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Abstract

A graph is said to be equitably k-colorable if the vertex set V (G) can be
partitioned into k independent subsets V1, V2, . . . , Vk such that ||Vi|−|Vj || ≤
1 (1 ≤ i, j ≤ k). A graph G is equitably k-choosable if, for any given
k-uniform list assignment L, G is L-colorable and each color appears on

at most
⌈

|V (G)|
k

⌉

vertices. In this paper, we prove that if G is a graph

such that mad(G) < 3, then G is equitably k-colorable and equitably k-
choosable where k ≥ max{∆(G), 4}. Moreover, if G is a graph such that
mad(G) < 12

5 , then G is equitably k-colorable and equitably k-choosable
where k ≥ max{∆(G), 3}.
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1. Introduction

The terminology and notation used but undefined in this paper can be found
in [1]. Let G = (V (G), E(G)) be a graph. Let dG(x), or simply d(x), denote the
number of edges incident with the vertex (face) x in G. If d(x) = k, d(x) ≥ k and
d(x) ≤ k, then the vertex x is called a k-vertex, k+-vertex and k−-vertex, respec-
tively. We use V (G), E(G), ∆(G) and δ(G) to denote the vertex set, edge set,
maximum degree, and minimum degree of G, respectively. The average degree

of a graph G is
∑

v∈V (G) d(v)

|V (G)| , and denote it by ad(G). The maximum average

degree mad(G) of G is the maximum of the average degree of its subgraphs. The
girth of a planar graph is the length of a smallest cycle in the graph, and denote
the girth of a graph G by g(G). We use ⌈x⌉ to denote a minimum integer which
is no less than x.

A proper k-coloring of a graph G is a mapping π from the vertex set V (G)
to the set of colors {1, 2, . . . , k} such that π(x) 6= π(y) for every edge xy ∈ E(G).
A graph G is equitable k-colorable if G has a proper k-coloring such that the size
of the color classes differ by at most 1. The equitable chromatic number of G,
denoted by χe(G), is the smallest integer k such that G is equitably k-colorable.
The equitable chromatic threshold of G, denoted by χ∗

e(G), is the smallest integer
k such that G is equitably l-colorable ( for any l ≥ k).

In 1970, Hajnál and Szemerédi proved that χ∗
e(G) ≤ ∆(G) + 1 for any graph

G [9]. This bound is sharp as shown in the example ofK2n+1,2n+1. In 1973, Meyer
introduced the notion of equitable coloring and made the following conjecture.

Conjecture 1.1 (Meyer [18]). If G is a connected graph which is neither a

complete graph nor odd cycle, then χe(G) ≤ ∆(G).

In 1994, Chen, Lih and Wu put forth the following conjecture.

Conjecture 1.2 (Chen, Lih and Wu [2]). For any connected graph G, if it is

different from a complete graph, a complete bipartite graph and an odd cycle, then

χ∗
e(G) ≤ ∆(G).

Chen, Lih and Wu [2, 3] proved Conjecture 1.2 for graphs with ∆(G) ≤ 3 or

∆(G) ≥ |V (G)|
2 . In 2012, Chen et al. [4] improved the former result and confirmed

the Conjecture 1.2 for graphs with ∆(G) ≥ |V (G)|
3 + 1. Yap and Zhang [26, 27]

showed that Conjecture 1.2 holds for planar graphs with ∆(G) ≥ 13. In 2012,
Nakprasit [19] confirmed the Conjecture 1.2 for planar graphs with ∆(G) ≥ 9.
Lih and Wu [14] verified χ∗

e(G) ≤ ∆(G) for bipartite graphs other than complete
bipartite graphs. Wang and Zhang [23] proved Conjecture 1.2 for line graphs, and
Kostochka and Nakprasit [12, 13] proved it for graphs with low average degree,
and d-degenerate graphs with ∆(G) ≥ 14d+ 1. Yan and Wang [25] showed that
Conjecture 1.2 holds for Kronecker products of complete multipartite graphs and
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complete graphs. Wu and Wang [24], Luo et al. [17] confirmed Conjecture 1.2 for
some planar graphs with large girth, respectively. Li et al. [16], Zhu et al. [29],
Dong et al. [5–8], Nakprasit [20] confirmed Conjecture 1.2 for some planar graphs
with some forbidden cycles. Zhang and Wu [28], Zhu and Bu [30] verified the
Conjecture 1.2 for some series-parallel graphs and outerplanar graphs, respec-
tively.

