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It is proved that (1) every maximal outer-1-planar graph of order at least k contains a 
path on k-vertices with all vertices of degree at most 2k + 1 (being sharp for k ≤ 3), and a 
path on k-vertices with degree sum at most 5k − 1, and further, (2) every maximal outer-
1-planar graph contains an edge xy with d(x) + d(y) ≤ 7, and every outer-1-planar graph 
with minimum degree at least 2 contains an edge xy with d(x) +d(y) ≤ 9. Here the bounds 
7 and 9 are sharp.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

All graphs in this paper are finite and simple. By V (G), 
E(G), δ(G) and �(G), we denote the vertex set, the edge 
set, the minimum degree and the maximum degree of a 
graph G , respectively. Set v(G) = |V (G)| and e(G) = |E(G)|. 
The neighborhood (resp. degree) of a vertex v in G , denoted 
by NG(v) or N(v) (resp. dG(v) or d(v)), is the set (resp. 
number) of vertices that are adjacent to v . For a subset 
S of V (G), G[S] denotes the subgraph induced by S . For 
a subgraph H of G , by �G (H) = maxx∈V (H){dG(x)} (resp. 
W G(H) = ∑

x∈V (H) dG(x)), we denote the maximum degree
(resp. degree sum) of H in G . We use Pk to denote a k-path, 
that is a path on k-vertices.

Let H be a connected graph and let G be a family of 
graphs. If every graph G ∈ G of order at least |V (H)| con-
tains a subgraph K ∼= H such that
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�G(K ) ≤ th < +∞ and W G(K ) ≤ tw < +∞, (1)

then we say that H is light in G , and otherwise heav y
in G . The smallest integers th and tw satisfying (1) are 
the height and weight of H in the family G , denoted by 
h(H, G) and w(H, G), respectively.

The study of the lightness of certain subgraph in a given 
family initiates since the proposing of the well-known Four 
Coloring Conjecture. The first beautiful theorem on the 
theory of light subgraphs was contributed by Kotzig [13]
in 1955, who proved that every 3-connected plane graph 
contains an edge of weight at most 13 (being sharp).

In general, finding light subgraphs in a given family is 
sometimes an essential stage when one considers some 
graph coloring and partition problems, since light sub-
graphs are possibly reducible (meaning that they cannot 
occur in a minimal counterexample to the desired conclu-
sion, see [4]). Besides, the theory of light subgraphs also 
has many potential applications in both geometrical and 
combinatorial problems, see [12] for a survey.

A graph is outerplanar if it can be immersed into the 
plane so that all vertices lie on the outerface boundary. 
Harary [9] proved that every outerplanar graph contains 
a vertex v with d(v) ≤ 2. Hackmann and Kemnitz [8]
proved that every outerplanar graph G with minimum 
degree 2 contains an edge xy with d(x) ≤ d(y) ≤ 4 and 
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Table 1
Main results of this paper.

h(Pk,O1P∗) w(Pk,O1P∗) h(Pk,O1P2) w(Pk,O1P2)

k = 2 5 [Corollary 2.8] 7 [Corollary 3.7] 7 [Corollary 3.4] 9 [Corollary 3.4]
k = 3 7 [Corollary 2.9] ≤ 14 [Theorem 2.10]
k ≥ 4 ≤ 2k + 1 [Theorem 2.7] ≤ 5k − 1 [Theorem 2.10]
d(x) + d(y) ≤ 6. Fabrici [6] showed that every 2-connected 
outerplanar graph G of order at least k ≥ 3 contains a 
k-path Pk with �G(Pk) ≤ k + 3. All upper bounds in 
those conclusions are the best possible. Hence, if OP2
is the family of 2-connected outerplanar graphs, then 
h(P1, OP2) = 2, h(P2, OP2) = 4 and h(Pk, OP2) = k + 3
for k ≥ 3. In other words, Pk with k ≥ 1 is light in the 
family of 2-connected outerplanar graphs.

A graph is 1-immersed into a plane, or 1-planar if it can 
be drawn on the plane so that each edge is crossed by at 
most one other edge. The notion of the 1-planarity was 
introduced by Ringel [14] in connection with the prob-
lem of the simultaneous coloring of vertices and faces of 
plane graphs in which adjacent/incident elements receive 
different colors. Fabrici and Madaras [7] showed that each 
3-connected 1-planar graph contains an edge with both 
endvertices of degree at most 20, and the bound 20 is the 
best possible. Hudák and Šugerek [11] proved that each 
1-planar graph with minimum degree at least 4 contains 
an edge of type (with degrees of its endvertices) (4, ≤ 13)

or (5, ≤ 9) or (6, ≤ 8) or (7, 7). The global or local struc-
tures of 1-planar graphs and their applications to coloring 
problems were also studied by many authors including [7,
10,15,17,18].

