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Abstract
In this paper, we prove for planar graph G with maximum degree D ≥ 12 that the 

(2,1)-total labelling number l2(G) is at most D + 2.

Keywords: (2,1)-total labelling, Planar graphs, Discharging

1.  Introduction

In this paper, all graphs considered are finite, simple and undirected. 
We use V(G), E(G), d (G) and D(G) (or simply V, E, d, and D) to denote the 
vertex set, the edge set, the minimum degree and the maximum degree of 
a graph G, respectively. For a plane graph G, F(G) denotes the face set of 
G and d(f  ) denotes the degree of a face f Œ F(G), which is the number of 
edges incident with it, where cut edge is counted twice. A k-, k+- and k–-
vertex (or face) in a graph G is a vertex (or face) of degree k, at least k and 
at most k, respectively. If a vertex v is adjacent to a k-vertex u, then we say 
that u is a k-neighbor of v. For f Œ F(G), we call f a 1 2[ ( ), ( ), , ( )]kd v d v d v -face 
if 1 2, , , kv v v  are the boundary vertices of f in clockwise order. A 3-face is 
usually called a triangle face. Readers are referred to [2] for other undefined 
terms and notations.

A k-(d, 1)-total labelling of a graph G is a function c from V(G) » E(G) 
to the color set {0,1, , }k

 such that ( ) ( )c u c v≠  if ( ),uv E G∈  ( ) ( )c e c e≠ ′  if 
e and e¢ are two adjacent edges, and | ( ) ( )|c u c e d− ≥  if vertex u is incident 
to the edge e. The minimum k such that G has a k-(d, 1)-total labelling, 
denoted by ( ),T

d Gλ  is the (d, 1)-total labelling number. The notion of (d, 
1)-total labelling of graphs, which is a generation of the total coloring of 
graphs, was introduced by Havet and Yu [5]. Readers can referr to [1, 4, 6, 
7, 9] for further research. In particular, Havet and Yu gave the following (d, 
1)-Total Labelling Conjecture, which can be seen as the generation of the 
well-known Total Coloring Conjecture.

Conjecture 1: If G be a simple graph with maximum degree D, then ( ) minT
d Gλ ≤

{ 2 1, 2 1}.d d∆ + − ∆ + −
Assuming d = 2, we obtain the following weaker conjecture.

Conjecture 1¢: If G be a simple graph with maximum degree D, then 
2 ( ) 3.T Gλ ≤ ∆ +

 Additionally, the following risky conjecture was proposed in [1].
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Conjecture 2 ([1]): If G is a planar triangle-free graph with maximum degree  
D ≥ 3, then ( ) .T

d G dλ ≤ ∆ +  
Let c and c¢ denote the chromatic number and the edge chromatic 

number, respectively. The following results was first mentioned in [5].

Proposition 3 ([5]): If G is a graph with maximum degree D, then 

(1)	 ( ) 2;T
d G dλ χ χ≤ + + −′  

(2)	 ( ) 1;T
d G dλ ≥ ∆ + −  

(3)	 ( )T
d G dλ ≥ ∆ +  if d ≥ D or G is D-regular. 

 
For planar graph with large maximum degree D, Bazzaro, Montassier 

and Raspaud [1] proved that if 8 2d∆ ≥ +  then ( ) 2 2.T
d G dλ ≤ ∆ + −  Recently, 

this lower bound for D in the above result was improved to 6d + 2 by 
Zhang, Liu and Yu [11]. Indeed, for planar graph with maximum degree 
at least 7, (d, 1)-Total Labelling Conjecture is meaningful only for d with 

2 1 2,d d∆ + − ≤ ∆ + +  i.e. 1 3d≤ ≤  by (1) of Proposition 3, since c £ 4 and 
c¢ = D [8].

