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Abstract A graph is NIC-planar if it admits a drawing in the plane with at most one crossing per edge and

such that two pairs of crossing edges share at most one common end vertex. It is proved that every NIC-planar

graph with minimum degree at least 2 (resp. 3) contains either an edge with degree sum at most 23 (resp. 17) or

a 2-alternating cycle (resp. 3-alternating quadrilateral). By applying those structural theorems, we confirm the

Linear Arboricity Conjecture for NIC-planar graphs with maximum degree at least 14 and determine the linear

arboricity of NIC-planar graphs with maximum degree at least 21.
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1 Introduction

All graphs considered in this paper are simple and undirected. By V (G), E(G), Δ(G) and δ(G),
we denote the vertex set, the edge set, the maximum degree and the minimum degree of a graph
G, respectively. A planar graph is a graph that can be drawn in the plane so that no edge is
crossed, and such a drawing is a plane graph. For a plane graph G, we use F (G) to denote
its face set. The degree of a vertex v in G, denoted by dG(v), is the number of edges that are
incident with v in G. By k-, k+-, and k−-vertex (resp. face), we denote a vertex (resp. face)
of degree k, at least k, and at most k, respectively. For other undefined concepts we refer the
readers to [4].

A graph is 1-planar if it can be drawn in a plane so that each edge is crossed by at most
one other edge. The notion of the 1-planarity was introduced by Ringel[7] in 1965 when he
considered the vertex-face coloring of plane graphs, which can be translated to the vertex
coloring of 1-planar graphs. A graph is IC-planar (independent-crossing-planar) if it has a
1-planar drawing so that each vertex is incident with at most one crossing edge. A graph is
NIC-planar (near-independent-crossing-planar) if it admits a drawing in the plane with at most
one crossing per edge and such that two pairs of crossing edges share at most one common end
vertex. The IC-planarity was introduced by Albertson[2] in 2008 and the NIC-planarity was
introduced by Zhang[11] in 2014. Both of them specialize 1-planarity, but generalize planarity.
Recently, Bachmaier et al.[3] investigated the structure of the NIC-planar graphs and IC-planar
graphs.

A linear forest is a forest (i.e., an acyclic graph) in which every component is a path. The
linear arboricity la(G) of a graph G is the minimum number of linear forests needed to partition
the edge set of G.

The following Conjecture 1.1 is known as the Linear Arboricity Conjecture (LAC), which
was raised by [1].
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Conjecture 1.1. If G is a simple graph, then
⌈Δ(G)

2

⌉ ≤ la(G) ≤ ⌈Δ(G)+1
2

⌉
.

Note that LAC is still quite open and it was verified for planar graphs[9,10]. Moreover,
Cygan et al.[5] proved that if G is a planar graph with Δ(G) ≥ 9 then la(G) =

⌈Δ(G)
2

⌉
. For

1-planar graphs G, Zhang, Liu and Wu[12] showed that if Δ(G) ≥ 33 then la(G) =
⌈Δ(G)

2

⌉
.

In this paper, we aim to partially solve LAC for NIC-planar graphs with large maximum
degree by proving the following

Theorem 1.2. If G is an NIC-planar graph with Δ(G) ≥ 14, then la(G) ≤ ⌈Δ(G)+1
2

⌉
.

In addition, we prove the second theorem on the linear arboricity of NIC-planar graphs.

Theorem 1.3. If G is an NIC-planar graph with Δ(G) ≥ 21, then la(G) =
⌈Δ(G)

2

⌉
.

2 Structural Theorems

A good drawing of an NIC-planar graph is a drawing so that its NIC-planarity is preserved,
and moreover, the number of crossings is as small as possible. The associated plane graph of an
NIC-planar graph G, denoted by G×, is a plane graph derived from the good drawing of G by
turning all its crossings into new vertices of degree four, which are called false vertices of G×

while vertices in V (G) are called true vertices of G×. A face of G× is false if it is incident with
at least one false vertex, and is true otherwise. The following one lemma is straightforward.

Lemma 2.1. If G is a good drawing of an NIC-planar graph, then
(1) any 2-vertex is not incident with a false 3-face in G×;
(2) if a 3-vertex is incident with three 3-faces in G×, then those faces are true;
(3) if a 3-vertex is incident with two 3-faces in G×, then at least one of them is true.

Proof. (1) Let uvwu be a false 3-face in G× such that u is a 2-vertex and v is false. Assume
that uy crosses wx in G. We now adjust the drawing of G by pulling u into the area forming by
the face of G× incident with vw and vy. This helps us avoid the crossing v from G. Therefore,
G is not a good drawing, a contradiction.

(2) Suppose that a 3-vertex u is incident with three 3-faces uxyu, uyzu and uzxu in G×. If
one of them is false, then assume, without loss of generality, that x is a false vertex. In this
case, we can find two different edges in G that connect y to z. Therefore, G is not a simple
graph, a contradiction.

