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Abstract A graph is 1-planar if it can be drawn on a plane so that each edge is crossed by at most one
other edge. A plane graph with near-independent crossings or independent crossings, say NIC-planar graph or
IC-planar graph, is a 1-planar graph with the restriction that for any two crossings the four crossed edges are
incident with at most one common vertex or no common vertices, respectively. In this paper, we prove that
each 1-planar graph, NIC-planar graph or IC-planar graph with maximum degree A at least 15, 13 or 12 has
an equitable A-coloring, respectively. This verifies the well-known Chen-Lih-Wu Conjecture for three classes of

1-planar graphs and improves some known results.
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1 Introduction

A k-coloring of a graph G is a function f from V(G) to theset {1,2,- - -, k} such that f(u) # f(v)
if uv € E(G). We say a k-coloring of G equitable if the size of any two color classes differ by at
most one. The smallest integer k such that G is equitably k-colorable is the equitable chromatic
number of G, denoted by Xeq(G). Note that a graph may have an equitable k-coloring but no
equitable-(k + 1)-colorings (check the balanced complete k-partite graph for example). Hence
we need another parameter to fix the smallest integer k such that G is equitably k’-colorable
for every k' > k. In this note, we use x’ (G) to denote this chromatic parameter and call it
the equitable chromatic threshold of G. Clearly, x.q(G) < x3,(G), but the gap between them
can be any large. Take the complete bipartite graph Ko;41,2m+1 for example, one can see that
Xeq(K2m+1,2m+1) = 2 but X7, (K2m+1,2m+1) = 2m + 2.

An early result on equitable coloring of graphs due to Hajnal and Szemerl®! states that
every graph G with A(G) < r has an equitable (r 4+ 1)-coloring, which answers a question of
Erdés and implies x;,(G) < A(G) + 1 for any graph G. This upper bound on x?,(G) is sharp,
since the complete graph K, admits no (m — 1)-colorings, the odd cycles has no 2-colorings,
and the complete bipartite graph Koy, 11,2m+1 has an equitable 2-coloring but no equitable
(2m+ 1)-colorings. Actually, those classes of graphs are conjectured to be the only three classes
with equitable chromatic threshold attaining this upper bound.
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Conjecture 1.1[4.  For any connected graph G, except the complete graph, the odd cycle and
the complete bipartite graph Kom1,2m+1, Xeq(G) < A(G).

This conjecture is now confirmed for graphs with A < 3 (see [4,6]), or A = 4 (see [9])
or A > |G|/4 (see [10]), bipartite graphs['®! interval graphsl®, outerplanar graphs!'l series-
parallel graphs(®!, pseudo-outerplanar graphs'®, planar graphs with A > 9 (see [16,20]), 1-
planar graphs with A > 17 (see [22]), d-degenerate graphs with d < (A —1)/14 (see [12]) or
with d < A/10 and A > 46 (see [11]), and graphs with A > 46 and maximum average degree
at most A/5 (see [11]). One can refer to a nice survey by Lih[*4 on equitable coloring of graphs
for interesting reading.

A graph is 1-planar if it can be drawn on a plane so that each edge is crossed by at most one
other edge. The concept of the 1-planarity was introduced by Ringel'” when he considered the
vertex-face coloring of plane graphs, which can be translated to the vertex coloring of 1-planar
graphs. In [17], Ringel gave the first result on the coloring of 1-planar graphs: every 1-planar
graph is 7-colorable. Almost two decades later, Borodin!"? improved this bound to 6 and
showed the sharpness of the new bound. A plane graph with near-independent crossings (NIC-
planar graph for short), or plane graph with independent crossings (IC-planar graph for short)
is a 1-planar graph with the restriction that for any two crossings the four crossed edges are
incident with at most one common vertex, or with no common vertices, respectively. The NIC-
planarity and IC-planarity was introduced by Zhang!?!l in 2014 and by Krél and Stacho!*®! in
2010, respectively. By Borodin’s result mentioned above, every NIC-planar graph is 6-colorable,
but we do not know whether it can be improved. On the other hand, Krél and Stachol'3! proved
that every IC-planar graph is 5-colorable and this bound is sharp.

As reviewed above, Zhang!??! verified the Chen-Lih-Wu Conjecture for 1-planar graphs with
maximum degree at least 17. In this note, we are to improve this lower bound to 15 and show
that Chen-Lih-Wu Conjecture also holds for various subclasses of 1-planar graphs, especially
for NIC-planar graphs with maximum degree at least 13 and IC-planar graphs with maximum
degree at least 12.

