + 2

3 + 1
2 + 1

2 + 2
3 = 0 by Claim 4.

Case 3. v is a 3-vertex.
By R7, v receives 1

2 ,
1
2 and

2
3 from its 3-master, 4-master and 5-master, respectively.

If v is incident with a 5+-face, then c′(v) ≥ 3− 6+ 4
3 + 1

2 + 1
2 + 2

3 = 0 by Claim
5.

If v is incident with three 4-faces, then at most one of them is an (F, S, F, S)-face
(otherwise two small vertices are adjacent in G). Therefore, c′(v)

≥ 3 − 6 + 1
3 + 2 × 5

6 + 1
2 + 1

2 + 2
3 > 0 by Claim 4.

If v is incident with two 4-faces and one 3-face, then the two 4-faces incident
with v cannot be both of (F, S, F, S)-type. If none of them is of (F, S, F, S)-type,
then c′(v) ≥ 3 − 6 + 2 × 5

6 + 1
2 + 1

2 + 2
3 > 0 by Claim 4. If one of them is of

type (F, S, F, S), then the other one is of type (F, B, B, S). This implies c′(v) ≥
3 − 6 + 1

3 + 4
3 + 1

2 + 1
2 + 2

3 > 0 by Claim 4.
If v is incident with one 4-face and two 3-faces, then the 4-face incident with v is

not of (F, S, F, S)-type (otherwise a multi-edge occurs in G). If v is incident with a
true 3-face, then c′(v) ≥ 3 − 6 + 2

3 + 5
6 + 1

2 + 1
2 + 2

3 > 0 by Claims 3 and 4. If v

is incident with two false 3-faces, then by Lemmas 2.1(c) and 2.1(d), v is adjacent to
two false vertices and incident with a 5+-face, which is impossible in this case.

If v is incident with three 3-faces, then by Lemma 2.1(d), all of those 3-faces are
true. This implies c′(v) ≥ 3 − 6 + 3 × 2

3 + 1
2 + 1

2 + 2
3 > 0 by Claim 3.

Case 4. v is a true 4-vertex.
By R8, v receives 1

2 and 2
3 from its 4-master and 5-master, respectively.

If v is incident with at least one 5+-face, then c′(v) ≥ 4 − 6 + 4
3 + 1

2 + 2
3 > 0 by

Claim 5. Therefore we assume that v is incident only with 4−-faces.
If v is incident with four 3-faces, then at least two of them are true ones (otherwise

two false vertices are adjacent in G× or there exists a multi-edge in G). Hence c′(v) ≥
4 − 6 + 2 × 2

3 + 1
2 + 2

3 > 0 by Claim 3.
If v is incident with at least three 4-faces, then c′(v) ≥ 4− 6+ 3× 1

3 + 1
2 + 2

3 > 0
by Claim 4.

If v is incident with at exactly two 4-faces, then at least one of them is not of
(F, S, F, S)-type, which implies c′(v) ≥ 4 − 6 + 1

3 + 5
6 + 1

2 + 2
3 > 0 by Claim 4.

If v is incident with exactly one 4-face and this 4-face is not of (F, S, F, S)-type,
then c′(v) ≥ 4 − 6 + 5

6 + 1
2 + 2

3 = 0 by Claim 4.
If v is incident with one (F, S, F, S)-face and three 3-faces, then v is incident with

a true 3-face. This implies that c′(v) ≥ 4−6+ 1
3 + 2

3 + 1
2 + 2

3 > 0 by Claims 3 and 4.
Case 5. v is a 5-vertex.
By R9, v receives 2

3 from its 5-master.
If v is incident with at least one 4+-face, then c′(v) ≥ 5− 6+ 1

3 + 2
3 = 0 by Claim

4.
If v is incident with five 3-faces, then at least one of them is true, which implies

c′(v) ≥ 5 − 6 + 2
3 + 2

3 > 0 by Claim 3.
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Case 6. v is a vertex of degree between 6 and 14.
By the absence of the configuration (a), every 5−-vertex is adjacent only to 15+-

vertex in G. Therefore, v cannot be a master of any vertex. If v is a small vertex, then
v does not give out any charge by R1–R9, and thus c′(v) = c(v) = dG×(v) − 6 ≥ 0.
If v is a big vertex, that is, dG×(v) ≥ 9, then by R1, c′(v) ≥ dG×(v) − 6 − 1

3dG×(v)

= 1
3 (2dG×(v) − 18) ≥ 0.
Case 7. v is a 15-vertex.
By the absence of the configuration (a), v is adjacent only to 5+-vertex in G.