(3) Suppose that a 3-vertex u is incident with two 3-faces uxyu and uyzu in G×. If they
are both false, then there are two probabilities. First, if y is a false vertex, then the path xyz
in G× is actually an edge in G that connects x to z. We pull the edge xz ∈ E(G) into the area
forming by the face of G× incident with ux and uz. This operation erases the crossing y from
G and implies that G is not a good drawing. Second, if x and z are false vertices, then u and y
are two end vertices of the pair of crossing edges producing the crossings x (or z). Therefore,
the NIC-planarity of G is destroyed, a contradiction. �

In the remaining of this section, we prove two structural theorems for NIC-planar graphs
that are applied to prove the main theorems (Theorems 1.2 and 1.3) of this paper.

Theorem 2.2. If G is a NIC-planar graph with minimal degree δ(G) ≥ 2, then G contains
(a) an edge uv with dG(u) + dG(v) ≤ 23, or
(b) there is a 2-alternating cycle v0v1 · · · v2n−1v0 such that dG(v0) = dG(v2) = · · · =

dG(v2n−2) = 2 and max
1≤i≤n

| N2(v2i−1) |≥ 3.

Notation. Here and below, N2(v2i−1) denotes the number of 2-vertices that are adjacent to
v2i−1 in G.
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Proof. Suppose, to the contrary, that G is a counterexample. If Δ(G) ≤ 11, then each edge
uv of G satisfies dG(u) + dG(v) ≤ 2Δ(G) ≤ 22, which implies (a), a contradiction. Hence
we assume that Δ(G) ≥ 12. By the absence of (a), the neighbors of a 2-vertex in G are all
22+-vertices.

Let H be the subgraph of G such that E(H) consists of all edges incident with the 2-vertices
of G. Since (b) is forbidden in G, every component of H is either a path or a cycle. This implies
that |E(H)| ≤ |V (H)|. By the definition of H , |E(H)| = 2|V2| and |V (H)| ≤ |V2| + |V22+ |.
Hence it is easy to conclude that |V2| ≤ |V22+ |. Here |V2| or |V22+| is the number of 2-vertices
or 22+-vertices, respectively.

In what follows, we call a true vertex of G× big if dG×(v) ≥ 18, middle if 5 ≤ dG×(v) ≤ 17,
and small if dG×(v) ≤ 4. A middle vertex is an M11−-vertex if 5 ≤ dG×(v) ≤ 11, and M12+-
vertex if 12 ≤ dG×(v) ≤ 17. Since (a) is forbidden in G, any two 11−-vertices are not adjacent in
G. We use F, B, M11−, M12+ and S to represent false vertex, big vertex, M11−-vertex, M12+-
vertex and small vertex, respectively, and then use these notations to represent the structure of
a face of G×. For example, we say that a face is an (F, S, B, S)-face if it is a 4-face with vertices
u1, u2, u3 and u4 lying clockwise on the boundary of f such that u1 is false, u2 is small, u3 is
big and u4 is small. A face in G× is burdened if it is incident with at least one small vertex.

We now apply the discharging method to the associated plane graph G× of G. Formally,
for each vertex v ∈ V (G×), let c(v) := dG×(v) − 4 be its initial charge, and for each face
f ∈ F (G×), let c(f) := dG×(f) − 4 be its initial charge. Clearly,

∑

x∈V (G×)∪F (G×)

c(x) = −8 < 0

by the well-known Euler’s formula. The discharging rules are defined as follows.
R1 every middle vertex v sends dG× (v)−4

dG× (v) to each of its incident faces.
R2 every big vertex sends 7

9 to each of its incident faces.
R3 let f be a face in G× incident with an edge uv ∈ E(G×).

R3.1 if u is a M11−-vertex, and uv is incident with a 3-face f ′ such that w is a false
vertex (in this case v must be an M12+- or B-vertex), then f sends 1

45 to f ′ through
uv (see the left picture of Figure 1).

R3.2 if u is a big vertex, v is a false vertex, and uv is incident with a 3-face f ′ such that
w is a small vertex, then f sends 2

9 to f ′, and 1
18 to w, both through uv (see the

right picture of Figure 1).
R4 every burdened true 3-face of G× sends 5

9 to each of its incident small vertices (if exists).
R5 every burdened 4-face f of G× sends to each of its incident small vertices 7

18 if f is an
(B, S, F, S)-face, 34

45 if f is an (B, S, F, M11−)-face, and 7
9 otherwise.

R6 every burdened 5+-face f of G× sends to each of its incident small vertices 2
3 if f is an

(S, F, S, F, S, F )-face, and 13
18 otherwise.

R7 every 22+-vertex sends 8
9 to a virtual box, from which every 2-vertex receives the same

amount.

Figure 1. R3.1 and R3.2
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Note that if f is a 3-face in R3.1, then f is true and not burdened, and if f is a 3-face in
R3.2, then f is of type (B, F, B).

These can be easily seen from the definition of the NIC-planarity and the absence of (a).
Therefore, the face f ′ as described in R3.1 or R3.2 will not lose charge through uv.