2 Useful Lemmas

Lemma 2.1172U.  Every 1-planar graph or NIC-planar graph contains a vertex of degree at

most 7 or 6, respectively.

Lemma 2.2. Let m > 1 be a fized integer. If any I-planar graph (or NIC-planar graph,
or IC-planar graph, respectively) of order mt is equitably m-colorable for any integer t > 1,
then any I1-planar graph (or NIC-planar graph, or IC-planar graph, respectively) is equitably
m-colorable.

Proof.  'We just prove it for 1-planar graphs. If |V (G)] is divisible by m, we success. If |V (G)|
is not divisible by m, then assume that |V (G)| = mt — j with 0 < j < m. We prove that either
7 <6 or G has an equitably m-coloring.

If m <7 then 0 < j < 6 since j < m < 7. Suppose that m > 8. Let u be a vertex
in G with d(u) = §(G) < 7 by Lemma 2.1. Using induction on |V(G)|, the graph G — u
admits an equitably m-coloring with color classes V1, -+, V,,. Note that |V;| =t —1 or ¢ for all

7
i > 1. Assume that N(u) € |J Vi. If there exists a class V; with ¢ > 8 such that |V;| =¢—1,
i=1
then put w into V; and get an equitably m-coloring of G. If |V;| = ¢ for all i > 8, then
[V(G) > (m—=T)t+7(t—1)+1=mt— 6, which implies j < 6.

Since G’ = G U K; with j < 6 is a l-planar graph with order m¢ (note that Ky is 1-
planar), G’ is equitably m-colorable by the assumption. Hence G has an equitable m-coloring
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by restricting the coloring of G’ to G. a

Lemma 2.3. If the set of the vertices of a 1-planar graph (or NIC-planar graph, respectively)
contains an independent s-set I and there exists A C V(G) \ I such that |A| > S(A(§)+5) (or

|A] > S(A(§)+4), respectively) and e(v,I) > 1 for all v € A, then A contains two nonadjacent
vertices o and (3 that are adjacent to exactly one and the same vertex v € I.

Proof.  'We only prove it for 1-planar graphs. Let A; be an r-subset of A so that e(v,I) =1

for all v € A;. We have r+2(|]A| —r) < sA(G), which implies e(I, A1) =r > 5s. Consequently,

I contains a vertex v which has at least six neighbors in A;. Since K7 is non-1-planar, there

are two nonadjacent vertices o and [ among the neighbors of v in G. O

A graph is edge-minimal in terms of equitable coloring if G has no equitable m-colorings

but any subgraph of G has an equitable m-coloring. Delete one edge zy with d(z) = §(G) := ¢

from an edge-minimal graph G and partition the set of vertices of G’ := G — zy equitably into

m subsets V{,---, V! so that each of them is an independent set. Obviously,  and y belong

to a same subset for otherwise G is equitably m-colorable. Without loss of generality, assume
s

that z,y € V{ and N(z) C U V/. Denote Vi = V] \ {z} and V; = V/ for each 2 < i < m.

i=1

We define R recursively. Let Vi € R and V; € R if there exists a vertex in V; which has

no neighbors in some V; € R. Let r = |R|, A:= |J Vi, B:=V(G)\ A, A :== AU {z} and

VieR

B’ := B\ {z}. Nakprasit(' proved the following result, the proof of which follows from the
definitions of R, A, A’, B and B.

Lemma 2.4, (i) R C {V},Va,---, Vs}; (ii) e(u,V;) > 1 for each u € B and V; € R; (iii)
e(A,B) >r(m—nr)t+r and e(A’,B’") > r(m — r)t.

Denote the class of 1-planar graphs, NIC-planar graphs and IC-planar graphs by G;, Go and
Gs, respectively. Let ¢ A+ be the largest integer such that each graph in G of order mt is
equitably m-colorable if A(G) < A and e(G) < gm Atk One can easily see that ¢m a3 >
Gm, A2 = Gm,A 1 Since G1 D Ga D Gs.

Lemma 2.5, If G is an edge-minimal graph in Gy, for some k € {1,2,3} with order mt
and mazimum degree A, then e(G) > r(m — )t + ¢rape +1

Lemma 2.6!'5l. If G is an edge-minimal graph in Gy, for some k € {1,2,3} with order mt,
mazimum degree A and size at most (r + 1)(m — r)t —t + 2 + ¢ A1k, then B contains two
nonadjacent vertices a and (3 that are adjacent to exactly one and the same vertex v € V;.