In this paper, we consider the (2,1)-total labellings of planar graph 
with large maximum degree. Our main result, shown as in Theorem 4, is 
an improvement of the above mentioned results of Bazzaro, Montassier 
and Raspaud or of Zhang, Liu and Yu when d = 2. On the other hand, it 
is also can be seen as a support for Conjecture 2 and (d, 1)-Total Labelling 
Conjecture when d = 2. Furthermore, the upper bound D + 2 for 2 ( )T Gλ  in 
Theorem 4 is sharp because planar graph with arbitrary maximum degree 
and 2 ( ) = 2T Gλ ∆ +  was given in [1].

Theorem 4: If G is a planar graph with maximum degree D ≥ 12, then 21 Tλ∆ + ≤
( ) 2.G ≤ ∆ +  

The lower bound of our result is trivial by (2) of Proposition 3. For the 
upper bound, we prove a conclusion that is slightly stronger as follows.

Theorem 5: If G is a planar graph with maximum degree D £ M, where M ≥ 12 
is a fixed integer, then 2 ( ) 2.T G Mλ ≤ +  In particular, 2 ( ) 2T Gλ ≤ ∆ +  if M = D. 

The interesting case of Theorem 5 is when M = D. Indeed, Theorem 5 
is only a technical strengthening of Theorem 4, without which we would 
get complications when considering a subgraph H Ã G with D(H) < D(G).

Let G be a minimal counterexample in terms of |V| + |E| to Theorem 5. 
By the minimality of G, any proper subgraph of G is (2,1)-total labelable. 
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It is not difficult to see that G is connected. In Section 2, we obtain some 
structural properties of the minimal counterexample G. In Section 3, we 
complete the proof with discharging method.

2.  Structural Properties

From now on, we use without distinction the terms color and label. For 
a set X, we usually denote the cardinality of X by |X|. A partial (2,1)-total 
labelling of G is a function F from ( ) ( )X V G E G⊆ ∪  to the color interval 

= {0,1, , }C k  with | |= 1 = 3C k M+ +  such that the color of the element 
x Œ X, denoted by F(x), satisfies all the conditions in the definition of 
(2,1)-total labelling of graphs. Next, we need some notations to make our 
description concise. 

 ( ) = { ( )| }E v e e E is incident with vertex vΦ Φ ∈  for ;v V∈  

( ) = { ( ) 1, ( ), ( ) 1}I x x x x CΦ Φ − Φ Φ + ∩  for ;x V E∈ ∪  

( ) = ( ) ( )F v E v I vΦ Φ Φ∪  for ;v V∈  

( )( ) = \ ( ) ( )A uv C F u F vΦ Φ Φ∪  for ;uv E∈

( ) ( )( )( )( ) = \ ( ) ( )x N u e uA u C x I eΦ ∈ ∋ Φ∪ Φ ∪ ∪  for .u V∈  

In all the notations above, only elements got colors under the partial 
(2,1)-total labelling F are counted in our notations. For example, if v is not 
colored under F, then ( ) = ( )F v E vΦ Φ  by our definition. It is not difficult 
to see that ( )A uvΦ  (resp. AF(u)) is just the set of colors which are still 
available for labelling uv (resp. u) under the partial (2,1)-total labelling F. 
Thus, if | ( )| 1A uvΦ ≥  (resp. | ( )| 1A uΦ ≥ ), then we can (2,1)-total labelling 
edge uv (resp. vertex u) properly under F.

Lemma 6: For each uv Œ E, we have ( ) ( ) 1.d u d v M+ ≥ −  

Proof: Assume that there is an edge uv Œ E such that ( ) ( ) 2.d u d v M+ ≤ −  By 
the minimality of G, G – e has a (2,1)-total labelling F with color interval C. 
Since | ( )|=| | | ( ) ( )| | | ( ( ) ( ) 2 3 2) | |A uv C F u F v C d u d v CΦ Φ Φ− ∪ ≥ − + − + × ≥ −
( 2) 1M + ≥ , we can extend F from subgraph G – e to G, a contradiction. 