For a graph G and a list assignment L assigning to each vertex v ∈ V (G)
a set L(v) of acceptable colors, an L-coloring of G is a proper vertex coloring
such that for every v ∈ V (G) the color on v belongs to L(v). A list assignment
L for G is k-uniform if |L(v)| = k for all v ∈ V (G). A graph G is list equitably
k-colorable (also called equitably k-choosable) if, for any k-uniform list assignment

L, G is L-colorable and each color appears on at most
⌈

|V (G)|
k

⌉

vertices.

In 2003, Kostochka, Pelsmajer and West investigated the list equitable col-
oring of graphs. They proposed the following conjectures.

Conjecture 1.3 (Kostochka, Pelsmajer and West [11]). Every graph G is equi-

tably k-choosable whenever k > ∆(G).

Conjecture 1.4 (Kostochka, Pelsmajer and West [11]). If G is a connected graph

with maximum degree at least 3, then G is equitably ∆(G)-choosable, unless G is

a complete graph or is Kk,k for some odd k.

It has been proved that Conjecture 1.3 holds for graphs with ∆(G) ≤ 3
in [21, 22] and then the result was strengthened by Kierstead and Kostochka.
They confirmed the Conjecture 1.3 for graphs with ∆(G) ≤ 7 in [10]. Kostochka,
Pelsmajer and West proved that a graph G is equitably k-choosable if either G 6=

Kk+1,Kk,k (with k odd in Kk,k) and k ≥ max
{

∆,
|V (G)|

2

}

, or G is a connected

interval graph and k ≥ ∆(G) or G is a 2-degenerate graph and k ≥ max{∆(G), 5}
in [11]. Pelsmajer proved that every graph is equitably k-choosable for any k ≥
∆(G)(∆(G)−1)

2 + 2 in [21]. In 2009, Conjecture 1.4 were proved for planar graphs
G without 4- and 6-cycles and with ∆(G) ≥ 6 by Li et al. in [16]. Zhu et al.

confirmed Conjecture 1.4 for planar graph G without 3-cycles and with ∆(G) ≥ 8,
planar graph G without 4- and 5-cycles and with ∆(G) ≥ 7 in [29], C5-free planar
graphG without adjacent triangles and with ∆(G) ≥ 8 in [30], outerplanar graphs
in [31]. Zhang and Wu proved Conjecture 1.4 for series-parallel graphs in [28].
More results can be seen in [5–8] and [15].

As for the sparse graph G with ∆(G) = 2, it is clear that G is equitably
k-colorable and equitably k-choosable where k ≥ max{∆(G), 3}, if G is an odd
cycle. Otherwise, G is equitably k-colorable and equitably k-choosable where
k ≥ max{∆(G), 2}. In this paper, we consider the sparse graph G with ∆(G) ≥ 3
and show that if G is a graph such that mad(G) < 3, then G is equitably k-
colorable and equitably k-choosable where k ≥ max{∆(G), 4}. Moreover, if G is
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a graph such that mad(G) < 12
5 , then G is equitably k-colorable and equitably

k-choosable where k ≥ max{∆(G), 3}.

2. Some Important Lemmas

Lemma 2.1 (Kostochka, Pelsmajer and West [11]). Let G be a graph with a

k-uniform list assignment L. Let S = {v1, v2, . . . , vk}, where {v1, v2, . . . , vk} are

distinct vertices in G. If G−S has an equitable L-coloring and |NG(vi)−S| ≤ k−i

for 1 ≤ i ≤ k, then G has an equitable L-coloring.