Lemma 2.7, Let G be an edge-minimal graph in Gy, for some k € {1,2,3} with order mt
and maximum degree A. If B contains two monadjacent vertices o and B that are adjacent to
exactly one and the same vertex v € Vi, then e(G) > r(m —r)t + ¢rat ke + Gm-ratk — A+ 4.

Note that Lemmas 2.5, 2.6 and 2.7 are originally proved for edge-minimal planar graphs,
but one can easily check that Nakprasit’s proofs are also valid for 1-planar graphs, NIC-planar
graphs and IC-planar graphs, since his proofs do not rely on the class of graphs. Combining
Lemmas 2.1, 2.3, 2.4, 2.6 and 2.7, we have the following lemma.

Lemma 2.8. If G is an edge-minimal graph in Gy for some k € {1,2,3} with order mt¢ and
mazimum degree A, then e(G) > r(m —7r)t+ g Atk + Gm—ra.t.k — A +4 if one of the following
conditions are satisfied:

(i)) m—r)t+1>—-1)(A+5)/2 and k =1;

(1)) (m—r)t+1>@E—-1)(A+4)/2 and k=2,3;

(iii) e(G) < (r+1)m—r)t—t+24+q¢ At andk =1,2,3, wherer <7 ifk=1andr <6
if k=2,3.

It is easy to prove that if m > [Agl] + 7+ 2, then (i) holds, and if m > {%] +r+ 2, then
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(ii) holds. Lemma 2.8 (iii) implies
e(G) > min{r(m —r)t+gratk+ @m-rak—A+4, T+ )(m—r)t—t+3+ g Ak} (2.1)

This lower bounds for e(G) along with the one in Lemma 2.5 are frequently used for the
estimations of the lower bounds for g, A ¢k in the next section.
To complete the main proofs of this paper, the following known results are also useful.

Lemma 2.95723  The size of a 1-planar graph, an NIC-planar graph and an IC-planar graph

1s at most 4n — 8, 15871 - 356 and 14371 — 6, respectively, where n denotes the order of the graph.

Lemma 2.102%, [ G is a graph with order mt, size at most (m—1)t and chromatic number
at most m, then G has an equitable m-coloring.

Lemma 2.1101%,  If G does not contain KA a, s not a complete graph and is not an odd
cycle, then G has an equitable A-coloring whenever A(G) := A > 1|G.
A directly corollary of Lemma 2.11 is as follows.

Lemma 2.12. If G is I-planar and A(G) :== A > max{7, ;|G|}, or G is NIC-planar and
A(G) == A > max {6, |G|}, then G has an equitable A-coloring.

3 Lower Bounds for ¢, Ak

Lemma 3.1. qiawr =0, @atk = 2, @Ak = 3, QGapke > 4 for k= 1,2,3 and
gs.Atk > 5 fork=1,2

Proof. Those results are obvious. O
Lemma 3.2. ¢5 4,3 > 4t and gs,a . > 5t for k=1,2.

Proof.  Those results follow from Lemma 2.10 and the fact that every IC-planar graph is
5-colorable and every 1-planar graph is 6-colorable. O

In the remaining lemmas of this section, we always assume that ¢ > 5. Moreover, when
estimating the lower bounds for g, A t.1, ¢m,A 2 and gm A ¢ 3, we just consider the cases with

m+1<A<16,m+1<A<14, m+1<A<I2,

respectively.
Lemma 3.3. ¢s.a,3 > 6t+5 and gr.a1 > 7t +6.

Proof. We just prove the first reslut since another two can be dealt with similarly. Let H
be an IC-planar graph with e(H) < 6t + 5. If H is not equitably 6-colorable, then choose a
subgraph G C H so that G is edge-minimal. Since G is IC-planar, 6(G) := § < 6 by Lemma
2.1. If 6 = 6, then we color the non-isolate vertices with 6 colors. Since e(G) < 6t + 5, every
color class has at most ¢ non-isolate vertices. Hence we can easily construct an equitable 6-
coloring of G by adding isolated vertices to each color class of the above partial coloring, a
contradiction. We now suppose r < § < 5 (recall r = |R|). If » > 2, then by Lemmas 2.5, 3.1
and 3.2, e(G) > 8t +3 > 6t + 5. If r = 1, then by (2.1), e(G) > 9%t — A +4 > 6t + 5. All are
contradictions since e(G) < e(H) < 6t + 5. a

Lemma 3.4. qrat3>9t+2 for A>9 and g78,:3 > 12¢.

