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Abstract

The notions of L-tree-coloring and list vertex arboricity of graphs are in-
troduced in the paper, while a sufficient condition for a plane graph admitting
an L-tree-coloring are given. Further, it is proved that every graph without
K5-minors or K3,3-minors has list vertex arboricity at most 3, and this upper
bound is sharp.
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1 Introduction
All graphs in this paper are undirected, finite and simple. A graph is planar if it
can be drawn on the plane in such a way that no edges cross each other. Such a
drawing of a planar graph is called a plane graph. A cycle C in a plane graph is
separating if both the interior and exterior of C contains vertices of G. A plane
graph G is a near-triangulation if the boundary of every face, except possibly the
outer face, is a cycle on three vertices, and is triangulation if the boundary of
every face is a cycle on three vertices.

A graph H is called a minor of the graph G if H can be formed from G by
deleting edges and vertices and by contracting edges. The theory of graph minors
began with the well-known Wagner’s theorem [4] that a graph is planar if and
only if its minors do not include the complete graph K5 nor the complete bipartite
graph K3,3.

A k-tree-coloring of G is function ϕ from the vertex set V(G) to {1, 2, . . . , k}
so that the graph induced by ϕ−1(i) is an union of trees for every 1 ≤ i ≤ k. The
minimum integer k so that G admits a k-tree-coloring is the vertex arboricity of
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Figure 1: Wagner graph

G, denoted by va(G). Chartrand, Kronk and Wall [3] showed that va(G) ≤ 3 for
any planar graph G.

Naturally, we can consider the list version of vertex arboricity. Let L(v) be
a list of colors assigned to each vertex v ∈ V(G). An L-tree-coloring of G is a
function ϕ : V(G) ⇀

⋃
v L(v) so that ϕ(v) ∈ L(v) for every v ∈ V(G) and the

graph induced by ϕ−1(i) is an union of trees for every i ∈
⋃

v L(v). A graph G
is list k-tree-colorable if G has an L-tree-coloring as long as one assign to each
vertex v ∈ V(G) an arbitrary list L(v) with size k. The minimum integer k so
that G is list k-tree-colorable is the list vertex arboricity of G, denoted by val(G).
Clearly, va(G) ≤ val(G), but whether there is a gap between these two parameters
is unknown.

In this paper, we first give a sufficient condition for a plane graph admitting
an L-tree-coloring (see Theorem 6), and further, prove that val(G) ≤ 3 if G is
K5-minor-free, or K3,3-minor-free (see Theorem 11).

2 Main results and their proofs
By G1 ∩ G2 (resp. G1 ∪ G2), we denote the graph with vertex set V(G1) ∩ V(G2)
(resp. V(G1) ∪ V(G2)) and edge set E(G1) ∩ E(G2) (resp. E(G1) ∪ E(G2)). If G1
and G2 are subgraphs of G so that G1 ∪G2 = G and G1 ∩G2 is a complete graph
on k-vertices, then we say that G is the clique k-sum of G1 and G2.

An H-minor-free graph G is edge-maximal if the graph derived form G by
joining any two nonadjacent vertices has at least one H-minor. A planar graph
G is edge-maximal if joining any two nonadjacent vertices of G will disturb the
planarity. Wagner graph is a 3-regular graph with 8 vertices and 12 edges named
after Klaus Wagner, see Figure 1.

Lemma 1. (Wagner [4]) A graph is K5-minor-free if and only if it can be obtained
by clique 0-, 1-, 2-, 3-summing stating from planar graphs and the Wagner graph.

Lemma 2. (Wagner [4]) A graph is K3,3-minor-free if and only if it can be ob-
tained by clique 0-, 1-, 2-summing stating from planar graphs and K5.

The following corollaries directly follow from Lemmas 1 and 2, respectively.
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Corollary 3. If G is an edge-maximal K5-minor-free graph, then it can be ob-
tained by clique 2-, 3-summing starting from edge-maximal planar graphs and
the Wagner graph. �

Corollary 4. If G is an edge-maximal K3,3-minor-free graph, then it can be ob-
tained by clique 2-summing starting from edge-maximal planar graphs and K5.
�

Lemma 5. Let G be a near-triangulation with outer face C = v1v2 . . . vnv1. As-
sume that L(u) is a list of at least two colors for u ∈ V(C), and at least three colors
for u ∈ V(G) \ V(C). If ϕ is an L-tree-coloring of {v1, v2}, then ϕ can be extended
to an L-tree-coloring of G.