Lemma 7: For any edge e = uv Œ E with 2
4

min{ ( ), ( )} ,Md u d v  +
  

≤  we have 

( ) ( ) 2.d u d v M+ ≥ +  
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Proof: Suppose there is an edge uv Œ E such that 2
4

( ) Md u  +
  

≤  and 
( ) ( ) 1.d u d v M+ ≤ +  By the minimality of G, G – e is (2,1)-total labelable with 

color interval C. Erase the color of vertex u, and denote this partial (2,1)-total 
labelling by F. Then | ( )| | | | ( )| | ( )|=| | | ( )|A uv C F u F v C E uΦ Φ Φ Φ≥ − − − −
| ( )| | | ( ( ) ( ) 2 3) | | ( 2) 1F v C d u d v C MΦ ≥ − + − + ≥ − + ≥  which implies that  
uv can be properly colored. We still denote the labelling by F after uv 
is colored. Next, for vertex u, ( )| ( )| | | | ( )| |x N u e uA u C x IΦ ∈ ∋ Φ≥ − ∪ Φ − ∪
( )| 3 4 ( ) 1.e M d u≥ + − ≥  Thus, we can extend the partial (2,1)-total labelling 
F to G, a contradiction. 

A k-alternator ( )2
4

3 Mk  +
  

≤ ≤  is a bipartite subgraph B(X, Y) of graph 

G such that ( ) = ( )B Gd x d x k≤  for each x Œ X and ( ) ( )B Gd y d y k M≥ + −  for 
each  y Œ Y. This concept was first introduced by Borodin, Kostochka and 
Woodall [3] and generalized by Wu and Wang [10].

Lemma 8 ([3]): A bipartite graph G is edge f-choosable where f(uv) = max{d(u), 
d(v)} for any uv Œ E(G). 

Lemma 9: There is no k-alternator B(X, Y) in G for any integer k with 
2 .

4
3 Mk  +

  
≤ ≤  

Proof: Suppose that there exits a k-alternator B(X, Y) in G. Obviously, X is 
an independent set of vertices in graph G by Lemma 7. By the minimality of 
G, the subgraph G[V(G)\X] has a (2,1)-total labelling F with color interval 
C. Then for each xy Œ B(X, Y), | ( )| | | | ( )| | ( )| | |A xy C F y F x CΦ Φ Φ≥ − − ≥ −
( ) ( )( ) ( ) 3 0 3 ( ) 3 ( )G B B Bd y d y M M d y d y− + − ≥ + − − + ≥  and | ( )| | |A xy CΦ ≥ −

( )( ) ( ) 3 3 ( 3 )G Bd y d y M M k k− + ≥ + − + − ≥  because B(X, Y) is a k-alternator. 
Therefore, | ( )| max{ ( ), ( )}.B BA xy d y d x≥  By Lemma 8, it follows that 

( ( , ))E B X Y  can be colored properly. Denote this new partial (2,1)-total 
labelling by F¢. Then for each vertex x Œ X, ( )| ( )| | | | z N xA x CΦ ∈′ ≥ − ∪

( )| | ( )| | | 4 ( ) 3 ( 2) 1e xz I e C d x M M∋ Φ′Φ − ∪ ≥ − ≥ + − + ≥′  because ( )Gd x k≤
2

4
.M +

  
≤  Thus, we can extend the partial (2,1)-total labelling F to G, a 

contradiction. 

Lemma 10: Let = { ( )| ( ) }k GX x V G d x k∈ ≤  and = ( )k x Xk
Y N x∈∪  for any 

integer k with 2 .
4

3 Mk  +
  

≤ ≤  If ,kX ≠ ∅  then there exists a bipartite subgraph 
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Mk of G with partite sets Xk and Yk such that ( ) = 1Mk
d x   for each kx X∈  and 

( ) 1Mk
d y k≤ −  for each .ky Y∈  

Proof: The proof is omitted here since it is almost the same with the proof 
of Lemma 2.4 in Wu and Wang [10]. 