Proof. Let H be an IC-planar graph with e(H) < 9t + 2 if A > 9 and e(H) < 12t if A = 8.
If H is not equitably 7-colorable, then choose a subgraph G C H so that G is edge-minimal.
Since G is IC-planar, 6(G) < 6 and r < 6. We estimate the lower bounds for e(G) by splitting
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the proof into cases according to the possible value of r. From Table 1, we have e(G) > 9t + 3
it A>9and e(G) > 12t + 1 if A =8. This is a contradiction since e¢(G) < e(H). O

Table 1. The Proof of Lemma 3.4

m k r lower bounds for e(G) Reasons

7T 3 1 12t +1 for A =8 Lemmas 2.8 (ii), 3.1, 3.3
1 9t +3 for A>9 (2.1), Lemmas 3.1, 3.3
2 14t — A+ 6 (2.1), Lemmas 3.1, 3.2
3 12t — A+ 11 (2.1), Lemma 3.1
4 12t — A+ 11 (2.1), Lemma 3.1
5 14t — A+ 6 (2.1), Lemmas 3.1, 3.2
6 12t - A4+9 (2.1), Lemmas 3.1, 3.3

Lemma 3.5. (i) gs.a.t,1 2 min{l4t — A+ 9,13t + 2} for A > 10 and gs 9,01 2 14t
(ii) gs,ae2 > 13t — A+ 8;
(111) gg,a 3 > 13t +2 for A> 11 and gs a3 > 16t — A+ 5 for 9 < A < 10.

Proof. Use Table 2 for an argument similar to the proof of Lemma 3.4. m]

Table 2. The Proof of Lemma 3.5

m k r lower bounds for e(G) Reasons
8 1 1 1ldt+1forA=9 Lemmas 2.8 (i), 3.1, 3.3
1 14t—A+10o0r 13t+3 for A >10 (2.1), Lemmas 3.1, 3.3
2 1Tt—A+6 (2.1), Lemmas 3.1, 3.2
3 15t—A+12 (2.1), Lemma 3.1
4 16t—A+12 (2.1), Lemma 3.1
5 15t —A+12 (2.1), Lemma 3.1
6 17t—A+6 (2.1), Lemmas 3.1, 3.3
7 14t—A+10 (2.1), Lemmas 3.1, 3.3
8 2 1 13t—A+9 (2.1), Lemmas 3.1, 3.3
2 1Tt—A+6 (2.1), Lemmas 3.1, 3.2
3 15t—A+12 (2.1), Lemma 3.1
4 16t —A+12 (2.1), Lemma 3.1
5 15t —A+12 (2.1), Lemma 3.1
6 17t—A+6 (2.1), Lemmas 3.1, 3.3
8 3 1 16t—A+6for9<A<LI10 Lemmas 2.8(ii), 3.1, 3.4
1 13t+3for A>11 (2.1), Lemmas 3.1, 3.4
2 18t—A+1lor 17t +5 (2.1), Lemmas 3.1, 3.3
3 19t—-A+7T (2.1), Lemmas 3.1, 3.2
4 16t—A+12 (2.1), Lemma 3.1
5 19t—A47 (2.1), Lemmas 3.1, 3.2
6 18t—A+11 (2.1), Lemmas 3.1, 3.3

Lemma 3.6. (i) go.an 1 > 15t +2 for A > 12 and g9 a¢1 > min{21t — A+ 5,20t — A + 12}
for 10 < A <114

(11) go.at2 > 15t + 2 for A > 13 and g9 a2 > min{21¢t — 2A + 11,20t — A + 10} for
10<A<12;

(111) qo. A ¢,3 > min{21t—A+5,20t+4} for 11 < A <12 and g9,10,4,3 > min{24t—12, 23t—3}.