Let c′(x) be the charge of x ∈ V (G×) ∪ F (G×) after applying the above rules. Since our
rules only move charge around, and do not affect the sum, we have

∑

x∈V (G×)∪F (G×)

c′(x) =
∑

x∈V (G×)∪F (G×)

c(x) < 0.

Since |V2| ≤ |V22+ |, the virtual box in R7 has no deficiency finally. Next, we prove that c′(x) ≥ 0
for each x ∈ V (G×) ∪ F (G×). This leads to

∑

x∈V (G×)∪F (G×)

c′(x) ≥ 0,

a contradiction.
We first calculate the final charge of each face f ∈ F (G×).

Case 1. f = uvwu is a true 3-face such that dG×(u) ≤ dG×(v) ≤ dG×(w).
If dG×(u) ≤ 4, then v and w are of degree at least 20, and they are big vertices. Note that

the sum of the degrees of the two end-vertices of an edge in G is at least 24 by the absence of
(a). By R2 and R4, c′(f) ≥ 3 − 4 + 2 × 7

9 − 5
9 = 0.

If 5 ≤ dG×(u) ≤ 11, then dG×(v), dG×(w) ≥ 13, and thus c′(f) ≥ 3−4+2×min{ 13−4
13 , 7

9}−
2 × 1

45 > 0 by R1, R2 and R3.
If dG×(u) ≥ 12, then c′(f) ≥ 3 − 4 + 3 × min

{
12−4
12 , 7

9

}
> 0 by R1 and R2.

Case 2. f = uvwu is a false 3-face such that u is a false vertex, and dG×(v) ≤ dG×(w).
If dG×(v) ≤ 4, then w is a big vertex, from which f receives 7

9 by R2. In addition, f
would receive another 2

9 from the other face, besides f , incident with uw by R3.2. Therefore,
c′(f) ≥ 3 − 4 + 7

9 + 2
9 = 0.

If 5 ≤ dG×(v) ≤ 11, then v is an M11−
-vertex and thus by R3.1 f receives 1

45 from the
other face, besides f , incident with vw. Since dG×(v) + dG×(w) = dG(v) + dG(w) ≥ 24,
c′(f) ≥ 3 − 4 + dG× (v)−4

dG× (v) + min{ dG×(w)−4

dG× (w) , 7
9} + 1

45 ≥ 3 − 4 + 5−4
5 + 7

9 + 1
45 = 0 by R1 and R2.

If 12 ≤ dG×(v) ≤ 17, then c′(f) ≥ 3 − 4 + dG× (v)−4

dG× (v) + min
{dG× (w)−4

dG× (w) , 7
9

} ≥ 3 − 4 + 12−4
12 +

12−4
12 > 0 by R1 and R2.

If dG×(v) ≥ 18, then f is of type (B, F, B), and thus c′(f) ≥ 3−4+2× 7
9 −2× (2

9 + 1
18 ) = 0

by R2 and R3.

Case 3. f is a true 4-face.
If f is not incident with small vertex, then f is incident with at least two 12+-vertices, and

thus c′(f) ≥ 4 − 4 + 2 × min
{

12−4
12 , 7

9

} − 4 × 1
45 > 0 by R1, R2 and R3.1.

If f is incident with exactly one small vertex, then f is adjacent to at least two big vertices,
thus c′(f) ≥ 4 − 4 + 2 × 7

9 − 2 × 1
45 − 7

9 > 0 by R2, R3.1 and R5.
If f is incident with exactly two small vertices, then f is adjacent to two big vertices, and

R3.1 will not be applied. Therefore, c′(f) ≥ 4 − 4 + 2 × 7
9 − 2 × 7

9 = 0 by R2 and R5.

Case 4. f = uvwyu is a false 4-face such that u is a false vertex.
Note that f is incident with at exactly one false vertex by the definition of the NIC-planarity.
If f is not incident with small vertex, then f is incident with at least one 12+-vertex, and

thus c′(f) ≥ 4 − 4 + min
{

12−4
12 , 7

9

} − 2 × 1
45 − 2 × (

2
9 + 1

18

)
> 0 by R1, R2 and R3.

If v is a small vertex, then w is big. If y is an M11−-vertex, then c′(f) ≥ 4−4+ 5−4
5 + 7

9− 1
45−

34
45 > 0 by R1, R2, R3.1 and R5. If y is a 12+-vertex, then c′(f) ≥ 4−4+ 12−4

12 + 7
9−

(
2
9 + 1

18

)− 7
9 >
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0 by R1, R2, R3.2 and R5. If y is a small vertex, then c′(f) ≥ 4 − 4 + 7
9 − 2 × 7

18 = 0 by R2
and R5.

If w is a small vertex, then v and y are big vertices, and c′(f) ≥ 4−4+2× 7
9−2×(2

9+ 1
18 )− 7

9 >
0 by R2, R3 and R5.

Case 5. f is a 5+-face.
Suppose that f is incident with t big vertices and s small vertices. Since two small vertices

are not adjacent, s ≤ �dG× (f)

2 � and there are 2s edges on f that are incident with a small
vertex.