A graph is outer-1-planar if it can be 1-immersed into 
a plane such that all vertices are on the outer face. For 
example, K2,3 and K4 are outer-1-planar graphs. Outer-
1-planar graphs were first introduced by Eggleton [5] who 
called them outerplanar graphs with edge crossing number 
one, and also investigated under the notion of pseudo-
outerplanar graph by Zhang, Liu and Wu [16,19]. They 
proved that every outer-1-planar graph contains a vertex 
of degree at most 3, and the bound is the best possible.

It is clear that the class of outer-1-planar graphs lies 
between the classes of 1-planar graphs and outerplanar 
graphs (see [1]). Given an outer-1-planar graph G , we add 
a new vertex adjacent to every other vertex of G and ob-
tain a graph G ′ . Clearly, G ′ is a 1-planar graph with min-
imum degree one larger than that of G . Moreover, if G
is 2-connected, then G ′ is 3-connected, and by the result 
of Fabrici and Madaras [7] mentioned above, G ′ contains 
an edge uv with max{dG ′ (u), dG ′ (v)} ≤ 20. If |G| ≥ 21, 
then u, v ∈ V (G) and thus G contains an edge uv with 
max{dG(u), dG (v)} ≤ 19. This concludes that P2 is light 
(with height at most 19) in the family of 2-connected 
outer-1-planar graphs. In this paper, we generalize this re-
sult by showing that P2 is light (with height exactly 7) in 
the family of outer-1-planar graphs with minimum degree 
at least two.

A drawing of an outer-1-planar graph in the plane, so 
that its outer-1-planarity is preserved and the number of 
crossings is as few as possible, is an outer-1-plane graph, 
and we call such a drawing good. Let G be a 2-connected 
outer-1-plane graph. Denote by v1, v2, . . . , v |G| the vertices 
of G lying clockwise on the outer boundary. Let V[vi, v j] =
{vi, vi+1, . . . , v j} and let V(vi, v j) = V[vi, v j] \ {vi, v j}, 
where the subscripts are taken modulo |G|. Set V[vi, vi] =
V (G). An edge vi v j in G is a chord if j − i 	= 1 (mod 
|G|). By C[vi, v j], we denote the set of chords xy with 
x, y ∈ V[vi, v j].

An outer-1-planar graph G is maximal if adding any 
edge would disturb its outer-1-planarity. The structures 
and colorings of maximal outer-1-planar graphs were stud-
ied in many papers including [2,16]. By O1P∗ and O1P2, 
we denote the family of maximal outer-1-planar graphs 
and the family of outer-1-planar graphs with minimum de-
gree at least 2, respectively.

In this paper, we investigate the lightness of Pk in 
O1P∗ and O1P2, and the main results are listed in Ta-
ble 1.

2. Light paths in maximal outer-1-planar graphs

Zhang, Liu and Wu [16] proved that the vertex connec-
tivity of any outer-1-planar graph besides K4 is at most 2. 
It is known that every 2-connected outerplanar graph is 
hamiltonian [3], and Zhang, Liu and Wu [16] pointed out 
that this fact does not hold for 2-connected outer-1-planar 
graphs (e.g. K2,3 is 2-connected and non-hamiltonian). For 
this reason, we consider maximal outer-1-planar graphs 
below.

Lemma 2.1. Every maximal outer-1-planar graph of order at 
least 3 is 2-connected.

Proof. Let G be a maximal outer-1-planar G with blocks 
G1, G2, . . . , Gt . If t = 1, then the conclusion is trivial. If 
t ≥ 2, then choose an end-block (i.e., a block incident with 
only one cut-vertex) Gi that is incident with a block G j . 
Clearly, Gi and G j have exactly one common vertex, say 
v1.

Let v1, v2 . . . , v v(Gi) be vertices of Gi in a clockwise or-
dering on the outer boundary of a good drawing of Gi and 
let v1, u2 . . . , uv(G j) be vertices of G j in an anticlockwise 
ordering on the outer boundary of a good drawing of G j . It 
is easy to check that the graph obtained from G by adding 
an edge u2 v2 is still outer-1-planar, which contradicts the 
fact that G is maximal. �
Lemma 2.2. Every maximal outer-1-planar graph with order at 
least 3 is hamiltonian.