Proof. Use Table 3 for an argument similar to the proof of Lemma 3.4. ]
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Table 3. The Proof of Lemma 3.6

lower bounds for e(G)
21t — A+ 6 for 10< A <11
15t + 3 for A > 12

21t — A+ 12 or 20t + 5
23t — A+ 7
20t — A +13
20t — A+ 13
23t — A+ 7
21t — A+ 12

21t —2A 412 for 10 < A <12
15t + 3 for A > 13
20t — A+ 11
23t — A+ 7
20t — A+ 13
20t — A+ 13

23t —A+7

24t — 11 for A =10
21t — A+ 6 for A > 11
23t — 2 for A =10

20t + 5 for A > 11

24t — A+ 12 or 23t + 6
24t — A+ 8
24t — A+ 8
24t — A+ 12

ST R W~ R OO R WN R R OO R WS

Reasons

Lemmas 2.8(i), 3.1, 3.5
1), Lemmas 3.1, 3.5
1), Lemmas 3.1, 3.3

), Lemmas 3.1, 3.2

), Lemma 3.1

), Lemma 3.1

), Lemmas 3.1, 3.2

1), Lemmas 3.1, 3.3

Lemmas 2.8(ii), 3.1, 3.5
) Lemmas 3.1, 3.5

, Lemmas 3.1, 3.3

NN NN

(2.
(2.
(2.1
(2.1
(2.1
(2.1
(2.

2.1), Lemmas 3.1, 3.2
Lemmas 2.8(ii), 3.1, 3.5
Lemmas 2.8(ii), 3.1, 3.5
Lemmas 2.8(ii), 3.1, 3.4
1), Lemmas 3.1, 3.4
Lemmas 3.1, 3.3
, Lemmas 3.1, 3.2
, Lemmas 3.1, 3.2

(2.
(2.
(
(
( , Lemmas 3.1, 3.3

1),
2.1)
2.1)
2.1)

Table4. The Proof of Lemma 3.7

lower bounds for e(G)
30t — 13 or 29t — 6 for A =11
2t — A+ 6 for 12< A < 13
17t + 3 for A > 14

30t — 7 or 29t — 3 for A =11
23t + 5 for A > 12

28t — A+ 13 or 27t + 6

29t — A+ 8
25t — A+ 14
29t — A +8
28t — A +13

30t —3A + 15 or 29t — 2A 416 for 11 < A <12

24t — A+ 6 for A > 13
20t —2A + 14 for 11 < A <12
23t 4+ 5 for A > 13

27t — A+ 12

209t — A+ 8

25t — A+ 14

29t — A+ 8

30t —2A +9 or 29t — A +8
20t — A+ 8

27t + 6

30t — A+ 13 or 29t + 7

33t —A+4

30t — A+ 13

Reasons

Lemmas 2.8(i), 3.1, 3.6
Lemmas 2.8(i), 3.1, 3.6
(2.1), Lemmas 3.1, 3.6
Lemmas 2.8(i), 3.1, 3.5
(2.1), Lemmas 3.1, 3.5
(2.1), Lemmas 3.1, 3.3
(2.

(2.

(2.

(2. 1) Lemmas 3. 1 3.4
Lemmas 2.8(ii), 3.1, 3.6
Lemmas 2.8(ii), 3.1, 3.6
Lemmas 2.8(ii), 3.1, 3.5
(2.1), Lemmas 3.1, 3.5
(2.1), Lemmas 3.1, 3.4
(2.1), Lemmas 3.1, 3.2
(2.1), Lemma 3.1

(2.1), Lemmas 3.1, 3.4
Lemmas 2.8(ii), 3.1, 3.6
Lemmas 2.8(ii), 3.1, 3.5
(2.1), Lemmas 3.1, 3.4
(2.1), Lemmas 3.1, 3.2
(2.1), Lemmas 3.1,3.2
(2.1), Lemmas 3.1, 3.4
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Lemma 3.7.

12< A <13 and q10,11,t,1 = 25t + 2;

(i1) qro,a,1,2 > min{24t — A + 5,23t + 4} for 13 < A <14 and qio,a,1,2 > 25t — A + 13 for

11<A<12;

X. ZHANG, H.J. WANG, L. XU

(i) qro.an > 1Tt +2 for A > 14, quoae1 > min{24t — A + 5,23t + 4} for

(1) qi0,a,t,3 > min{30t — 2A + 8,29t — A+ 7,27t + 5} for 11 < A < 12.

Proof.  Use Table 4 for an argument similar to the proof of Lemma 3.4.

Lemma 3.8.

(Z) q11,16,t,1 > 19t + 2, q11,A¢,1 > min{27t - A + 5,26t+ 4} f07" 14 < A < 15

and gi1,a,.,1 > min{34t — 2A + 8,33t — A+ 7,31t + 5} for 12 < A < 13;

(ZZ) q11,A,t,2 > min{34t —2A + 8,33t — A+ 7,31t + 5} fOT 13 < A <14 and q11,12,t,2 >

min{35¢ — 8,34t};
(m) q11,12,t,3 2 min{40t — 25, 34t + 6}

Proof. Use Table 5 for an argument similar to the proof of Lemma 3.4.