Let l1 be the number of edges uv on f such that u is a big vertex and v is an M11−-vertex
or a false vertex. Through each of those edges, f may sends out at most max{ 1

45 , 2
9 + 1

18} = 5
18

by R3.
Let l2 be the number of edges on f that is incident with neither a small vertex nor a big

vertex. Through each of those edges, f may sends out at most 1
45 by R3.1.

Since l1 + l2 ≤ dG×(f) − 2s and l1 ≤ 2t, we conclude by R2 and R6 that

c′(f) ≥dG×(f) − 4 +
7
9
t − 13

18
s − 5

18
l1 − 1

45
l2

=dG×(f) − 4 +
7
9
t − 13

18
s − 1

45
(l1 + l2) − 23

90
l1

≥dG×(f) − 4 +
7
9
t − 13

18
s − 1

45
(dG×(f) − 2s) − 23

90
· 2t

=
44
45

dG×(f) +
4
15

t − 61
90

s − 4

≥44
45

dG×(f) +
4
15

t − 61
90

· ⌊1
2
dG×(f)

⌋ − 4.

Clearly, c′(f) ≥ 0 provided that dG×(f) ≥ 7, or dG×(f) = 6 and s ≤ 2, or dG×(f) = 5 and
t ≥ 2, or dG×(f) = 5, t ≤ 1 and s ≤ 1.

Hence in the following we just consider two remaining cases. Firstly, assume that f is a
6-face that is incident with exactly three small vertices. If f is not incident with big vertices,
then f shall be of type (S, F, S, F, S, F ), and thus c′(f) ≥ 6 − 4 − 3 × 2

3 = 0 by R6. If f is
incident with at least one big vertex, then by R2 and R6, c′(f) ≥ 6 − 4 + 7

9 − 3 × 13
18 > 0.

Secondly, assume that f is a 5-face that is incident with exactly two small vertices. Now f is
incident with at least one big vertex and R3 (actually, R3.2) will be applied to f at most once.
Therefore, c′(f) ≥ 5 − 4 + 7

9 − (2
9 + 1

18 ) − 2 × 13
18 > 0 by R2, R3 and R6.

Now we calculate the final charge of each vertex v ∈ V (G×).

Case 6. v is a 2-vertex.
Note that v is not incident with a false 3-face by Lemma 2.1(1).
If v is incident with a true 3-face, then v is adjacent to two big vertices in G×, and the other

face f incident with v is a 4+-face (moreover, if f is a 4-face, then it is not of type (B, F, S, F )
or (B, S, F, M11−)), thus c′(v) ≥ 2 − 4 + 5

9 + min{ 7
9 , 2

3} + 8
9 > 0 by R4, R5, R6 and R7.

If v is incident with two 4-faces, then at least one 4-face incident with v is not of type
(B, S, F, S) or (B, S, F, M11−) (otherwise two 11−-vertices are adjacent in G). Therefore,
c′(v) ≥ 2 − 4 + min{ 7

18 , 34
45} + 7

9 + 8
9 > 0 by R5 and R7.

If v is incident with a 4-face and a 5+-face, then we consider two cases. If the 4-face incident
with v is of type (B, S, F, S), then the 5+-face incident with v is not of type (S, F, S, F, S, F ).
Therefore, c′(v) ≥ 2 − 4 + 7

18 + 13
18 + 8

9 = 0 by R5, R6 and R7. If the 4-face incident with v is
not of type (B, S, F, S), then c′(v) ≥ 2 − 4 + 34

45 + 2
3 + 8

9 > 0 by R5, R6 and R7.
If v is incident with two 5+-faces, then c′(v) ≥ 2 − 4 + 2 × 2

3 + 8
9 > 0 by R6 and R7.

Case 7. v is a 3-vertex.
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If v is incident with three 3-faces, then all of those 3-faces are true by Lemma 2.1(2), thus
c′(v) ≥ 3 − 4 + 3 × 5

9 > 0 by R4.
If v is incident with two 3-faces, then at least one of them is true by Lemma 2.1(3). If they

are both true, then c′(v) ≥ 3 − 4 + 2 × 5
9 + 7

18 > 0 by R4, R5 and R6. If v is incident with a
false 3-face f = uvwu, then the other face, besides f , incident with uw would sends 1

18 to v
through uw by R3.2, which implies that c′(v) ≥ 3 − 4 + 1

18 + 5
9 + 7

18 = 0 by R4, R5 and R6.
Now we assume that v is incident with at most one 3-face.
If v is incident with a 5+-face, then besides this face, v is incident with another 4+-face,

thus c′(v) ≥ 3 − 4 + 7
18 + 2

3 > 0 by R5 and R6.
If v is not incident with any 5+-face, then v is incident with at least two 4-faces. Since two

small vertices are not adjacent in G, among the 4-faces incident with v, at least one is not of
type (B, S, F, S). Therefore, c′(v) ≥ 3 − 4 + 7

18 + 34
45 > 0 by R5.