Proof. Let v1, v2, . . . , v |G| be vertices lying in a cyclic or-
dering on the outer boundary of an outer-1-planar drawing 
of G . Since G is maximal, v1 v2 . . . v |G|v1 forms a cycle C . 
Clearly, C is a hamiltonian cycle of G . �
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Lemma 2.3. [16] Every hamiltonian outer-1-planar graph G
can be 1-immersed in the plane so that the hamiltonian cycle 
in G is the outer boundary.

Lemma 2.4. [16] Every outer-1-planar graph with minimum 
degree at least two contains at least two vertices of degree at 
most 3.

Lemma 2.5. Every outer-1-planar graph of order at least two 
contains at least two vertices of degree at most 3.

Proof. Let G be an outer-1-planar graph. If G is not con-
nected, then it is enough to consider one component of G , 
and if δ(G) ≥ 2, then the conclusion holds by Lemma 2.4. 
Therefore, we assume that G is connected and δ(G) = 1. 
Let xy be an edge with dG (x) = 1. If G has two vertices of 
degree 1 or dG−x(y) = 1, then we are done. Therefore, we 
assume that G − x is an outer-1-planar graph with min-
imum degree at least two, so it contains a vertex z 	= y
with dG−x(z) = dG(z) ≤ 3 by Lemma 2.4. Hence G contains 
two vertices x and z of degree at most 3. �
Lemma 2.6. [1] If G is an outer-1-planar graph, then e(G) ≤
5
2 v(G) − 4.

Theorem 2.7. Every maximal outer-1-planar graph G of order 
at least k contains a k-path Pk with �G(Pk) ≤ 2k + 1. In other 
words, h(Pk, O1P∗) ≤ 2k + 1

Proof. If k = 1, then the conclusion holds since every 
outer-1-planar graph contains a vertex of degree at most 
3. Hence we assume k ≥ 2 in the following arguments.

Suppose, to the contrary, that every k-path in G con-
tains a vertex of degree at least 2k + 2, saying a big vertex. 
Vertices of degree at most 2k + 1 in G are small vertices. 
Let v1, v2, . . . , v |G| be vertices of G lying clockwise on the 
outer boundary of G . Since G is maximal, v1 v2 . . . v |G|v1
forms a hamiltonian cycle C .

Let vi1 , . . . , vit be the big vertices of G in a clockwise 
ordering on the outer boundary. They split C into at most t
paths, and those paths contain only small vertices, so each 
of them contains at most k −1 vertices. First we have t ≥ 2, 
because otherwise |G| = k and dG (vi1 ) ≤ k − 1 < 2k + 2, a 
contradiction.

Let

Bs = {vi1 , . . . , vis }
with s ∈ [t] = {1, 2, . . . , t} and let

S =
{

xy ∈ E(G) | x = vis , y /∈ V[vis−1 , vis+1 ]∪ Bt, s ∈ [t]
}
.

Thus, S is a set of edges that are incident with a big vertex 
vis for some s ∈ [t] and a small vertex not belonging to 
V(vis−1 , vis+1 ).

Case 1. S 	= ∅.

Choose an edge (indeed, a chord) xy ∈ S with big ver-
tex x = vis and small vertex y ∈ V(vir−1 , vir ) so that the 
boundary distance between x and y, which is the distance 
between x and y on C , is as small as possible.

Without loss of generality, assume that x = vi1 , and 
that the boundary distance between x and y is exactly 
|V[x, y]| − 1. We then have r ≥ 3 by the definition of S .

Claim 1. r ≥ 6, and exactly r − 3 vertices among vi2 , . . . , vir−1

have degrees at least 4 in the graph induced by Br−1.

Proof. Since a big vertex vis with 2 ≤ s ≤ r − 1 is adja-
cent to at most 2(k − 1) small vertices in V[x, y] by the 
choice of xy and at most one vertex in V(y, x), vis is adja-
cent to at least (2k + 2) − (2k − 2) − 1 = 3 vertices in the 
graph induced by Br−1. Moreover, if vis has exactly three 
neighbors in the graph induced by Br−1, then xy is crossed 
by an edge incident with vis . Since xy can be crossed at 
most once, among vi2 , . . . , vir−1 , there is at most one ver-
tex having degree 3 in G[Br−1], and at least r − 3 vertices 
having degrees at least 4 in G[Br−1]. Since G[Br−1] has 
r − 1 vertices and its minimum (resp. maximum) degree is 
at least 3 (resp. 4), r ≥ 6. On the other hand, if all vertices 
among vi2 , . . . , vir−1 have degrees at least 4 in G[Br−1], 
then G[Br−1] has at most one vertex of degree at most 3, 
which is impossible by Lemma 2.5. Therefore, exactly r − 3
vertices among vi2 , . . . , vir−1 have degrees at least 4 in the 
graph induced by Br−1. �
Claim 2. If z is a small vertex in V(x, y), then z has no neighbor 
in V(y, x).