11

11

11

Lemma 3.9.
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Table 5. The Proof of Lemma 3.8

lower bounds for e(G)

34t —2A 4+9o0r 33t — A+ 8for 12<A<L13

27t — A+ 6 for 14 < A < 15
19t + 3 for A = 16

33t — A+ 8for 12< A <13
26t + 5 for A > 14

31t +6

35t — A+ 14 or 34t + 7

35t —A+9

35t —A+9

35t — A+ 14

35t — 7 for A =12

34t —2A +9 or 33t — A + 8 for A > 13
39t — 19 or 38t + 4 for A =12
33t — A+ 8 for A > 13

37t —9 for A =12

31t 4+ 6 for A > 13
34t — A +13

35t —A+9

35t —A+9

40t — 24 or 37t — 3

39t — 13 or 38t — 2

37t —3

34t + 7

40t — 3 or 39t + 3

40t — 3 or 39t + 8

Reasons
Lemmas 2.8(i), 3.1, 3.7
Lemmas 2.8(i), 3.1, 3.7
(2.1), Lemmas 3.1, 3.7
Lemmas 2.8(i), 3.1, 3.6
(2.1), Lemmas 3.1, 3.6
(2.1), Lemmas 3.1, 3.5
(2.1), Lemmas 3.1, 3.3
(2.1), Lemmas 3.1, 3.2
(2.1), Lemmas 3.1, 3.2
(2.1), Lemma 3.3
Lemmas 2.8(ii), 3.1, 3.7
Lemmas 2.8(ii), 3.1, 3.7
Lemmas 2.8(ii), 3.1, 3.6
), 3.1, 3.6
Lemmas 2.8(ii), 3.1, 3.5
Lemmas (2.1), 3.1, 3.5
(2.1), Lemmas 3.1, 3.3
(2.1), Lemmas 3.1, 3.2
(2.1), Lemmas 3.1, 3.2
Lemmas 2.8(ii), 3.1, 3.7
Lemmas 2.8(ii), 3.1, 3.6
Lemmas 2.8(ii), 3.1, 3.5
(2.1), Lemmas 3.1, 3.4
(2.1), Lemmas 3.1,3.2, 3.3
(2.1), Lemmas 3.1,3.2, 3.3

Lemmas 2.8(ii

(Z) q12,16,t,1 > min{29t + 4,30t — 11}, q12,At,1 > min{38t —2A + 8,37t — A+

7,35t 4+ 5} for 14 < A <15 and gi2,13,+1 > min{45t — 28,39t + 6};
(ii) qra.a02 > min{45t — 3A + 11,39t + 6} for 13 < A < 14.

Proof.  Use Table 6 for an argument similar to the proof of Lemma 3.4.
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Table 6. The Proof of Lemma 3.9

m k r lower bounds for e(G) Reasons

12 1 1 45t —27 or 44t — 15 or 42t — 4 for A =13 Lemmas 2.8(i), 3.1, 3.8
1 38 —2A+4+9o0r37t—A+8for 14 <A<L15 Lemmas 2.8(i), 3.1, 3.8
1 30t —10 for A =16 Lemmas 2.8(i), 3.1, 3.8
2 44t —2A+11or43t —A+10for 13< A <15 Lemmas 2.8(i),3.1, 3.7
2 29t+5 for A =16 (2.1), Lemmas 3.1, 3.7
3 42t —4for A=13 Lemmas 2.8(i), 3.1, 3.6
3 35t46 for 14 < A < 16 (2.1), Lemmas 3.1, 3.6
4 39+ 7 (2.1), Lemmas 3.1, 3.5
5 42t—A+150r 41t +8 (2.1), Lemmas 3.1, 3.3
6 46t—A+4 (2.1), Lemma 3.2
7T 42t—A+15 (2.1), Lemmas 3.1, 3.3

12 2 1 45t—3A+12o0r 44t —2A 4+ 11 or 42t — A+9 Lemmas 2.8(ii), 3.1, 3.8
2 44t —2A+11or 43t — A +10 Lemmas 2.8(ii), 3.1, 3.7
3 42t—A+9 Lemmas 2.8(ii), 3.1, 3.6
4 39+ 7 (2.1), Lemmas 3.1, 3.5
5 41t—A+14 (2.1), Lemmas 3.1, 3.3
6 46t—A+4 (2.1), Lemma 3.2

Lemma 3.10. (i) q13,16,,1 > min{41t — 9,42t — 24,39t + 5} and qi13,a,¢,1 > min{50t — 3A +
11,49¢ — 2A + 10,441 + 6} for 14 < A < 15;
(1) qi3,14,¢,2 > 4Tt 4+ 7.