Case 8. v is a 4+-vertex.
If v is a 4-vertex, then v do not give out any charge by R1-R7, and thus c′(v) = c(v) =

dG×(v) = 0.

If v is a middle vertex, then by R1, c′(v) ≥ dG×(v) − 4 − dG× (v)−4

dG× (v) · dG×(v) = 0.

If v is a big (i.e, 18+-) and 21−-vertex, then c′(v) ≥ dG×(v) − 4 − 7
9dG×(v) = 1

9 (2dG×(v) −
36) ≥ 0 by R2.

If v is a 22+-vertex, then by R2 and R7, c′(v) ≥ dG×(v) − 4− 7
9dG×(v)− 8

9 = 1
9 (2dG×(v) −

44) ≥ 0. �

Remark. A direct corollary from Lemma 2.2 says that

every NIC-planar graph with δ(G) ≥ 3 contains an edge uv so that dG(u) + dG(v) ≤ 23.

Actually, we conjecture this result also holds for 1-planar graphs. If so, then the upper bound
23 for the degree sum of the existing edge would be sharp. To see this, consider the graph of
the icosahedron. Into each its 3-face xyz insert three new vertices u, v, w and add new edges
ux, uy, uz, vx, vy, vz, wx, wy, wz such that vx, uy (vz, wy and wx, uz) cross exactly once (see
Figure 2). The degree of any vertex of the resulting 1-planar graph is either 20 or 3, and
moreover, any two 3-vertices are not adjacent. Therefore, the degree sum of each it edge is at
least 23. Note that this 1-planar graph was also constructed by Fabrici and Madaras[6]. To our
knowledge, Liu et al.[8] showed that every 1-planar graph with δ(G) ≥ 3 contains an edge uv
with dG(u) + dG(v) ≤ 29.

Figure 2. A 1-planar Graph

Theorem 2.3. If G is a NIC-planar graph with minimal degree δ(G) ≥ 3, then G contains
(a) an edge uv with dG(u) + dG(v) ≤ 17, or
(b) there is a 4-cycle v1v2v3v4v1 such that dG(v1) = dG(v3) = 3.
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Proof. Suppose, to the contrary, that G is a counterexample. If Δ(G) ≤ 8, then each edge uv
of G satisfies dG(u)+dG(v) ≤ 2Δ(G) ≤ 16, which implies (a), a contradiction. Hence we assume
that Δ(G) ≥ 9. By the absence of (a), the neighbors of a 3-vertex in G are all 15+-vertices.

In what follows, we call a true vertex of G× big if dG×(v) ≥ 15, middle if 4 ≤ dG×(v) ≤ 14,
and small if dG×(v) = 3. A middle vertex is an M8−-vertex if 4 ≤ dG×(v) ≤ 8, and an M10+-
vertex if 10 ≤ dG×(v) ≤ 14. We use F, B, M8−, M10+, M and S to represent false vertex, big
vertex, M8−-vertex, M10+-vertex, M -vertex and small vertex, respectively, and then use these
notations to represent the structure of a face of G×.

We now apply the discharging method to the associated plane graph G× of G. Formally,
for each vertex v ∈ V (G×), let c(v) := dG×(v) − 4 be its initial charge, and for each face
f ∈ F (G×), let c(f) := dG×(f) − 4 be its initial charge. Clearly,

∑

x∈V (G×)∪F (G×)

c(x) = −8 < 0

by the well-known Euler’s formula. The discharging rules are defined as follows.

R1 every middle vertex v sends dG× (v)−4

dG× (v) to each of its incident faces.
R2 every big vertex sends 11

15 to each of its incident faces.
R3 let f be a face in G× incident with an edge uv ∈ E(G×).

R3.1 if u is a M8−-vertex, and uv is incident with a 3-face f ′ such that w is a false vertex
(in this case v must be an M10+- or B-vertex), then f sends 3

14 to f ′ through uv
(see the left picture of Figure 3).

R3.2 if v is a false vertex, and uv is incident with a 3-face f ′ such that w is a M8−-vertex
(in this case u must be an M10+- or B-vertex), then f sends 1

14 to f ′ through uv
(see the middle picture of Figure 3).

R3.3 if u is a big vertex, v is a false vertex, and uv is incident with a 3-face f ′ such that
w is a small vertex, then f sends 4

15 to f ′, and 1
30 to w, both through uv (see the

right picture of Figure 3).
R4 every burdened true 3-face of G× sends 7

15 to each of its incident small vertices(if exists).
R5 every burdened 4-face f of G× sends to each of its incident small vertices 11

30 if f is an
(B, S, F, S)-face, 1

2 if f is an (B, S, F, M8−)-face, and at least 19
30 otherwise.

R6 every burdened 5+-face of G× sends 19
30 to each of its incident small vertices.

Figure 3. R3.1, R3.2 and R3.3

Note that if f is a 3-face in R3.1, then f is true and not burdened, if f is a 3-face in R3.2,
then f is of type (∗1, F, ∗2), where ∗1 or ∗2 stands for M10+ or B, and if f is a 3-face in R3.2,
then f is of type (B, F, B).