We call y the k-master of x if xy Œ Mk and x Œ Xk, y Œ Yk. By Lemma 7, 
if uv Œ E(G) satisfies 2

4
( ) Md v  +

  
≤  and d(u) = M – i, then d(v) ≥ M + 2 – d(u) 

≥ i + 2. Together with Lemma 10, it follows that each (M – i)-vertex can be 
a j-master of at most j – 1 vertices, where 2

4
2 2 .Mi j  +

  
≤ + ≤ ≤  Each i-vertex 

has a j-master where 2
4

2 .Mi j  +
  

≤ ≤ ≤

Lemma 11: The minimal counterexample G to Theorem 5 has the following 
structural properties. 

(a)	 A 4-vertex is adjacent to 8+-vertices;
(b)	 There is no [d(v1), d(v2), d(v3)]-face with d(v1) = 5, max {d(v2), d(v3)} £ 6;
(c)	� If f = [d(v1), d(v2), d(v3)] is a triangle face with d(v1) = 5, d(v2) = 6 and 

d(v3) = 7, then v1 has no other 6-neighbors besides v2.
(d)	� If a vertex v is adjacent to two vertices v1, v2 such that 2 £ d(v1) = d(v2) 

= M + 2 – d(v) £ 3, then every face incident with vv1 or vv2 is a 4+-face.
(e)	 Each D-vertex is adjacent to at most one 2-vertex. 

Proof: 
(a)	� Otherwise, suppose that there is uv Œ E such that d(u) = 4 and d(v) 

£ 7. By the minimality of G, H = G – uv is (2,1)-total labelable with 
color interval C. Erase the color of vertex u, and denote this partial 
(2,1)-total labelling by F. Then ( )| ( )| | | | ( )| |x N uA u C xΦ ∈≥ − ∪ Φ −

Figure 1
Reducible configurations of Lemma 1.1. 
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( )| 3 4 3 3 15 13 2e u I e M∋ Φ∪ ≥ + − − × ≥ − ≥  and | ( )| | | | ( )|A uv C E uΦ Φ≥ −
| ( )| 15 3 (6 3) 3.F vΦ− ≥ − − + ≥  Choose ( )A uα Φ∈  to color u. If 

( ) { 1, , 1},A uv α α αΦ ≠ − +  then we can choose ( )\{ 1,A uvγ αΦ∈ −
, 1}α α +  to color edge uv. Otherwise, ( ) = { 1, , 1}.A uv α α αΦ − +  Then 

we choose ( )\{ }A uβ αΦ∈  to color u. Since ( ) { 1, , 1},A uv β β βΦ ≠ − +  
we can choose ( )\{ 1, , 1}A uvγ β β βΦ∈ − +′  to color edge uv. Thus, we 
extend F from subgraph H to G, a contradiction.

(b)	� By Lemma 6, it is enough to prove that there is no [5, 6, 6]-face. 
Otherwise, let d(v1) = 5, d(v2) = d(v3) = 6 and let H = G – {v1v2, v1v3}. 
Then H has a (2,1)-total labelling F with interval C.

	� Case 1: 1 2 3( ) ( ) ( ).v F v F vΦ ΦΦ ∈ ∪  Without loss of generality, suppose 
that 1 2( ) ( ),v F vΦΦ ∈  i.e. 1 2 1 2| ( ) ( )| | ( )| | ( )| 1.F v F v F v F vΦ Φ Φ Φ∪ ≤ + −  
Then 1 2 1 2| ( )|= 3 | ( ) ( )| 15 (3 3 5 3 1) 2A v v M F v F vΦ Φ Φ+ − ∪ ≥ − + + + − ≥  
and 1 3 1 3| ( )|= 3 | ( ) ( )| 15 (3 3 5 3) 1A v v M F v F vΦ Φ Φ+ − ∪ ≥ − + + + ≥  which 
implies that we can extend F to G, a contradiction.

