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Abstract

An r-equitable k-coloring of a graph G is a proper k-coloring of G so that
the size of any two color classes differ by at most r. The least k such that
G is r-equitably k-colorable is the r-equitable chromatic number of G. In
this paper, we prove that the r-equitable chromatic number of a connected
bipartite graph G(X, Y) with [X| = m > n = || is at most [ 27 + 1 provided
that G satisfies a restriction on the number of edges. This generalizes a result
of K.-W. Lih and P.-L. Wu [Discrete Math., 151 (1996) 155-160].
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1 Introduction

All graphs considered in this paper are finite, simple and undirected unless oth-
erwise stated. By V(G) and E(G), we denote the vertex set and the edge set of a
graph G, respectively. For a vertex v € V(G), deg(v) is the degree of v in G, which
is the number of edges that are incident with v in G. For a subset of U of V(G), by
e(U) we denote the number of edges in G which have at least one end vertex in U.
Let [x] and | x| denote, respectively, the smallest integer not less than x and the
largest integer not greater than x. A connected bipartite graph (i.e., 2-colorable
graph) G(X,Y) is a graph whose vertices can be divided into two disjoint sets X
and Y such that every edge connects a vertex in X to one in Y and there always
exists a path between every pair of vertices.

If the vertices of a graph G are partitioned into k classes Vi, V»,..., Vi such
that each V; is an independent set with vertices colored by one single color and
Vil = V;l| < rfor all i # j, then G is r-equitably k-colorable. The least integer k
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such that a graph G is r-equitably k-colorable is the r-equitable chromatic number
of G and denoted by y,-(G). It is obvious that an r-equitably k-colorable graph
is certainly (r + 1)-equitably k-colorable. Although the concept of r-equitable
colorability seems a natural generalization of usual equitable colorability (cor-
responding to r=1) introduced by Meyer [4] in 1973, it was first proposed in
a recent paper by Hertz and Ries [1, 2], which gives a complete characteriza-
tion of r-equitably k-colorable trees for any given integer » > 1. Actually, the
study on the r-equitable colorability of graphs is still at the early stage. As far
as we know, Wang, Yan, and Zhang [5] considered the r-equitable colorings of
Kronecker products of complete graphs, and Yen [6] proposed a necessary and
sufficient condition for a complete multipartite graph G := K, ,, ., to have an
r-equitable k-coloring, and gave exact value of y,-(G) as follows.

Theorem 1. [6] For any r > 1, x,=(Ky, ny...n) = zf.zl[n,-/(a + r)], where 0 =
max{s € IN : [n;/s] > [n;/(s + )]}

Using Theorem 1, we can easily deduce a similar result on complete bipartite
graphs.

Theorem 2. Let K, , be a compete bipartite graph withm > n > 2. If r 2 n— 1,
then

m
r=(Kpn) = + 1.
Xr=( ’) [n+r]

Proof. Letm = a(n+r) — b witha = [m/(n+r)]and 0 < b < n+ 1. Since
[n/s]=0<1<[n/(s+r)]forany s >nand |n/n] =1=[n/(n+r)],0 <n. On
the other hand, if @ > 2, then |m/n] = |(ar — b)/n] + a > |(ar — n)/n] +a > a,
sincear—n>an—1)—-n>n-2>0,andifa = 1, then [m/n] > 1 =a. In
each case we have |m/n] > [m/(n + r)]. Therefore, 8 = n and thus y,=(K,,,) =
[m/(n+r)]+[n/(n+r)] =[m/(n+r)]+1by Theorem 1. O

In this paper, we consider the r-equitable colorings of bipartite graphs which
may be not complete. The aim of this paper is to generate the following result of
Lih and Wu [3] to its r-equitable colorability version.

Theorem 3. [3] Let G(X,Y) be a connected bipartite graph with € edges. If
XI=m=n=1Yand e < [m/(n+1)|(m—n)+2m, then y1-(G) < [m/(n+1)]+ 1.

In the next section, we give the detailed proof of the following main result of
this paper.

Theorem 4. Let G(X,Y) be a connected bipartite graph with € edges. If |X| =
m>n=1Y|and

n(g +2)
<{(q+1)(n+r)—mJ(m_n_r+1)+2n’ (D)
h =51, th
whered “ ¥re(G) < [n'fr} +1. )
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Now we use Theorem 4 to show the result of Lih and Wu (Theorem 3). Let
q =Ll;5landm =q'(n+1)+pwithO < p <n+1. 1If p’ =0, then we parti-
tion X into ¢’ independent subsets X;, X, ..., X, of size n + 1, and the partition
{X1,X5,..., Xy, Y} of V(G) implies a (¢" + 1)-equitable coloring of G. If p’ > 1,

/42 : '+2
then & < LW';(;T%J(m —n) +2n, because otherwise & > LW';()ZTanJ(m -n)+

2n = [%J(m —n)+2n > (¢ +2)(m—n)+2n = ¢’ (m—n) +2m, a contradiction
to the condition for Theorem 3. Hence x1-(G) < [-25] + 1 by Theorem 4.