Proof. If this does not hold, then xy is crossed by an edge 
incident with z, and thus cannot be crossed by an edge in-
cident with some vertex among vi2 , . . . , vir−1 . This implies 
that all vertices among vi2 , . . . , vir−1 have degrees at least 
4 in G[Br−1] by the same argument as the one in the proof 
of Claim 1. However, this contradictions Claim 1. �
Claim 3. If z1, z2 are two small vertices in V[x, y], then z1z2 ∈
E(G) only if z1, z2 ∈ V(via , via+1 ) for some 1 ≤ a ≤ r − 1.

Proof. Suppose that z1z2 ∈ E(G), z1 ∈ V[via , via+1 ] and 
z2 ∈ V[vib , vib+1 ], where 1 ≤ a < b ≤ r − 1. Let B ′ =
{via+1 , . . . , vib }. Since z1z2 ∈ E(G) and z1, z2 ∈ V[x, y], xy
cannot be crossed by an edge incident with B ′ . Since a 
big vertex vis with a + 1 ≤ s ≤ b is adjacent to at most 
2(k − 1) small vertices in V[x, y] by the choice of xy, and 
adjacent to no vertex in V(y, x), vis is adjacent to at least 
(2k + 2) − (2k − 2) = 4 vertices in the graph induced by B ′ . 
This implies |B ′| ≥ 5 and δ(G[B ′]) ≥ 4. However, G[B ′] is 
an outer-1-planar graph with minimum degree at most 3 
by Lemma 2.5. This is a contradiction. �
Claim 4. For any small vertex z ∈ V[x, y] \ {y}, if z ∈ V[via ,

via+1 ] for some 1 ≤ a ≤ r − 1, then NG(z) ⊆ V[via , via+1 ].

Proof. By Claim 2 and by the choice of xy, if z is adjacent 
to a big vertex in G , then this big vertex is either via or 
via+1 . By Claims 2 and 3, if z is adjacent to a small vertex 
in G , then this small vertex belongs to V(via , via+1 ). �
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Fig. 1. Extremal outer-1-planar graphs.

Since G is maximal, vi1 vi2 ∈ E(G) by Claim 4. If vi1 vi3 ∈
E(G), then vi2 has degree at most 2(k − 1) + 3 = 2k + 1 in 
G , a contradiction. Hence vi1 vi3 /∈ E(G).

If xy is crossed by an edge incident with vi2 , then by 
the proof of Claim 1, vi2 has degree 3 in G[Br−1] and 
all vertices among vi3 , . . . , vir−1 have degrees at least 4 
in G[Br−1]. Clearly, vi2 is the unique neighbor of vi1 in 
G[Br−1]. Therefore, the outer-1-planar graph derived from 
G[Br−1] by deleting vi1 has exactly one vertex of degree at 
most 3 in that graph, contradicting Lemma 2.5.

In what follows, we assume, without loss of generality, 
that xy is not crossed by an edge incident with vi2 .

Since G is maximal and vi1 vi3 /∈ E(G), there is an edge 
vi2 via for some 4 ≤ a ≤ r − 1 by Claim 4 and by the choice 
of xy (otherwise we can add a new edge vi1 vi3 to G so 
that the resulting graph is still outer-1-planar).

First, suppose that there is no edge in the form vib vic

with |c − b| 	= 1, besides vi2 via , in the graph induced by 
{vi2 , . . . , via }. Under this assumption, for any vertex vib

with 3 ≤ b ≤ a − 1, it is adjacent to at most 2(k − 1) small 
vertices in G by the choice of xy, at most two big ver-
tices in {vi2 , . . . , via }, and at most one vertex in V(via , vi2 ), 
which implies that the degree of vib in G is at most 2k +1, 
a contradiction.

At last, we assume that vib vic with |c − b| 	= 1 is an 
edge in the graph induced by {vi2 , . . . , via } so that |c − b|
is minimum. Without loss of generality, assume that b < c. 
By similar argument as the one in the previous paragraph, 
one can conclude that any vertex vis with b < s < c has 
degree at most 2k + 1 in G , a contradiction.

Case 2. S = ∅.