 	� Case 2. 1 2 3( ) ( ) ( ).v F v F vΦ ΦΦ ∉ ∪  That is, 1 2 3( ) ( ).v A v vΦΦ ∈  Recolor 
v2v3 with color F(v1) and denote this new partial (2,1)-total labelling 
by F¢. Then 1 2 1 2| ( ) ( )| | ( )| | ( )| 1.F v F v F v F vΦ Φ Φ Φ′ ′ ′ ′∪ ≤ + −  Analogous to 
Case 1, we can extend F¢ to G, a contradiction.

(c)	� Suppose on the contrary that G contains such a configuration (see 
Fig. 1 (c)). By the minimality of G H = G – {v1v2, v1v3} has a (2,1)-total 
labelling F with color interval C.

	� Claim 1: 1 2 3( ) ( ).v v vΦ ≠ Φ  Otherwise, 1 2| ( ) ( )| 1.F v F vΦ Φ∩ ≥  Then 
1 2 1 2| ( )|= 3 | ( ) ( )| 15 (3 3 5 3 1) 2A v v M F v F vΦ Φ Φ+ − ∪ ≥ − + + + − ≥  and 
1 3 1 3| ( )|= 3 | ( ) ( )| 15 (3 3 6 3 1) 1A v v M F v F vΦ Φ Φ+ − ∪ ≥ − + + + − ≥  which 

implies that we can extend the partial (2,1)-total labelling F to G, a 
contradiction.

	� Claim 2. 1 2 3( ) ( ) ( ).E v F v F vΦ Φ Φ⊆ ∪  Otherwise, we can choose a 
color ( )1 2 3( )\ ( ) ( )E v F v F vα Φ Φ Φ∈ ∪ ≠ ∅  to recolor edge v2v3. Denote 
this new coloring of H by F¢. Then 1 2 3( ) ( ) ( ).F v F v F vα Φ Φ Φ′ ′ ′∈ ∩ ∩  
Therefore, 1 2| ( )| 2A v vΦ′ ≥  and 1 3| ( )| 1A v vΦ′ ≥  which implies that we 
can extend F¢ to G, a contradiction.

	� Claim 3. 1 2( ) ( ).E v F vΦ Φ⊆  Otherwise, we have 1 3( ) ( )E v F vΦ Φ∩ ≠ ∅  
by Claim 2. Assume that 1 3( ) ( ).E v F vΦ Φ⊆  We then have 

1 3| ( ) ( )| 3,F v F vΦ Φ∩ ≥  which implies that 1 3 1| ( )|= 3 | ( )A v v M F vΦ Φ+ −

	 3( )| 15 (3 3 6 3 3) 3F vΦ∪ ≥ − + + + − ≥  and 1 2 1| ( )|= 3 | ( )A v v M F vΦ Φ+ −
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	�  2( )| 15 (3 3 5 3) 1.F vΦ∪ ≥ − + + + ≥  Therefore, we can extend F from 
subgraph H to G, a contradiction.

	� By Claim 2 and Claim 3, we have 1 2 1 2| ( ) ( )| | ( ) ( )|= 3F v F v E v F vΦ Φ Φ Φ∩ ≥ ∩  
and 1 3( ) ( ) = .E v F vΦ Φ∩ ∅  Since 1 4 1( ) ( ),v v E vΦΦ ∈ we have 1 4( )v vΦ ∉  