Proof. We prove it by induction on n. First, the conclusion is trivial when n = 3,
so we assume that it holds for any near-triangulation with order less than n and
consider near-triangulation G with order n ≥ 4.

If C contains a chord viv j with 1 ≤ i < j ≤ n, then let G1 be the subgraph in-
duced by {vi, vi+1, . . . , v j} and let G2 be the subgraph induced by {v j, v j+1 . . . , vn, v1,
. . . , vi}.

Since G is a near-triangulation, G1 is a near-triangulation with outer face C1 =

vivi+1 . . . v jvi and G2 is a near-triangulation with outer face C2 = v jv j+1 . . . vnv1 . . . vi
v j. Without loss of generality, assume that v1, v2 ∈ V(C1).

By the induction hypothesis, ϕ can be extended to an L-tree-coloring λ1 of
G1, and then the coloring on {vi, v j} can be extended to an L-tree-coloring λ2 of
G2. Combining the L-tree-colorings λ1 with λ2, we obtain a coloring λ of G. If
λ is not an L-tree-coloring of G, then there is a monochromatic cycle in G that is
incident with the chord viv j. This implies a monochromatic cycle in either G1 or
G2, which are all impossible since λ1 and λ2 are L-tree-colorings. Therefore, λ is
an L-tree-coloring of G to which ϕ is extended.

Hence we assume that C contains no chord.
Let v1, u1, u2, . . . , uk and vn−1 be the neighbors of vn in that clockwise order

around vn. Since G be a near-triangulation and C is chordless, C′ = v1v2 . . . vn−1uk
uk−1 . . . u1v1 is a cycle.

Let G′ be the subgraph induced by the vertices of C′. Clearly, G′ is a near-
triangulation with outer face C′. Let a ∈ L(vn) \ {ϕ(v1)} and let L′(ui) = L(ui) \ {a}
for every 1 ≤ i ≤ k. Further, let L′(w) = L(w) for every w ∈ V(G′) \ {u1, . . . , uk}.
This follows that |L′(w)| ≥ 2 for every w ∈ V(C′) and |L′(w)| ≥ 3 for every
w ∈ V(G′) \ V(C′). Hence by the induction hypothesis, ϕ can be extended to an
L′-tree-coloring λ′ of G′. At last, we color vn with a and get a coloring λ of G.
Since λ′ is an L′-tree-coloring and at most one neighbor of vn is colored with a
under λ′, λ is an L-tree-coloring of G, as required. �

The following theorem is an immediate corollary of the above lemma.

Theorem 6. Let G be a plane graph with outerface C. If L is a list of colors so
that |L(v)| = 2 for every v ∈ V(C) and |L(v)| = 3 for every v ∈ V(G) \ V(C), then
G has an L-tree-coloring. �
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Lemma 7. Let G be a near-triangulation and let L(v) be a list of at least three
colors for every v ∈ V(G). If G has a subgraph H isomorphic to K3 and ϕ is an
L-tree-coloring of H, then ϕ can be extended to an L-tree-coloring of G.

Proof. We prove it by induction on the order n of a near-triangulation. First,
the conclusion is trivial when n = 3, so we assume that it holds for any near-
triangulation with order less than n and consider near-triangulation G with order
n ≥ 4.

If H = uvwu (i.e., a cycle on three vertices) is not separating, then we may
redraw the graph G and add some necessary edges so that the resulting drawing,
also denoted by G, is a triangulation with outer face H. Let u,w1,w2, . . . ,wk and v
be the neighbors of w in that clockwise order around w. Since G is a triangulation,
uw1 . . .wkvu is a cycle C. Let G′ be the subgraph induced by the vertices of C′.
Clearly, G′ is a near-triangulation with outer face C′. Let L′(wi) = L(wi) \ {ϕ(w)}
for every 1 ≤ i ≤ k and L′(x) = L(x) for every x ∈ V(G′) \ {w1, . . . ,wk}. Since
|L′(x)| ≥ 2 for every x ∈ V(C′) and |L′(x)| ≥ 3 for every x ∈ V(G′) \ V(C′),
the coloring ϕ of {u, v} can be extended to an L-tree-coloring of G′ by Lemma 5.
Clearly, this L-tree-coloring of G′ along with the coloring ϕ of the vertex w form
an L-tree-coloring of G.