Proof. Use Table 7 for an argument similar to the proof of Lemma 3.4. ]

Table7. The Proof of Lemma 3.10

m k r lower bounds for e(G) Reasons

13 1 50t —3A+12o0r 49t —2A + 11 or 47t — A+ 9 for 14 < A <15 Lemmas 2.8(i), 3.1, 3.9
1 41t — 8 or 42t — 23 for A =16 Lemmas 2.8(i), 3.1, 3.9
2 49t —2A+ 11 or 48t — A+ 10 for 14 < A <15 Lemmas 2.8(i), 3.1, 3.8
2 41t —8for A =16 Lemmas 2.8(i), 3.1, 3.8
3 41t—A+9for14<A<L15 Lemmas 2.8(i), 3.1, 3.7
3 39t+6 for A =16 (2.1), Lemmas 3.1, 3.7
4 44t +7 (2.1), Lemmas 3.1, 3.6
5 47t+8 (2.1), Lemmas 3.1, 3.5
6 54t —A+10or 53t +3 (2.1), Lemmas 3.2, 3.3
7 54t —A+10 (2.1), Lemmas 3.2, 3.3

13 2 1 b57t—41or51t—4 Lemmas 2.8(ii), 3.1, 3.9
2 56t — 28 or 55t — 15 or 53t — 3 Lemmas 2.8(ii), 3.1, 3.8
3 54t —16 or 53t — 3 Lemmas 2.8(ii), 3.1, 3.7
4 b5lt—4 Lemmas 2.8(ii), 3.1, 3.6
5 47t+8 (2.1), Lemmas 3.2, 3.5
6 53t—5 (2.1), Lemmas 3.3, 3.4

Lemma 3.11.  qi4,15,+,1 > min{63t—46, 53t+7} and g14,16,,1 > min{54t—22, 53t—37, 49t+6}.

Proof.  Use Table 8 for an argument similar to the proof of Lemma 3.4. a
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Table 8. The Proof of Lemma 3.11

m k r lower bounds for e(G) Reasons

14 1 1 63t—450r 62t — 31 or 57t — 5 for A =15 Lemmas 2.8(i), 3.1, 3.10
1 54t — 21 or 53t — 36 or 52t — 7 for A =16 Lemmas 2.8(i), 3.1, 3.10
2 62t —31or 61t — 17 or 59t — 4 for A =15 Lemmas 2.8(i), 3.1, 3.9
2 53t —6 or 54t — 5 for A = 16 Lemmas 2.8(i), 3.1, 3.9
3 60t — 18 or 59t — 4 for A =15 Lemmas 2.8(i), 3.1, 3.8
3 52t—7for A =16 Lemmas 2.8(i), 3.1, 3.8
4 57t—5for A=15 Lemmas 2.8(i), 3.1, 3.7
4 49t + 7 for A =16 (2.1), Lemmas 3.1, 3.7
5 53t+8 (2.1), Lemmas 3.1, 3.6
6 60t+3 (2.1), Lemmas 3.2, 3.5
7 63t—A+16 or 62t +9 (2.1), Lemma 3.3

Lemma 3.12. ¢15,16,,1 > min{67¢ — 50,59t + 7}.

Proof. Use Table 9 for an argument similar to the proof of Lemma 3.4. ]

Table 9. The Proof of Lemma 3.12

m k r lower bounds for e(G) Reasons

15 1 1 68 —34o0r67t—49 or 63t — 6 Lemmas 2.8(i), 3.1, 3.11
2 67t —3 or 68t — 34 or 65t — 5 Lemmas 2.8(i), 3.1, 3.10
3 65t —5 or 66t — 20 Lemmas 2.8(i), 3.1, 3.9
4 63t—6 Lemmas 2.8(i), 3.1, 3.8
5 59t+8 (2.1), Lemmas 3.1, 3.7
6 64t —10 (2.1), Lemmas 3.2, 3.6
7 T0t+9 (2.1), Lemmas 3.3, 3.5

4 Results

In this section, we prove the main results of this paper.