Lemma 2.2 (Zhu and Bu [29]). Let S = {v1, v2, . . . , vk} be a set of k different

vertices in G such that G−S has an equitable k-coloring. If |NG(vi)−S| ≤ k− i

for 1 ≤ i ≤ k, then G has an equitable k-coloring.

Lemma 2.3 (Hajnal and Szemerédi [9]). Every graph has an equitable k-coloring

whenever k ≥ ∆(G) + 1.

Lemma 2.4 (Pelsmajer, Wang and Lih [21,22]). Every graph G with maximum

degree ∆(G) ≤ 3 is equitably k-choosable whenever k ≥ ∆(G) + 1.

Lemma 2.5. Let G be a graph with mad(G) < 3. Then G is 2-degenerate.

Proof. By contradiction, there is subgraph G′ of G such that δ(G′) ≥ 3. It is
clear that mad(G′) ≥ 3, a contradiction.

Lemma 2.6 (Dong, Zou and Li [8]). If G is a graph such that mad(G) ≤ 3, then
G is equitably k-colorable and equitably k-choosable where k ≥ max{∆(G), 5}.

3. Graphs with mad(G) < 3

Lemma 3.1. Let G be a connected graph with order at least 4 and δ(G) ≥ 1. If

∆(G) ≤ 4 and mad(G) < 3, then G has at least one of the structures in Figure 1.

Proof. Let G be a counterexample. Then G does not contain any configuration
H1 ∼ H6 presented in Figure 1.

For each v ∈ V (G), if d(v) = 2, then v is adjacent to at least one 4-vertex
for the reason that G contains no structure H1. If d(v) = 4, then v is adjacent
to at most one 2-vertex for the reason that G contains no structure H2. For
convenience, let r denote the number of 4-vertices which are not adjacent to any
2-vertex. Obviously, G has the following property.
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Figure 1

Each configuration depicted in Figure 1 is such that: (1) hollow vertices may
be not distinct while solid vertices are distinct, (2) the degree of the solid vertices
is fixed, and (3) except for specially pointed, the degree of a hollow vertices may
be any integer from [d,∆(G)], where d is the number of edges incident with the
hollow vertex in the configuration.

Observation 3.2. n4(G) ≥ n2(G) + r.

By Lemma 2.5, we have δ(G) ≤ 2.

Suppose δ(G) = 2. By Observation 3.2, we have ad(G) = 2n2(G)+3n3(G)+4n4(G)
n2(G)+n3(G)+n4(G)

≥ 2n2(G)+3n3(G)+4(n2(G)+r)
n2(G)+n3(G)+n2(G)+r

= 6n2(G)+3n3(G)+4r
2n2(G)+n3(G)+r

= 3[2n2(G)+n3(G)+r]+r

2n2(G)+n3(G)+r
≥ 3, a con-

tradiction to mad(G) < 3.

Suppose δ(G) = 1. Since G contains no structure H3, there is only one 1-
vertex v in G. Furthermore, the vertex v must be adjacent to a 4-vertex u for
the reason that G contains no structure H4. Since G contains no structure H5,
the other adjacent vertices of u must be 4-vertices. For convenience, we use ui
(1 ≤ i ≤ 3) to denote the 4-vertices which are adjacent to u. Since G contains no
structure H6, ui (1 ≤ i ≤ 3) is not adjacent to any 2-vertex. From the above dis-

cussion, we have r ≥ 4. Obviously, we have ad(G) = n1(G)+2n2(G)+3n3(G)+4n4(G)
n1(G)+n2(G)+n3(G)+n4(G) =

1+2n2(G)+3n3(G)+4(n2(G)+r)
1+n2(G)+n3(G)+n2(G)+r

= 1+6n2(G)+3n3(G)+4r
1+2n2(G)+n3(G)+r

= 1+6n2(G)+3n3(G)+3r+4
1+2n2(G)+n3(G)+r

=

3[1+2n2(G)+n3(G)+r]+2
1+2n2(G)+n3(G)+r

≥ 3, a contradiction to mad(G) < 3.

In the following, let us give the proof of the main theorems.