3( ).F vΦ For edge v1v4, 1 4 1 4| ( )|= 3 | ( ) ( )| 15 (3 3A v v M F v F vΦ Φ Φ+ − ∪ ≥ − +
5 3) 1.+ + ≥  Therefore, we choose 1 4( )A v vα Φ∈  to recolor v1v4 and 

denote this new partial (2,1)-total labelling by F¢. Obviously, 1( )F vΦ′

1 1 4= ( ) { }\{ ( )},F v v vαΦ ∪ Φ  2 2( ) = ( )F v F vΦ Φ′  and 3 3( ) = ( ).F v F vΦ Φ′  Thus, 
1 4 1 3( ) ( ) ( )v v F v F vΦ Φ′ ′Φ ∉ ∪  which implies that we can color v1v3 

with F(v1v4). For edge v1v2, we have 1 2 1| ( )|= 3 | ( )A v v M F vΦ Φ′ ′+ −

2( )| 15 (3 3 5 3 2) 3F vΦ′∪ ≥ − + + + − ≥  because 1 2| ( ) ( )| 2.F v F vΦ Φ′ ′∩ ≥  
Therefore, we choose F(v1v4) and 1 2 1 4( )\{ ( )}A v v v vβ Φ′∈ Φ  to color 
v1v3 and v1v2, respectively. Then we obtain a (2,1)-total labelling of G, 
a contradiction.

(d)	� Assume that there is a triangle face f = uvv1 such that 2 ( )vv E G∈  and 
1 22 ( ) = ( ) = 2 ( ) 3d v d v M d v≤ + − ≤  (see Fig. 1 (d)). By the minimality 

of G, H = G – {vv1, vv2} is (2,1)-total labelable with color interval 
C. Erase the colors of v1 and v2, and denote this partial (2,1)-total 
labelling by F. Then 1 1| ( )| 3 | ( )| | ( )| 3A vv M E v F v MΦ Φ Φ≥ + − − ≥ + −

1 1( ( ) 1) ( ( ) 2 3) 3 ( ( ) ( )) 1d v d v M d v d v− − − + ≥ + − + ≥ . Similarly, 2| ( )| 1.A vvΦ ≥

	� If { }1 2max | ( )|,| ( )| 2A vv A vvΦ Φ ≥  or 1 2( ) ( ),A vv A vvΦ Φ≠  then we 
can label vv1 and vv2 properly by choosing colors from AF(vv1) 
and AF(vv2), respectively. If 1 2( ) = ( ) = { },A vv A vv αΦ Φ  then 
( )1 2( ) ( ) ( ) =E v E v F vΦ Φ Φ∪ ∩ ∅  and 1 2( ) = ( ).E v E vΦ Φ  Therefore we can 
exchange the colors of uv1 and uv. Denote this new partial (2,1)-total 
labelling by F¢. It is not difficult to see that    1 1( ) = ( ) = { }A vv A vv αΦ Φ′  
and 2 2 2| ( )| 3 (| ( )| | ( )| 1) 3 ( ( ) ( )A vv M E v F v M d v d vΦ Φ Φ′ ′ ′≥ + − + − ≥ + − +  

1) 2,− ≥ then we can label vv1 and vv2 properly by choosing colors 
from AF¢(vv1) and AF¢(vv2), respectively.

	� At last, we extend the above partial labelling to a (2,1)-total labelling 
of G by labelling the 2-vertices v1 and v2 properly. This can be easily 
done since 1 1| ( )| 3 4 ( ) 9 3A v M d v MΦ ≥ + − ≥ − ≥  and 2| ( )| 3A v MΦ ≥ + −

24 ( ) 3.d v ≥

(e)	� Suppose that v is a D-vertex adjacent to two 2-vertices x and y. Let x¢ 
(resp. y¢ ) be the neighbor of x (resp. y) different from v.