If H = uvwu is separating, then the subgraph G1 induced by the vertices inside
or on H is a triangulation with outer face H. By the induction hypothesis, the
coloring ϕ on H can be extended to an L-tree-coloring λ1 of G1. On the other hand,
the subgraph G2 induced by the vertices outside or on H is a near-triangulation
with a non-separating cycle H on three vertices, so by the same argument as the
one in the previous paragraph, the coloring ϕ on H can be extended to an L-
tree-coloring λ2 of G2. Combining the L-tree-colorings λ1 with λ2, we obtain an
L-tree-coloring of G. �

Lemma 8. Let G be a near-triangulation and let L(v) be a list of at least three
colors for every v ∈ V(G). If G has a subgraph H isomorphic to K2 and ϕ is an
L-tree-coloring of H, then ϕ can be extended to an L-tree-coloring of G.

Proof. If H = xy is an edge on the outer face of G, then the conclusion follows
from Lemma 5. If H = xy is not an edge on the outer face of G, then there is a
vertex z so that H′ = xyzx forms a K3. Clearly, ϕ can be extended to an L-tree-
coloring ϕ′ of H′ via coloring z with a color different from ϕ(x) and ϕ(y). By
Lemma 7, ϕ′ can be extended to an L-tree-coloring of G. �

Similar conclusion also holds for Wagner graph and the complete graph K5.
The proof of the following lemma is quite basic, so we omit it here.

Lemma 9. Let G be the Wagner graph (resp. the complete graph K5) and let L(v)
be a list of at least three colors for every v ∈ V(G). If G has a subgraph H
isomorphic to K2 or K3, and ϕ is an L-tree-coloring of H, then ϕ can be extended
to an L-tree-coloring of G. �
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Lemma 10. Let G be an edge-maximal K5-minor-free graph (resp. K3,3-minor-
free graph) and let L(v) be a list of at least three colors for every v ∈ V(G). If G
has a subgraph H isomorphic to K2 or K3 (resp. isomorphic to K2), and ϕ is an
L-tree-coloring of H, then ϕ can be extended to an L-tree-coloring of G.

Proof. If G is an edge-maximal planar graph, then G can be drawn as a triangu-
lation, so the conclusion holds by Lemmas 7 and 8 (resp. by Lemma 8). If G is
the Wagner graph (resp. the complete graph K5), then it holds by Lemma 9. In the
following, we assume that G is neither edge-maximal planar graph nor Wagner
graph (resp. the complete graph K5), and prove it by induction on the order of G.

By Corollary 3, G = G1 ∪ G2, where G1 is an edge-maximal K5-minor-free
graph (resp. edge-maximal K3,3-minor-free graph) and G2 is an edge-maximal pla-
nar graph or a Wagner graph (resp. K5) so that G1 ∩G2 = H′ that is isomorphic to
K2 or K3 (resp. K2).

If H ⊆ G1, then by the induction hypotheses, ϕ can be extended to an L-
tree-coloring λ1 of G1. Whereafter, the L-tree-coloring of H′ can be extended to
an L-tree-coloring λ2 of G2 by Lemmas 7, 8 and 9 (resp. by Lemmas 8 and 9).
Combining the coloring λ1 with λ2, we obtain an L-tree-coloring of G.

If H ⊆ G2, then by Lemmas 7, 8 and 9 (resp. by Lemmas 8 and 9), ϕ can
be extended to an L-tree-coloring λ2 of G2. Whereafter, the L-tree-coloring of
H′ can be extended to an L-tree-coloring λ1 of G1 by the induction hypotheses.
Combining the coloring λ1 with λ2, we obtain an L-tree-coloring of G. �

Theorem 11. If G is a K5-minor-free graph, or a K3,3-minor-free graph, then
val(G) ≤ 3. Moreover, this upper bound 3 is best possible.

Proof. Since every K5-minor-free graph (resp. K3,3-minor-free graph) is a sub-
graph of an edge-maximal K5-minor-free graph (resp. edge-maximal K3,3-minor-
free graph), this conclusion directly follows from Lemma 10.

Since there exists planar graph with vertex arboricity exactly 3 (see [2]) and
every planar graph is K5-minor-free and K3,3-minor-free, the upper bound 3 in this
theorem is best possible. �
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