Since the graph induced by Bt is an outer-1-planar 
graph, it has a vertex, say vis , of degree at most 3 in 
G[Bt] by Lemma 2.5. Since S = ∅, vis is adjacent to at most 
2(k − 1) small vertices in G . Therefore, the degree of vis in 
G is at most 2k + 1, a contradiction. �
Corollary 2.8. Every maximal outer-1-planar graph G of order 
at least 2 contains an edge uv with max{dG(u), dG(v)} ≤ 5, 
and the bound 5 is the best possible. In other words,
h(P2, O1P∗) = 5.

Proof. The existence of such an edge uv is guaranteed by 
Theorem 2.7. The sharpness of the upper bound 5 is im-
plied by picture (a) of Fig. 1, where each edge contains at 
least one vertex of degree 5. �
Corollary 2.9. Every maximal outer-1-planar graph G of or-
der at least 3 contains a path uv w with max{dG(u), dG(v),
dG (w)} ≤ 7, and the bound 7 is the best possible. In other words, 
h(P3, O1P∗) = 7.

Proof. The existence of such a path uv w is guaranteed by 
Theorem 2.7. The sharpness of the upper bound 7 is im-
plied by picture (b) of Fig. 1, where each edge contains at 
least one vertex of degree 7. �
Theorem 2.10. Every maximal outer-1-planar graph G of order 
at least k contains a k-path Pk with W G(Pk) ≤ 5k − 1. In other 
words, w(Pk, O1P∗) ≤ 5k + 1.

Proof. Assume that G is drawn in the plane so that 
x1, x2, . . . , x|V (G)| are vertices lying cyclicly on the outer 
boundary of G . Since G is maximal, x1x2 . . . xv(G)x1 is a cy-
cle. For i = 1, . . . , v(G), let Q i be the k-path
xi xi+1 . . . xi+k−1 (indices modulo v(G)). Since e(G) ≤
5
2 v(G) − 4 by Lemma 2.6, we have

1

v(G)

v(G)∑
i=1

W G(Q i) = k

v(G)

∑
x∈V (G)

dG(x) = k

v(G)
2e(G)

≤ 5k − 8

v(G)
< 5k,

which implies that there is a k-path Q j for some j ∈
{1, . . . , v(G)} with W G(Q j) ≤ 5k − 1. �
3. Light edges in outer-1-planar graphs

Lemma 3.1. Let v1 v2 . . . vn be an n-path with n ≥ 4. If there 
is no pair of chords vi v j and vk vl with 1 ≤ i < k < j < l ≤
n, then among v2, . . . , vn−1 , there is a 2-valent vertex adja-
cent to a vertex of degree at most 4 in the graph induced by 
v1, v2, . . . , vn.

Proof. For any two vertices vi and v j with i < j. Denote 
by Gij the graph induced by {vi, vi+1, . . . , v j}. For simplify, 
let G = G1n .

If n = 4, then the required result is trivial since 4 ≤
dG (v2) +dG(v3) ≤ 5. Therefore, we assume that it holds for 
any n′-path with 4 ≤ n′ < n, and then prove it for n-path 
by induction.

Let vi v j be a chord with j − i ≥ 2. If j − i ≥ 3, then by 
the induction hypothesis, there are two adjacent vertices 
va and vb with i + 1 ≤ a, b ≤ j − 1 so that dGij (va) = 2 and 
dGij (vb) ≤ 4. Since vi v j is non-crossed, dG (va) = dGij (va) =
2 and dG (vb) = dGij (vb) ≤ 4. Now we find a 2-valent ver-
tex va adjacent to a vertex vb of degree at most 4 in G . 
Therefore, for any chord vi v j with i < j, we have j − i = 2, 
and moreover, dG (vi+1) = 2.

Suppose that vi is adjacent to v j with j − i > 1 only 
if i = 1 and j = n. Clearly, v2 and v3 are two adjacent 
2-valent vertices, and we complete the proof. Therefore, 
we assume that there is a chord vi v j with j − i > 1 so that 
either i 	= 1 or j 	= n. Without loss of generality, assume 
that j 	= n. If dG(v j) ≤ 4, then we are done. If dG(v j) ≥ 5, 
then there exists a chord v j vs with |s − j| ≥ 3, which is 
impossible by the conclusion of the above paragraph. �
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Definition 1. Let G be a 2-connected outer-1-plane graph 
with vertices v1, v2, . . . , v |G| lying clockwise on its outer 
boundary. If vi v j crosses vk vl with l − j = j −k = k − i = 1
(mod |G|), vi vk, v j vl ∈ E(G) and vk vl /∈ E(G), then we say 
that vi v j co-crosses vk vl .

Lemma 3.2. Let G be a 2-connected (resp. maximal) outer-
1-plane graph with vertices v1, v2, . . . , vn lying clockwise on 
its outer boundary, where n = |G| ≥ 5. Among v2, . . . , vn−1 , 
there is a 2-valent vertex adjacent to a vertex of degree at most 7 
(resp. 5), or a 3-valent vertex adjacent to another one 3-valent 
vertex in G.