	� Case 1: x¢ = y¢, i.e. vxx¢y forms a 4-cycle (see Fig. 1 (e1)). By the 
minimality of G, H = G – {x, y} has a (2,1)-total labelling F with color 
interval C. Then | ( )| 3 | ( )| 3 ( 2 3) 2.A vx M F v MΦ Φ≥ + − ≥ + − ∆ − + ≥  
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Similarly, | ( )| 2,| ( )| 2,| ( )| 2.A vy A x x A x yΦ Φ Φ≥ ≥ ≥′ ′  Since 4( ) = 2,l Cχ′  
we can choose colors to label all the edges of 4-cycle vxx¢y properly. 
Denote this new partial (2,1)-total labelling by F¢. Now consider 
the 2-vertices x and y. Since | ( )| 3 4 ( ) 5 7A x M d x MΦ′ ≥ + − ≥ − ≥  and 
| ( )| 3 4 ( ) 5 7,A y M d y MΦ′ ≥ + − ≥ − ≥  we can extend F¢ from H to G, a 
contradiction.

	� Case 2: { }, ( ) .vx vy E G∩ ≠ ∅′ ′  This case is impossible by Lemma 11 
(d).

	� Case 3. { }, ( ) =vx vy E G∩ ∅′ ′  (see Fig. 1 (e2)). By the minimality of G, 
{ } { }= , ,H G x y vx vy− ∪ ′ ′  has a (2,1)-total labelling F, which implies 

that ( ) ( ) ( )vx F x F vΦ ΦΦ ∉ ∪′ ′  and ( ) ( ) ( ).vy F y F vΦ ΦΦ ∉ ∪′ ′  Color xx¢,vy 
with F(vx¢) and color yy¢, vx with F(vy¢). Then we obtain a partial 
(2,1)-total labelling F¢ of G. Since | ( )| 3 4 ( ) 5 7A x M d x MΦ′ ≥ + − ≥ − ≥  
and | ( )| 3 4 ( ) 5 7,A y M d y MΦ′ ≥ + − ≥ − ≥  we can choose colors to label 
x and y properly. Thus we extend F¢ to graph G, a contradiction. 

In the next section, we call a [5, 6, 7]-face a special 3-face and the other 
3-face a normal 3-face. Lemma 11 implies that each 5-vertex is incident with 
at most two special 3-faces.

3.  Discharging Part

Proof of Theorem 5: Let G be a minimal counterexample in terms of |V| + 
|E| with M ≥ 12. By the Lemmas of Section 2, we conclude that 

(C1)	 G is connected;
(C2)	 For each uv Œ E, d(u) + d(v) ≥ M – 1;
(C3)	 If uv Œ E and 2

4
min{ ( ), ( )} ,Md u d v  +

  
≤  then d(u) + d(v) ≥ M – 2.

(C4)	 Each i-vertex (if exists) has one j-master, where 2 £ i £ j £ 3;
(C5)	� Each (M – i)-vertex (if exists) can be a j-master of at most j – 1 

vertices, where 2 £ i + 2 £ j £ 3.
(C6)	 G satisfies (a) – (e) of Lemma 11.

We define the initial charge function ( ) := ( ) 4w x d x −  for all element 
.x V F∈ ∪  By Euler’s formula | | | | | |= 2,V E F− +  we have ( ) =

x V F
w x

∈ ∪
∑
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( ( ) 4) ( ( ) 4) = 8 < 0.
v V f F

d v d f
∈ ∈

− + − −∑ ∑  The discharging rules are defined as 

follows.
(R1)	� Each 2-vertex receives charge 1

2  from each of its incident D-vertex 
and receives charge 1 from its 3-master.

(R2)	� Each 3-vertex receives charge 1 from its 3-master.
(R3)	� Each 5-vertex transfer charge 1

4
 to each of its incident special 3-face 

and transfer 1
6

 to each of its incident normal 3-face.
(R4)	� Each k-vertex with 6 £ k £ 7 transfer charge 4−k

k
 to each 3-face that 

incident with it.
(R5)	� Each 8+-vertex transfer charge 1

2  to each 3-face that incident with 
it.