Therefore, by (2.2), v can be a 5-master of at most four vertices , and cannot be a
4-master, or a 3-master, or a 2-master of any vertex. By R1 and R9, c′(v) ≥ 15− 6−
1
3 × 15 − 4 × 2

3 > 0.
Case 8. v is a 16-vertex.
By the absence of the configuration (a), v is adjacent only to 4+-vertex in G.

Therefore, by (2.2), v can be a 5-master of at most four vertices, a 4-master of at most
three vertices, and cannot be a 3-master or a 2-master of any vertex. By R1, R8 and
R9, c′(v) ≥ 16 − 6 − 1

3 × 16 − 4 × 2
3 − 3 × 1

2 > 0.
Case 9. v is a 17-vertex.
By the absence of the configuration (a), v is adjacent only to 3+-vertex in G.

Therefore, by (2.2), v can be a 5-master of at most four vertices, a 4-master of at most
three vertices, a 3-master of at most two vertices, and cannot be a 2-master of any
vertex. By R1, R7, R8 and R9, c′(v) ≥ 17−6− 1

3 ×17−4× 2
3 −3× 1

2 −2× 1
2 > 0.

Case 10. v is a 18+-vertex.
By (2.2), v can be a 5-master of at most four vertices, a 4-master of at most three

vertices, a 3-master of at most two vertices, and a 2-master of at most one vertex. By
R1, R6, R7, R8 and R9, c′(v) ≥ dG×(v)− 6− 1

3dG×(v)− 4× 2
3 − 3× 1

2 − 2× 1
2 − 2

3
= 1

6 (4dG×(v) − 71) > 0.

3 List Edge and List Total Coloring

A critical edge M-choosable graph (resp.critical total (M + 1)-choosable graph)
is a graph with maximum degree at most M such that G is not edge M-choosable
(resp. total (M + 1)-choosable), and any proper subgraph of G is edge M-choosable
(resp. total (M+1)-choosable). The structures of such critical graphswere investigated
by Wu and Wang [16], who proved the following two useful results.

Lemma 3.1 [16, Lemma 2.2] If G is a critical edge M-choosable graph (resp. critical
total (M + 1)-choosable graph), then for every edge xy ∈ E(G) with dG(x) ≤ 	M

2 
,
we have dG(x) + dG(y) ≥ M + 2.

Lemma 3.2 [16, Lemma 2.3] If G is a critical edge M-choosable graph (resp. critical
total (M + 1)-choosable graph), then there is no k-alternator F in G for any integer
2 ≤ k ≤ 	M

2 
.

Now we apply the above two lemmas along with Theorem 2.3 to proving the
following theorem.
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Theorem 3.3 If G is a 1-planar graph with maximum degree � ≥ 18, then χ ′(G)

= χ ′
l (G) = � and χ ′′(G) = χ ′′

l (G) = � + 1.

Proof Let M be an integer such that � ≤ M and M ≥ 18. It is sufficient to prove that
χ ′
l (G) ≤ M and χ ′′

l (G) ≤ M + 1.
Suppose, to the contrary, that there is a critical edge M-choosable graph

(resp. critical total (M + 1)-choosable graph) G. By Lemma 3.1, δ(G) ≥ 2. Since
G is a 1-planar graph, by Theorem 2.3, G contains either (i) an edge xy with
dG(x) ≤ 8 < 	M

2 
 and dG(x) + dG(y) ≤ 19 ≤ M + 1, or (ii) a k-alternator for
some k ∈ {2, 3, 4, 5}. However, Lemma 3.1 implies that the local configuration (i)
is forbidden, and Lemma 3.2 implies that the local configuration (ii) is absent. This
contradiction completes the proof. �


4 (p, 1)-Total Labelling

A critical (p, 1)-total k-labelled graph is a graph G such that it admits no (p, 1)-total
k-labelling, and any proper subgraph of G has a (p, 1)-total k-labelling. Zhang, Yu
and Liu [21] proved the following two structural theorems for the critical (p, 1)-total
labelled graph.