Therefore, the face f ′ as described in R3.1, R3.2 or R3.3 will not lose charge through uv.
Let c′(x) be the charge of x ∈ V (G×) ∪ F (G×) after applying the above rules. Since our

rules only move charge around, and do not affect the sum, we have
∑

x∈V (G×)∪F (G×)

c′(x) =
∑

x∈V (G×)∪F (G×)

c(x) < 0.
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Next, we prove that c′(x) ≥ 0 for each x ∈ V (G×) ∪ F (G×). This leads to

∑

x∈V (G×)∪F (G×)

c′(x) ≥ 0,

a contradiction.
We first calculate the final charge of each face f ∈ F (G×).

Case 1. f = uvwu is a true 3-face such that dG×(u) ≤ dG×(v) ≤ dG×(w).
If dG×(u) = 3, then v and w are of degree at least 15, and they are big vertices. Note that

the sum of the degrees of the two end-vertices of an edge in G is at least 18 by the absence of
(a). By R2 and R4, c′(f) ≥ 3 − 4 + 2 × 11

15 − 7
15 = 0.

If 4 ≤ dG×(u) ≤ 8, then dG×(v), dG×(w) ≥ 10, and thus c′(f) ≥ 3 − 4 + dG× (u)−4

dG× (u) + 2 ×
min{ dG× (v)−4

dG× (v) , 11
15} − 2 × 3

14 ≥ 3 − 4 + 4−4
4 + 2 × 14−4

14 − 2 × 3
14 = 0 by R1, R2 and R3. Note

that dG×(u) + dG×(v) = dG(u) + dG(v) ≥ 18.
If dG×(u) ≥ 9, then c′(f) ≥ 3 − 4 + 3 × min{ 9−4

9 , 11
15} > 0 by R1 and R2.

Case 2. f = uvwu is a false 3-face such that u is a false vertex, and dG×(v) ≤ dG×(w).
If dG×(v) = 3, then w is a big vertex, from which f receives 11

15 by R2. In addition, f
would receive another 4

15 from the other face, besides f , incident with uw by R3.3. Therefore,
c′(f) ≥ 3 − 4 + 11

15 + 4
15 = 0.

If 4 ≤ dG×(v) ≤ 8, then v is an M8−-vertex and w is a 10+-vertex, thus by R3.1 and
R3.2, f receives 3

14 from the other face, besides f , incident with vw, and 1
14 from the other

face, besides f , incident with uw. Since dG×(v) + dG×(w) = dG(v) + dG(w) ≥ 18, c′(f) ≥
3− 4 + dG× (v)−4

dG× (v) + min{ dG×(w)−4

dG× (w) , 11
15}+ 3

14 + 1
14 ≥ 3− 4 + 4−4

4 + 14−4
14 + 3

14 + 1
14 = 0 by R1 and

R2.
If dG×(v) = 9, then dG×(w) ≥ 9 and f would not lose charge through its incident edges,

thus c′(f) ≥ 3 − 4 + 5
9 + min{ dG×(w)−4

dG× (w) , 11
15} ≥ 3 − 4 + 2 × 5

9 > 0 by R1 and R2.

If 10 ≤ dG×(v) ≤ 14, then w is a 10+-vertex, thus c′(f) ≥ 3−4+ dG×(v)−4

dG× (v) +min{ dG× (w)−4

dG× (w) , 11
15}

−2 × 1
14 ≥ 3 − 4 + 2 × 10−4

10 − 2 × 1
14 > 0 by R1, R2 and R3.2.

If dG×(v) ≥ 15, then f is incident with at most one (B, F, S)-face, because otherwise (b)
occurs. Therefore, R3.3 will be applied to f at most once (note that R3.2 may still be applied
to f twice), and thus c′(f) ≥ 3− 4 + 2× 11

15 −max{2× 1
14 , 4

15 + 1
30} = 0 by R2, R3.2 and R3.3.

Case 3. f is a true 4-face.
If f is not incident with any small vertex, then f is incident with at least two 9+-vertices,

thus c′(f) ≥ 4 − 4 + 2 × min{ 9−4
9 , 11

15} − 4 × 3
14 > 0 by R1, R2 and R3.1.

If f is incident with exactly one small vertex, then f is adjacent to at least two big vertices,
thus c′(f) ≥ 4 − 4 + 2 × 11

15 − 2 × 3
14 − 19

30 > 0 by R2, R3.1 and R5.
If f is incident with exactly two small vertices, then f is adjacent to exactly two big vertices,

and R3.1 will not be applied. Therefore, c′(f) ≥ 4 − 4 + 2 × 11
15 − 2 × 19

30 > 0 by R2 and R5.