Let v be a k-vertex of G. If k = 2, then 1
2

( )= ( ) 1 2= 2 1 1=0w v w v + + × − + +′  
by (R1) and (C3); If k = 3, then ( )= ( ) 1=0w v w v +′  since it receives 1 from 
its 3-master by (R2) and (C4); If k = 4, then ( )= ( )=0w v w v′  since we never 
change the charge by our rules; If k = 5, then 1 1

4 6
( ) ( ) 2 3=0w v w v≥ − × − ×′  

by (R3) and Lemma 11 (c); If 6 £ k £ 7, then 4( ) ( ) =0k
k

w v w v k −≥ −′  by (R4); 
If 8 2,k M≤ ≤ −  then 1

2
( ) ( ) 0w v w v k≥ − ≥′  by (R5) and (C3);

By Lemma 7, it is not difficult to prove that ( ) 2Gδ ≥  when D = M and 
( ) 3Gδ ≥  otherwise. If 2,M ≥ ∆ +  then 2 .M− ≥ ∆  Thus, w(v) ≥ 0 for all v Œ 

V(G). Otherwise, D £ M £ D + 1. Consider the k-vertex v with M – 1 £ d(v) 
= k £ D.

If M = D + 1, then d ≥ 3 and k = D = M – 1. Lemma 11 (d) implies that 
(M – 1)-vertex is incident with at most M – 4 triangle faces if it has at least 
two 3-neighbors. Thus, together with rules (R2) and (R5), we have ( )w v ≥′

{ }1 1 1 1
2 2 2 2

min ( ) 1, ( ) ( 3) 2 = 5 .Mw v w v −− ∆ − − ∆ − − − ≥

If M = D, then d ≥ 2. If k = D – 1 = M – 1, then do the similar arguments 

as above . If k = D = M, then { 1 1 1
2 2 2( ) min ( ) 1 , ( ) ( 3)w v w v w v≥ − ∆ − − − ∆ −′

}1 11
2 22 0M−− − = >  by Lemma 11 (d), (e) and rules (R1), (R2), (R5).

Let f be a k-face of G. If k ≥ 4, then ( ) = ( ) 0.w f w f ≥′  since we never 
change the charge of them by our rules. If k = 3, then assume that f = 
[d(v1), d(v2), d(v3)] with d(v1) £ d(v2) £ d(v3). It is easy to see w( f ) = – 1. If 
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d(v1) £ 3, then { }2 3 1min ( ), ( ) 2 ( ) 1 11d v d v M d v M≥ + − ≥ − ≥  by (C3). Thus, 
1
2( ) = ( ) 2 = 0w f w f + ×′  by (R5). If d(v1) = 4, then d(v3) ≥ d(v2) ≥ 8 by Lemma 

11 (a). Therefore, 1
2( ) = ( ) 2 = 0w f w f + ×′  by (R5). If (v1) = 5, then d(v2) = 

6, d(v3) ≥ 7 or d(v3) ≥  d(v2) ≥ 7 by Lemma 11 (b). If f is a special 3-face, then 
1 1 3 1
4 3 7 84( ) ( ) = > 0w f w f≥ + + +′  by (R2) and (R3). If f is a normal 3-face, 

then 2 3( ) = 6, ( ) 8d v d v ≥  or 3 2( ) ( ) 7d v d v≥ ≥ . Therefore, 1
6( ) ( )w f w f≥ + +′

{ }1 1 3
3 2 7min , 2 0+ × ≥  by (R3) – (R5). If d(v1) = m ≥ 6, then d(v1) ≥ d(v1) ≥ 6. 

Therefore, { }4 1
2( ) ( ) 3 min , = 0m

mw f w f −≥ + ×′  by (R4) and (R5).

Thus, we have ( ) = ( ) > 0
x V F x V F

w x w x
∈ ∪ ∈ ∪

′∑ ∑  since w(v) > 0 when d(v) = D. 

This contradiction completes the proof. 
Actually, the above proof implies the following immediate corollary.

Corollary 12: If G is a graph embedded in a surface of nonnegative Euler 
characteristic with maximum degree D ≥ 12, then ( ) .T

2 G 2λ ≤ ∆ +  
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