Theorem 3.3. If G is a graph such that mad(G) < 3, then G is equitably k-

colorable where k ≥ max{∆(G), 4}.
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Proof. By Lemma 2.6, we only need to focus on the situation where ∆(G) ≤ 4.
Let G be a counterexample with the smallest number of vertices. Clearly, δ(G) ≥
1. If each component of G has at most four vertices, then ∆(G) ≤ 3. So G is
equitably k-colorable by Lemma 2.3. Otherwise, there is at least one component
with at least four vertices. By Lemma 3.1, G has one of the structures H1 ∼
H6, taking it and the vertices are labelled as they are in Figure 1. If there are
vertices labelled repeatedly, then we take the larger (xi is larger than xi−1). In
the following, we show how to find S in Lemma 2.2. If G has H1, H2 or H5, then
let S′ = {xk, xk−1, xk−2, x1}. If G has H3 or H4, then let S′ = {xk, xk−1, x1}.
If G has H6, then let S′ = {xk, xk−1, x2, x1}. By Lemma 2.5, G is 2-degenerate,
thus we can find the remaining unspecified positions in S from highest to lowest
indices by choosing a vertex with minimum degree in the graph obtained from G

by deleting the vertices already being chosen for S at each step. By the minimality
of |V (G)| and since k ≥ ∆(G) ≥ ∆(G− S), G− S is equitably k-colorable. So G

is also equitably k-colorable by Lemma 2.2.

Corollary 3.4. Let G be a graph such that mad(G) < 3. If ∆(G) ≥ 4, then

χe(G) ≤ ∆(G).

Corollary 3.5. Let G be a graph such that mad(G) < 3. If ∆(G) ≥ 4, then

χ∗
e(G) ≤ ∆(G).

Theorem 3.6. If G is a graph such that mad(G) < 3 and k ≥ max{4,∆(G)},
then G is equitably k-choosable.

Proof. Let G be a counterexample with the smallest number of vertices. If
each component of G has at most 4 vertices, then ∆(G) ≤ 3. So G is equitably
k-choosable by Lemma 2.4. Otherwise, the statement is similar to that in the
corresponding cases of Theorem 3.3. By Lemma 2.1 and Lemma 2.4, we have
this theorem.

Corollary 3.7. Let G be a graph such that mad(G) < 3. If ∆(G) ≥ 4, then G

is equitably ∆(G)-choosable.

For a planar graph with girth g, by mad(G) < 2g
g−2 , we have the following

corollary.

Corollary 3.8. Let G be a planar graph with girth g ≥ 6. If ∆(G) ≥ 4, then G

is equitably ∆(G)-colorable and equitably ∆(G)-choosable.

4. Graphs with mad(G) < 12
5

Lemma 4.1. Let G be a connected graph with order at least 4 and mad(G) < 12
5 .

Then G has at least one of the structures in Figure 2.
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Proof. Let G be a counterexample. Then G does not contain any configuration
F1 ∼ F4 presented in Figure 2.

Figure 2

Each configuration depicted in Figure 2 is such that: (1) hollow vertices may
be not distinct while solid vertices are distinct, (2) the degree of the solid vertices
is fixed, and (3) except for specially pointed, the degree of a hollow vertices may
be any integer from [d,∆(G)], where d is the number of edges incident with the
hollow vertex in the configuration.

In the following, we use the discharging method to get a contradiction. For
every v ∈ V (G), we define the original charge of v to be w(v) = d(v) − 12

5 . The
total charge of the vertices of G is equal to

∑

v∈V (G)

(

d(v)−
12

5

)

= |V (G)|×

(

ad(G)−
12

5

)

≤ |V (G)|×

(

mad(G)−
12

5

)

< 0.

In the following, we redistribute the charge according to the given discharging
rules and let w′(v) be the new charge of a vertex v ∈ V (G), for convenience. If
∑

v∈V (G)w
′(v) > 0 can be deduced, we can show that the assumption is wrong.

Define discharging rules as the following statements.

D1 Transfer charge 7
5 from each 4+-vertex to every adjacent 1-vertex.