Case 4. f = uvwyu is a false 4-face such that u is a false vertex.
Note that f is incident with exactly one false vertex by the definition of the NIC-planarity.
If f is not incident with small vertex, then we consider two cases.
Firstly, suppose that f is incident with an M8−-vertex.
If v is an M8−-vertex, then w is a 10+-vertex. Therefore, c′(f) ≥ 4 − 4 + min{ 10−4

10 , 11
15} −

2 × 3
14 > 0 by R1, R2 and R3.1 if y is a M8−-vertex, and c′(f) ≥ 4 − 4 + min{ 10−4

10 , 11
15} +

min{ 9−4
9 , 11

15} − 3
14 − 4

15 − 1
30 > 0 by R1, R2 and R3 if y is a 9+-vertex.
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If w is an M8−-vertex, then v and y are 10+-vertices. One can see that from v, w and y,
f totally receives at least 2 × 14−4

14 = 10
7 (this minimum is taken when w is a 4-vertex and v, y

are 14-vertices). Therefore, c′(f) ≥ 4− 4 + 10
7 − 2× 3

14 − 2× (
4
15 + 1

30

)
> 0 by R1, R2 and R3.

Secondly, suppose that f is incident with three 9+-vertices, i.e, v, w and y are 9+-vertices.
In this case, it is easy to conclude that c′(f) ≥ 4 − 4 + 3 × min{ 9−4

9 , 11
15} − 2 × (

4
15 + 1

30

)
> 0

by R1, R2, R3.2 and R3.3.
Hence we now consider the case that f is incident with a small vertex.
If v is a small vertex, then w is big. If y is a small vertex, then c′(f) ≥ 4−4+ 11

15 −2× 11
30 = 0

by R2 and R5. If y is an M8−-vertex, then c′(f) ≥ 4 − 4 + 11
15 − 3

14 − 1
2 > 0 by R2, R3.1 and

R5. If y is a 9+-vertex, then c′(f) ≥ 4 − 4 + min{ 9−4
9 , 11

15} + 11
15 − 4

15 − 1
30 − 19

30 > 0 by R1, R2,
R3.3 and R5.

If w is a small vertex, then v and y are big vertices. Note that uv cannot be incident with
a 3-face uvzu such that u is a false vertex and z is a small vertex, because otherwise zvwyz is
a 4-cycle in G such that dG(z) = dG(w) = 3. Hence f will not send out charge by R3.3 via uv.
Similarly, f will not loss charge by R3.3 via uy. Therefore, c′(f) ≥ 4−4+2× 11

15 −2× 1
14 − 19

30 > 0
by R2, R3.1 and R5.

Case 5. f is a 5+-face.
Suppose that f is incident with t big vertices and s small vertices. Since small vertices are

not adjacent in G, s ≤ �dG× (f)

2 � and there are 2s edges on f that are incident with a small
vertex.

Let l1 be the number of edges uv on f such that u is a big vertex and v is an M8−-
vertex or a false vertex. Through each of those edges, f may sends out at most at most
max{ 3

14 , 1
14 , 4

15 + 1
30} = 3

10 by R3.
Let l2 be the number of edges on f that is incident with neither a small vertex nor a big

vertex. Through each of those edges, f may sends out at most max{ 3
14 , 1

14} = 3
14 by R3.1 and

R3.2
Since l1 + l2 ≤ dG×(f) − 2s and l1 ≤ 2t, by R2 and R6,

c′(f) ≥dG×(f) − 4 +
11
15

t − 19
30

s − 3
10

l1 − 3
14

l2

=dG×(f) − 4 +
11
15

t − 19
30

s − 3
14

(l1 + l2) − 3
35

l1

≥dG×(f) − 4 +
11
15

t − 19
30

s − 3
14

(dG×(f) − 2s) − 3
35

· 2t

=
11
14

dG×(f) +
59
105

t − 43
210

s − 4

≥11
14

dG×(f) +
59
105

t − 43
210

· ⌊1
2
dG×(f)

⌋ − 4.

Clearly, c′(f) ≥ 0 provided that dG×(f) ≥ 6, or dG×(f) = 5 and t ≥ 1.
Now suppose that f is a 5-face with t = 0. In this case, f is incident with at most one small

vertex, i.e., s ≤ 1.
If s = 1, then f is an (S, F, M, M, F )-face, and thus c′(f) ≥ 5 − 4 − 3

14 − 2 × 1
14 − 19

30 > 0
by R3.1, R3.2 and R6.

If s = 0, then R3.1 will not be applied to f five times, because otherwise two M8− vertices
are adjacent in G, and thus (a) occurs. Therefore, c′(f) ≥ 5− 4− 4× 3

14 − 1
14 > 0 by R3.1 and

R3.2.
Now we calculate the final charge of each vertex v ∈ V (G×).