Proof. Let vi and v j be two vertices with i < j. Denote 
by Gij the graph induced by V[vi, v j]. Note that in the 
following arguments we do not distinguish whether G is 
2-connected or maximal, unless we state specially.

If n = 5, then there is a pair of chords vi v j and vk vl
with 1 ≤ i < k < j < l ≤ 5, because otherwise v1 v2 v3 v4 v5
is a path, and then by Lemma 3.1 we will find, among 
v2, v3 and v4, a 2-valent vertex adjacent to a vertex 
of degree at most 4. Since G is 2-connected or max-
imal, δ(G) ≥ 2. By symmetry, we consider three cases. 
First, if v1 v3 crosses v2 v4, then either v2 v3 ∈ E(G) and 
dG(v2) + dG(v3) ≤ 6, or v2 v3 /∈ E(G) and v1 v2, v3 v4 ∈
E(G), which implies that dG (v3) = 2 and dG(v4) ≤ 4. 
Second, if v1 v3 crosses v2 v5, then either v2 v3 ∈ E(G)

and dG (v2) + dG(v3) ≤ 6, or v2 v3 ∈ E(G) and dG (v2) +
dG(v3) = 7, which implies that v3 v4 ∈ E(G), dG(v3) ≤ 4
and dG (v4) = 2, or v2 v3 /∈ E(G), which implies that v3 v4 ∈
E(G), dG(v3) ≤ 3 and dG (v4) = 2. Third, if v1 v4 crosses 
v2 v5, then dG(v3) = 2, and v3 is adjacent to either v2 or 
v4, any of which has degree at most 4 in G .

In what follows, we prove the conclusion by induction 
on n, assuming that it holds for any 2-connected (resp. 
maximal) outer-1-plane graph with order less than n.

Claim 1. If vi v j is a chord crossed by vk vl with i < k < j < l, 
then we can find two adjacent vertices among V(vi, vl) that 
satisfy the conclusion of Lemma 3.2, unless vi v j co-crosses vk vl .

Proof. If k − i ≥ 4, then by the induction hypothesis, there 
are two adjacent vertices va, vb ∈ V[vi+1, vk−1] so that 
dGik (va) = dGik (vb) = 3, or dGik (va) = 2 and dGik (vb) ≤ 7
(dGik (vb) ≤ 5 if G is maximal). Since there is no edge 
between V(vi, vk) and V(vk, vi) by the outer-1-planarity 
of G , dG (u) = dGik (u) for any vertex u ∈ V(vi, vk). Hence 
va and vb are the two required vertices in G . Therefore, 
k − i ≤ 3, and similarly, we have j − k ≤ 3 and l − j ≤ 3.

If j − k = 3, then vk v j−1 crosses vk+1 v j (otherwise 
dG(vk+1) + dG (v j−1) ≤ 5 and vk+1 v j−1 ∈ E(G), so we 
finish the proof). If vk+1 v j−1 ∈ E(G), then dG(vk+1) =
dG(v j−1) = 3 and we complete the proof. Hence we as-
sume that vk+1 v j−1 /∈ E(G) and thus G is not maximal. 
Now we have that dG (v j−1) = 2. Since l − j ≤ 3, we have 
dG(v j) ≤ 7, and thus v j−1 and v j are the required vertices. 
Hence j − k ≤ 2.

If k − i = 2, then dG(vk−1) = 2. Since j −k ≤ 2, dG(vk) ≤
5 and thus vk−1, vk are the required vertices. Hence k − i 	=
2, and by symmetry, l − j 	= 2.
If j − k = 2, then dG (v j−1) = 2. If l − j = 1, then 
dG (v j) ≤ 4, and v j−1, v j are the required vertices. If 
l − j = 3, then v j vl−1 crosses v j+1 vl (otherwise dG (v j+1) +
dG (vl−1) ≤ 5 and v j+1 vl−1 ∈ E(G), we complete the 
proof). If G is maximal, then dG(v j+1) = dG (vl−1) = 3
and v j+1 vl−1 ∈ E(G), so v j+1 and vl−1 are the required 
vertices. If G is not maximal but is 2-connected, then 
dG (v j) ≤ 6, so v j−1 and v j are the required vertices. Hence 
j − k 	= 2 and thus

j − k = 1.