D2 Transfer charge 1
5 from each 3+-vertex to every adjacent 2-vertex.

In the following, let us check the charge of each element v for v ∈ V (G). For
each v ∈ V (G), if d(v) = 1, then w(v) = −7

5 . Since G contains no structure F1,
there is at most one 1-vertex in G. Furthermore, the 1-vertex must be adjacent to
a 4+-vertex for the reason that G contains no structure F2. So w

′(v) ≥ −7
5+

7
5 = 0

by D1.

If d(v) = 2, then w(v) = −2
5 . Since G contains no structure F3, v is not

adjacent to any 2−-vertex. We have w′(v) ≥ −2
5 + 1

5 × 2 = 0 by D2.

If d(v) = 3, then w(v) = 3
5 . Since G contains no structure F2, v is not

adjacent to any 1-vertex. Then we have w′(v) ≥ 3
5 − 1

5 × 3 = 0 by D2.

Suppose d(v) ≥ 4. Then w(v) = d(v)− 12
5 . Since G contains no structure F4,

the vertex v is adjacent to at most one 1-vertex. If v is adjacent to a 1-vertex,
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then v is not adjacent to any 2−-vertex for the reason that G contains no structure
F4. We have w′(v) ≥ d(v)− 12

5 − 7
5 ≥ 4− 12

5 − 7
5 = 1

5 > 0 by D1. Otherwise, we
have w′(v) ≥ d(v)− 12

5 − 1
5 × d(v) = 4

5d(v)−
12
5 ≥ 4

5 × 4− 12
5 = 4

5 > 0 by D2.
From the above discussion, we have

∑

v∈V (G)w
′(v) ≥ 0, a contradiction.

In the following, let us give the proof of the main theorem.

Theorem 4.2. If G is a graph such that mad(G) < 12
5 , then G is equitably

k-colorable where k ≥ max{∆(G), 3}.

Proof. Let G be a counterexample with smallest number of vertices. If each
component of G has at most 3 vertices, then ∆(G) ≤ 2. So G is equitably k-
colorable by Lemma 2.3. Otherwise, there is at least one component with at least
four vertices. By Lemma 4.1, G has one of the structures F1 ∼ F4, taking it and
the vertices are labelled as they are in Figure 1. If there are vertices labelled
repeatedly, then we take the larger (xi is larger than xi−1). In the following, we
show how to find S in Lemma 2.2. Let S′ = {xk, xk−1, x1}. By Lemma 2.5, G
is 2-degenerate, hence we can find the remaining unspecified positions in S from
highest to lowest indices by choosing a vertex with minimum degree in the graph
obtained from G by deleting the vertices already being chosen for S at each step.
By the minimality of |V (G)| and since k ≥ ∆(G) ≥ ∆(G−S), G−S is equitably
k-colorable. So G is also equitably k-colorable by Lemma 2.2.

Corollary 4.3. Let G be a graph such that mad(G) < 12
5 . If ∆(G) ≥ 3, then

χe(G) ≤ ∆(G).

Corollary 4.4. Let G be a graph such that mad(G) < 12
5 . If ∆(G) ≥ 3, then

χ∗
e(G) ≤ ∆(G).

Theorem 4.5. If G is a graph such that mad(G) < 12
5 and k ≥ max{3,∆(G)},

then G is equitably k-choosable.

Proof. Let G be a counterexample with the smallest number of vertices. If
each component of G has at most 3 vertices, then ∆(G) ≤ 2. So G is equitably
k-choosable by Lemma 2.4. Otherwise, the statement is similar to that in the
corresponding cases of Theorem 4.2. By Lemma 2.1 and Lemma 2.4, we have
this theorem.

Corollary 4.6. Let G be a graph such that mad(G) < 12
5 . If ∆(G) ≥ 3, then G

is equitably ∆(G)-choosable.

For a planar graph with girth g, we have the following corollary.

Corollary 4.7. Let G be a planar graph with girth g ≥ 12. If ∆(G) ≥ 3, then
G is equitably ∆(G)-colorable and equitably ∆(G)-choosable.
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