Case 6. v is a 3-vertex.
If v is incident with three 3-faces, then all of those 3-faces are true by Lemma 2.1(2), thus

c′(v) ≥ 3 − 4 + 3 × 7
15 > 0 by R4.
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If v is incident with two 3-faces, then at least one of them is true by Lemma 2.1(3). If they
are both true, then c′(v) ≥ 3−4+2× 7

15 + 11
30 > 0 by R4, R5 and R6. If v is incident with a false

3-face f = uvwu such that w is a false vertex, then the other face, besides f , incident with uw
would sends 1

30 to v through uw by R3.3. Meanwhile, the 4+-face incident with v cannot be of
the type (B, S, F, S) (otherwise, denote this 4-face by vwxyv such that x is small and y is big,
and then vuxyv is a 4-cycle in G such that v and x are 3-vertices, a contradiction). Therefore,
c′(v) ≥ 3 − 4 + 1

30 + 7
15 + 1

2 = 0 by R4, R5 and R6.
Now we assume that v is incident with at most one 3-face.
If v is incident with a 5+-face, then besides this face, v is incident with another 4+-face,

thus c′(v) ≥ 3 − 4 + 11
30 + 19

30 = 0 by R5 and R6.
If v is not incident with any 5+-face, then v is incident with at least two 4-faces. Since two

small vertices are not adjacent in G, among the two 4-faces incident with v, at least one is not
of type (B, S, F, S). If none of them is a (B, S, F, S)-face, then c′(v) ≥ 3 − 4 + 2 × 1

2 = 0 by
R5. If exactly one of them is a (B, S, F, S)-face, then v is not incident with (B, S, F, M8−)-face
(otherwise two 8−-vertices are adjacent in G), thus c′(v) ≥ 3 − 4 + 11

30 + 19
30 = 0 by R5.

Case 7. v is a 4+-vertex.
If v is a middle vertex, then by R1, c′(v) ≥ dG×(v) − 4 − dG× (v)−4

dG× (v) · dG×(v) = 0.

If v is a 15+-vertex, then by R2, c′(v) ≥ dG×(v)− 4− 11
15dG×(v) = 1

15 (4dG×(v)− 60) ≥ 0. �

3 Proofs of the Main Theorems

Proof of Theorem 1.2. Actually we prove a slightly stronger result than Theorem 1.2.

Theorem 1.2’. If G is an NIC-planar graph with Δ(G) ≤ M and M ≥ 14, then la(G) ≤⌈
M+1

2

⌉
.

Note that the maximum degree of a subgraph of G in Theorem 1.2 may be less than 14 but
any subgraph H of G in Theorem 1.2’ satisfies Δ(H) ≤ M and M ≥ 14. This is why we do
this slight modification.

Let G be a minimum counterexample to Theorem 1.2’, that is, an NIC-planar graph with
maximum degree at most M and linear arboricity larger than

⌈
M+1

2

⌉
such that any proper

subgraph of G has linear arboricity at most
⌈

M+1
2

⌉
. Wu[9] proved (see the proof of [9, Theorem

2.1]) that:
(a) δ(G) ≥ 3;
(b) for any edge uv, dG(u) + dG(v) ≥ 2

⌈
M+1

2

⌉
+ 2 ≥ 18;

(c) G does not contain a 4-cycle v1v2v3v4v1 such that dG(v1) = dG(v3) = 3.
Note that Wu’s above result do not need G to be NIC-planar. It is actually a general conclusion
for graphs with hereditary property such as planarity, NIC-planarity, etc.

However, we know by Theorem 2.3 that every NIC-planar graph with δ(G) ≥ 3 contains
either an edge uv with dG(u)+dG(v) ≤ 17, or a 4-cycle v1v2v3v4v1 such that dG(v1) = dG(v3) =
3. This contradicts Wu’s result. Therefore such a counterexample to Theorem 1.2’ does not
exist and thus Theorem 1.2’ is proved. �

Proof of Theorem 1.3. Again, we prove a slightly stronger result than Theorem 1.3.

Theorem 1.3’. If G is an NIC-planar graph with Δ(G) ≤ M and M ≥ 21, then la(G) ≤⌈
M
2

⌉
.

Wu[9] proved (see the proof of [9, Theorem 2.2]) that any minimum counterexample G to
Theorem 1.3’ satisfies

(a) δ(G) ≥ 2;
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(b) for any edge uv, dG(u) + dG(v) ≥ 2
⌈

M
2

⌉
+ 2 ≥ 24;

(c) G does not a 2-alternating cycle v0v1 · · · v2n−1v0 such that dG(v0) = dG(v2) = · · · =
dG(v2n−2) = 2 and max

1≤i≤n
| N2(v2i−1) |≥ 3.

Note, again, that Wu’s above result do not need G to be NIC-planar. It always holds if G has
maximum degree at most M and linear arboricity larger than

⌈
M
2

⌉
, and any proper subgraph

of G has linear arboricity at most
⌈

M
2

⌉
. Therefore, it can be seen as a general conclusion for

graphs with hereditary property such as planarity, NIC-planarity, etc.
However, Theorem 2.2 tells us that every NIC-planar graph with δ(G) ≥ 2 contains either

an edge uv with dG(u)+ dG(v) ≤ 23, or the above configuration (c). This contradiction implies
that such a counterexample to Theorem 1.3’ does not exist and thus Theorem 1.3’ is proved. �
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