Suppose that k − i = 1. If l − j = 1, then either vi v j

co-crosses vk vl , or vk and v j are two adjacent 3-valent 
vertices, and we are done. If l − j 	= 1, then l − j = 3, and 
moreover, v j vl−1 crosses v j+1 vl (otherwise dG(v j+1) +
dG (vl−1) ≤ 5 and v j+1 vl−1 ∈ E(G), we complete the proof). 
If v j+1 vl−1 ∈ E(G), then dG(v j+1) = dG(vl−1) = 3, and 
v j+1, vl−1 are the required vertices. If v j+1 vl−1 /∈ E(G), 
then v j v j+1 ∈ E(G), dG(v j) ≤ 5 and dG (v j+1) = 2, so v j

and v j+1 are the required vertices. Hence k − i 	= 1, and by 
symmetry, l − j 	= 1. This implies that

l − j = k − i = 3.

Since k − i = 3, vi vk−1 crosses vi+1 vk (otherwise 
dG (vi+1) + dG (vk−1) ≤ 5 and vi+1 vk−1 ∈ E(G), we are 
done). If vi+1 vk−1 ∈ E(G), then dG (vi+1) = dG(vk−1) = 3, 
and vi+1, vk−1 are the required vertices. If vi+1 vk−1 /∈
E(G), then vk−1 vk ∈ E(G), dG(vk−1) = 2 and dG (vk) ≤ 5, 
so vk−1 and vk are the required vertices. �
Claim 2. If vi v j is a non-crossed chord with j − i ≥ 4, then there 
are two adjacent vertices in V(vi, v j) that satisfy the conclusion 
of Lemma 3.2.

Proof. Since j − i ≥ 4, |V[vi, v j]| ≥ 5. By the induc-
tion hypothesis, there are two adjacent vertices va, vb ∈
V(vi, v j) so that dGij (va) = dGij (vb) = 3, or dGij (va) = 2
and dGij (vb) ≤ 7 (dGik (vb) ≤ 5 if G is maximal). Since vi v j
is non-crossed, dG(va) = dGij (va) and dG(vb) = dGij (vb). 
Therefore, va and vb are the two adjacent vertices in 
V(vi, v j) that satisfy the conclusion. �

If no crossing exists in G , then by Lemma 3.1, we can 
find a 2-valent vertex adjacent to a vertex of degree at 
most 4 among v2, . . . , vn−1. Hence we assume that G con-
tains at least one crossing.

Suppose that vi v j co-crosses vk vl with i < k < j < l =
i + 4 by Claim 1. Clearly, since vk v j /∈ E(G) (otherwise vk
and vl are two adjacent 3-valent vertices in G , and the 
proof is completed), G is not maximal. Since n ≥ 5, either 
i 	= 1 or l 	= n. Without loss of generality, assume that l 	=
n. Since dG(vk) = dG (v j) = 2, dG(vi) ≥ 8 and dG (vl) ≥ 8, 
because otherwise we can find the desired two vertices. 
This implies either a chord vl vs with l < s, or a chord vt vi
with t < i. By symmetry, we assume that the chord vl vs

with l < s exists.
If vl vs is crossed by a chord va vb with l < a < s, 

then by Claim 1, vl vs co-crosses va vb . This implies that 
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b − s = 1 and dG (va) = dG(vs) = 2. Since dG(vl) ≥ 8, there 
is a chord vl vr with b < r, or a chord vl vt with t < i. 
By symmetry, we assume that the chord vl vr with b < r
exists. By Claim 1, vl vr is non-crossed. By Claim 2, there 
are two adjacent vertices vα, vβ ∈ V(vl, vr) that satisfy the 
conclusion.

On the other hand, suppose that vl vs is non-crossed. 
If s − l ≥ 4, then by Claim 2, one can find two adjacent 
vertices vα, vβ ∈ V(vl, vs) that satisfy the conclusion. If s −
l = 3, then vl vs−1 co-crosses vl+1 vs (otherwise vl+1 vs−1 ∈
E(G) and dG (vl+1) +dG (vs−1) ≤ 6, we complete the proof), 
and we meet the same condition as the one appearing in 
the previous paragraph. Hence we lastly consider the case 
when s − l = 2, which implies that dG (vl+1) = 2.

Since dG(vl) ≥ 8, there is a chord vl vt with t < i or 
t > s. If t < i, then vl vt is non-crossed by Claim 1, so one 
can find two adjacent vertices vα, vβ ∈ V(vt , vl) that sat-
isfy the conclusion by Claim 2. Therefore, t > s. By Claim 
1, vl vt is non-crossed. If t − l ≥ 4, then one can find two 
adjacent vertices vα, vβ ∈ V(vl, vt) that satisfy the conclu-
sion by Claim 2. If t − l = 3, then dG (vs) = 3, dG(vs−1) = 2
and vs−1 vs ∈ E(G). Hence vs−1 and vs are the required 
vertices. �
Theorem 3.3. Every outer-1-planar graph with minimum de-
gree at least two contains an edge xy with d(x) = d(y) = 3, or 
d(x) = 2 and d(y) ≤ 7.