Lemma 4.1 [21, Lemmas 2.1 and 2.2] Let G be a critical (p, 1)-total (M + 2p
− 2)-labelled graph with maximum degree at most M. For any edge uv ∈ E(G),
if min{dG(u), dG(v)} ≤ 	M+2p−2

2p 
, then dG(u) + dG(v) ≥ M + 2, and otherwise,
dG(u) + dG(v) ≥ M − 2p + 3.

Lemma 4.2 [21, Lemma 2.4] If G is a critical (p, 1)-total (M + 2p − 2)-labelled
graph with maximum degree at most M, then there is no k-alternator F in G for any
integer 2 ≤ k ≤ 	M+2p−2

2p 
.
Theorem 4.3 If G is a 1-planar graph with �(G) ≥ 8p + 2 and p ≥ 2, then λT

p (G)

≤ �(G) + 2p − 2.

Proof Let M be an integer such that�(G) ≤ M and M ≥ 8p+2 ≥ 18. Now, proving
λT
p (G) ≤ M +2p−2 is sufficient. Suppose, to the contrary, that G is a critical (p, 1)-

total (M + 2p − 2)-labelled graph. By Lemma 4.1, δ(G) ≥ 2. Since G is a 1-planar
graph, by Theorem 2.3,G contains either (i) an edge xy with dG(x) ≤ 5 ≤ 	M+2p−2

2p 

and dG(x) + dG(y) ≤ 19 ≤ M + 1, or (ii) an edge with dG(x) + dG(y) ≤ 16
≤ M − 2p+ 2, or (iii) a k-alternator for some 2 ≤ k ≤ 5 ≤ 	M+2p−2

2p 
. However, the
configuration (i) or (ii) cannot appear in G by Lemma 4.1, and the configuration (iii)
is absent from G by Lemma 4.2. �


5 Equitable Edge Coloring

A critical equitable edge M-colorable graph is a graph G such that G admits no
equitable edge M-colorings, and any proper subgraph H of G is equitable edge M-
colorable. The following are two useful structural results for the critical equitable edge
k-colorable graph.
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Lemma 5.1 [10, Lemma 6] If G is a critical equitable edge M-colorable graph, then
dG(x) + dG(y) ≥ M + 2 for any xy ∈ E(G).

Lemma 5.2 [10, Lemma 7] If G is a critical equitable edge M-colorable graph, then
there is no k-alternating subgraph F in G for any integer 2 ≤ k ≤ 	M

2 
.
Remark the original statements of Lemmas 6 and 7 in [10] are not as the same as
the above two ones. Actually, Lemma 6 of the paper [10] states that if G is a critical
equitable edge M-colorable graph with M ≥ 21, then dG(x) + dG(y) ≥ 23 for any
xy ∈ E(G). Indeed, the proof there is still applicable for proving Lemma 5.1 here,
only with few changes. On the other hand, from the fourth paragraph to the end of
the proof of Lemma 7 in [10], the authors claim that any critical equitable edge M-
colorable graph does not contains a bipartite subgraph H ′ with partite sets X ′′,Y ′
such that dH ′(x) = dG(x) ≤ k for each x ∈ X ′′, and dH ′(y) ≥ k for each y ∈ Y ′,
where 2 ≤ k ≤ 5. One can easily check that their proof can be directly extended to
the case when 2 ≤ k ≤ 	M

2 
, without changing any word. Therefore, there is no k-
alternating subgraph in a critical equitable edge M-colorable graph G for any integer
2 ≤ k ≤ 	M

2 
.
Theorem 5.3 If G is a 1-planar graph, then χ ′≡(G) ≤ 18.

Proof Let M be an integer such that M ≥ 18. We just need to prove that G has an
equitable edge M-coloring. Suppose, to the contrary, thatG is a critical equitable edge
M-colorable graph.ByLemma5.1, δ(G) ≥ 2. SinceG is a 1-planar graph, byTheorem
2.3, G contains either (i) an edge xy with dG(x) + dG(y) ≤ 19, or (ii) a k-alternating
subgraph for some k ∈ {2, 3, 4, 5}. However, dG(x) + dG(y) ≥ M + 2 ≥ 20 for any
xy ∈ E(G) by Lemma 5.1, which makes the configuration (i) absent, and Lemma 5.2
do not support the appearance of the configuration (ii). �
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