Theorem 4.1. FEach 1-planar graph with mazimum degree at most A has an equitable A-
coloring if A > 15.

Proof. Since Zhang!?? proved the result for A > 17, it is suffice to consider the cases with
A =15 or A = 16. By Lemmas 2.2 and 2.12, we assume that the considered 1-planar graph
G has order At with ¢ > 5. Suppose, to the contrary, that G does not satisfy this result, and
moreover, GG is edge-minimal.

Ifr <5, then e(G) > r(A—=r)t+grat1+9a—ra1—A+4 by Lemma 2.8(i), since (A—r)t+
1> (t—1)(A+5)/2. If6 <r <7, then (r+1)(A—r)t—t+2+¢r a1 > 4At—8 > e(G), thus by
Lemma 2.8(iii), it still holds that e(G) > r(A —=7)t+qra 1,1 +9a—ra,c1 — A+4. For each case,
we use the following table to estimate the lower bounds for 7(A—7)t+¢r A t1+9A—r At —A+4,
thus for e(G), by Lemmas 3.1, 3.2, 3.3 and 3.5-3.12.
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A=15 A =16
r=1 min{77t — 57, 76t — 43, 67t — 4} min{82¢t — 62, 74t — 5}
r=2 min{76t — 43,75t — 29,70t — 3}  min{82t — 32,81t — 47, 77t — 4}
r=3 min{74t — 30,73t — 16,71t — 3}  min{80t — 18,81t — 33, 78t — 4}

r=4 min{71t — 17,70t — 3} min{77t — 4,78t — 19}
r=5 67t — 4 74t — 5
r=6 74t — 9 82t — 10
r=7 min{77¢t — 11,76t — 3} 85t — 4

From the above table, one can see that e(G) > 4At — 8 for A = 15 or A = 16, which
contradicts Lemma 2.9. Hence we proved the required result. O

Theorem 4.2. Fach NIC-planar graph with maximum degree at most A has an equitable
A-coloring if A > 13.

Proof. Since every NIC-planar graph is 1-planar, by Theorem 4.1, it is suffice to consider
the cases with A = 13 or A = 14. By Lemmas 2.2 and 2.12, we assume that the considered
NIC-planar graph G has order At with ¢t > 5. Suppose, to the contrary, that G does not satisfy
this result, and moreover, G is edge-minimal.

By similar argument as the one in the proof of Theorem 4.1, we have ¢(G) > r(A — r)t +
Gr.at2+qa—rA 2 —A+4 by Lemmas 2.8(ii) and 2.8(iii). Again, we give, by Lemmas 3.1, 3.2,
3.3 and 3.5-3.12, the lower bounds for e(G) in the following table.

A=13 A =14
r=1 min{57t — 37,51t — 3} 60t — 3
r=2 min{56t — 25,55t — 13,53t — 2} min{69¢ — 39, 63t — 2}
r=3 min{54¢ — 14, 53t — 2} min{67t — 27, 66t — 14, 64t — 2}
r=4 51t — 3 min{65t — 15,63t — 2}
r=2>5 53t — 9 60t — 3
r==6 56t — 7 66t — 8

From the above table, one can see that e(G) > P At — % for A = 13 or A = 14, which
contradicts Lemma 2.9. Hence we proved the required result. O

Theorem 4.3. FEach IC-planar graph with mazximum degree at most A has an equitable A-
coloring if A > 12.

Proof. Since every IC-planar graph is NIC-planar, by Theorem 4.1, it is suffice to consider
the case with A = 12. By Lemmas 2.2 and 2.12, we assume that the considered NIC-planar
graph G has order At with ¢ > 5. Suppose, to the contrary, that G does not satisfy this result,
and moreover, G is edge-minimal.

By similar argument as the one in the proof of Theorem 4.1, we have e(G) > r(A — r)t +
Gr.at3+a—raes — A+ 4 by Lemmas 2.8(ii) and 2.8(iii). The lower bounds for e(G) in each
case are shown in the following table, which is implied by Lemmas 3.1-3.12.

A=12
r=1 min{51¢ — 33,45t — 2}
r=2 min{50t — 22,49t — 11,47t — 1}
r=3 min{48t — 12,47t — 1}
r=4 45t — 2
r=2>5 48t — 6
r=26 48t + 2

From the above table, one can see that e(G) > 39t — 6, which contradicts Lemma 2.9. Hence
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we proved the required result. O
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