Proof. Let B be an end-block of G with vertices v1, v2,

. . . , v |B| lying consecutively on the outer boundary of a 
good drawing of B . Without loss of generality, let v1 be 
the unique cut-vertex on B . Since δ(G) ≥ 2, |B| ≥ 3.

If |B| ≥ 5, then by Lemma 3.2, there are two adja-
cent vertices vi and v j among v2, v3, . . . , v |B|−1 so that 
dB(vi) = dB(v j) = 3, or dB(vi) = 2 and dB(v j) ≤ 7. Since 
dG(vi) = dB(vi) and dG (v j) = dB(v j), we complete the 
proof by letting x := vi and y := v j .

If |B| = 4, then either v2 v3 ∈ E(G) and dG(v2) +
dG(v3) ≤ 6, or v3 v4 ∈ E(G) and dG (v3) + dG (v4) ≤ 6, so 
we let {x, y} := {v2, v3}, or let {x, y} := {v3, v4}, respec-
tively.

If |B| = 3, then v2 v3 ∈ E(G) and dG (v2) = dG(v3) = 2. 
Hence we complete the proof by letting x := v2 and y :=
v3. �
Corollary 3.4. Every outer-1-planar graph with minimum de-
gree at least 2 contains an edge xy with d(x) + d(y) ≤ 9
and max{d(x), d(y)} ≤ 7, and the upper bounds 9 and 7 
are the best possible. In other words, w(P2, O1P2) = 9 and 
h(P2, O1P2) = 7.

Proof. Theorem 3.3 directly implies this result, and the 
sharpness of the two upper bounds can be confirmed by 
picture (c) of Fig. 1, where the weight of each edge is at 
least 9 and each edge contains a vertex of degree at least 
7. �
Corollary 3.5. If G is an outer-1-planar graph of order at least 
2 so that the distance of any two 1-valent vertices is at least 3, 
then G contains an edge xy with d(x) +d(y) ≤ 9, moreover, the 
upper bound 9 is the best possible.
Proof. If δ(G) ≥ 2, then Theorem 3.3 implies this result. 
Hence we assume that G is a minimal (in terms of the 
order) counterexample to this with δ(G) = 1. Let uv be an 
edge with dG (u) = 1. If dG(v) ≤ 2, then we complete the 
proof, so we assume that dG (v) ≥ 3.

By the minimality of G , H := G − u contains an edge xy
with dH (x) + dH (y) ≤ 9. If none of x and y is the vertex 
v , then dG (x) + dG (y) = dH (x) + dH (y) ≤ 9, a contradic-
tion. If x or y, say x, is v , then consider two cases. First, if 
dH (x) ≤ 7, then dG(x) = dH (x) + 1 ≤ 8 and dG (x) + dG (u) ≤
9, a contradiction. Second, if dH (x) ≥ 8, then dH (y) = 1 and 
thus dG (y) = 1, which is impossible since the distance of 
the two 1-valent vertices u and y is exactly 2.

The sharpness of the upper bound 9 can be confirmed 
by picture (c) of Fig. 1. �

Note that the assumptions on the minimum degree and 
on the distance of two 1-valent vertices in Corollaries 3.4
and 3.5 cannot be removed, since the star K1,n is an outer-
1-planar graph with the degree sum of any edge being 
n + 1.

Theorem 3.6. Every maximal outer-1-planar graph contains an 
edge xy with d(x) = d(y) = 3, or d(x) = 2 and d(y) ≤ 5.

Proof. By Lemma 2.1, G is 2-connected. By Lemmas 2.2
and 2.3, G has an outer-1-planar drawing so that its outer 
boundary forms a hamiltonian cycle. If G contains no 
crossing, then the conclusion follows from Lemma 3.1. If 
G contains crossings, then it follows from Lemma 3.2. �
Corollary 3.7. Every maximal outer-1-planar graph of order at 
least 2 contains an edge xy with d(x) +d(y) ≤ 7, and the upper 
bound 7 is the best possible. In other words, w(P2, O1P∗) = 7.

Proof. Theorem 3.6 directly implies this result, and the 
sharpness of the upper bound can be confirmed by pic-
ture (a) of Fig. 1, where the weight of each edge is at least 
7. �
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