To end this section, we show that the upper bound in (2) of Theorem 4 cannot
be reduced in the general case. Choose r to be an integer no less than n — 1. For
example, let r = n (other values of r can be similarly discussed). One can check

that if

_m+2+ Vam3 + 5m? + 4m + 4
-_ 4m 9

then
n(g +2)

(g+Dn+r)—-m

J(m—n—r+1)+2n>mn.

Therefore, the complete bipartite graph G := K, , satisfies the restriction (1) on
the number of edges, and thus y,-(G) = [i-l + 1 by Theorem 2.

n+r

2 The proof of Theorem 4

Let g = [m/(n + r)]. It follows that m = g(n + r) + p with0 < p < n+ r, and
[m/(n+r)]isqif p =0, and is g + 1 if p # 0. Therefore, we just generate that
Xr=(G)<qg+1ifp=0,and y,-(G) < g+2ifp#0.Ifg=0,thenm=p<n+r
and G is r-equitably 2-colorable (coloring X with one color and Y with the other
color). Hence in the following we always assume that g > 1.

Casel: p=0.

In this case, we have |X| = g(n + r). Dividing X into g independent subsets of
size n + r, and recognizing Y as a single independent subset of G, we obtain an
r-equitable (g + 1)-coloring of G.

Case2:n<p<n+r.

We divide X into g + 1 independent subsets so that g of them have size n + r
and one of them has size p. Those g + 1 independent subsets along with ¥ form
an r-equitable (g + 2)-coloring of G.

Case3:0<p<n.

We generate that y,-(G) < g + 2. Hence if we can find a scheme which can
r-equitably color G with g + 2 colors, then we prove the theorem.

To find the scheme, we reclassify the vertices first by moving a set B consisting
of k vertices from Y to X, where

n—p+r
g+2 |’
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By the definition of k, we know that
n—-p+r nlg+2)— g+ Dn+r)—m)

—k>n- =
& =" qg+2 q+2
>(q+1)(n+r)—m n(g+2) |
- qg+2 g+ Dn+r) -
S g+ Dn+r) - e—2n
q+2 m-n—r+1
>(q+1)(n+r) m—-n-—1
- q+2 m—n—r+l
@+ Dn+r) - 50
- q+2 m-n—r+1
if r > 2,
n—an—MZn—E>O
q+2 3
if r=1, and

2(n—p+r)+ S _2n-p+n)

n—-2k+r>n- 72 r>n 3

1 1
>§n+§r>0.

Letn—p+r=k(g+2)+twithQ <t <gqg+2. Since
m+k)y—ttn—k+r-1)—(g+1-0n—k+r)=k(g+2)+t-n+p-r=0 (3)

we can partition m + k elements into ¢ classes of sizen —k+r—landg+ 1 —¢
classes of size n —k + r.

If k = 0, then we divide X into 7 independent subsets of sizen+r—1,g+1—¢
independent subsets of size n + r, and then recognize Y as a single independent
subset of G. This implies an r-equitable (¢ + 2)-coloring of G. Therefore, we
assume that k£ > 0.

Moving Lemma: If k > 0, then there exist A C X and B C Y such that |A| =
n—2k+r, |Bl| =kand AU B is an independent set of sizen —k + r.

Proof. Letn = ak + b, where a = |7] and 0 < b < k. Suppose Y consists of
vertices vy, vy,...,V, with deg(vy) > deg(v,) > ... > deg(v,).

If b # 0, then choose U = {v{,v,,...,vp}. If U contains no vertex of degree
1, then it is clear that e(U) > 2b. If U contains at least one vertex of degree 1,
then deg(v;) = 1 for every b < i < n, which implies that e(U) = € — (n — b) >
m+n—-1)—-(m—-b)=m+b-12>n+b > 2b. Note that we have assumed
that m > n here, since it is trivial that y,-(G) <2 = [Z=]+ 1if m = n. If b = 0,
then choose U = 0 and then e(U) = 0 = 2b. Indeed, in any case we have that
e(U) = 2b.

Next, we partition Y — U into a independent subsets Y}, Y>,...,Y, so that
|Yi| =kforany 1 <i<a.
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Ife(Yi)Zm—n+2k—5+lf0rany1Siga,then
£= Y E(Y)+e(U)
i=1
>am—n+2k—-r+1)+2b
am—-n—-r+1)+2n

[r—lJ(m—n—r+1)+2n

k
Z{n(q_—kZ) m-n-r+1)+2n
n—p+r
However, we have @+2)
e< v m-n—-r+1)+2n
|[(g+D(n+1r)—m
2
= ng+2) (m-n—-r+1)+2n
n—(m-—qgn+r)+r
2
B P TP
ln—p+r

This contradiction implies that there exists a set ¥; with e(Y;) < m—-n+2k—r
for some 1 < i < a. Since there are only m vertices in X, X contains at least
m— (m—n+ 2k —r) = n— 2k + r vertices which are independent of ¥;. Hence we
are able to choose the required sets A and B from X and Y, respectively. O

Let A C X and B C Y be the vertex sets found by the moving lemma. By (3),
we can divide X — A into ¢ independent subsets of sizen —k+r— 1 and g — ¢
independent subsets of size n — k + r. Those g independent subsets along with
A U B (an independent subset of size n — k + r) and Y — B (an independent subset
of size n — k) imply an r-equitable (¢ + 2)-coloring of G.

This completes the proof of Theorem 4. O
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