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Abstract

An r-equitable k-coloring of a graph G is a proper k-coloring of G so that
the size of any two color classes differ by at most r. The least k such that
G is r-equitably k-colorable is the r-equitable chromatic number of G. In
this paper, we prove that the r-equitable chromatic number of a connected
bipartite graph G(X,Y) with |X| = m ≥ n = |Y | is at most

⌈ m
n+r

⌉
+ 1 provided

that G satisfies a restriction on the number of edges. This generalizes a result
of K.-W. Lih and P.-L. Wu [Discrete Math., 151 (1996) 155–160].
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1 Introduction
All graphs considered in this paper are finite, simple and undirected unless oth-
erwise stated. By V(G) and E(G), we denote the vertex set and the edge set of a
graph G, respectively. For a vertex v ∈ V(G), deg(v) is the degree of v in G, which
is the number of edges that are incident with v in G. For a subset of U of V(G), by
e(U) we denote the number of edges in G which have at least one end vertex in U.
Let dxe and bxc denote, respectively, the smallest integer not less than x and the
largest integer not greater than x. A connected bipartite graph (i.e., 2-colorable
graph) G(X,Y) is a graph whose vertices can be divided into two disjoint sets X
and Y such that every edge connects a vertex in X to one in Y and there always
exists a path between every pair of vertices.

If the vertices of a graph G are partitioned into k classes V1,V2, . . . ,Vk such
that each Vi is an independent set with vertices colored by one single color and∣∣∣|Vi| − |V j|

∣∣∣ ≤ r for all i , j, then G is r-equitably k-colorable. The least integer k
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such that a graph G is r-equitably k-colorable is the r-equitable chromatic number
of G and denoted by χr=(G). It is obvious that an r-equitably k-colorable graph
is certainly (r + 1)-equitably k-colorable. Although the concept of r-equitable
colorability seems a natural generalization of usual equitable colorability (cor-
responding to r=1) introduced by Meyer [4] in 1973, it was first proposed in
a recent paper by Hertz and Ries [1, 2], which gives a complete characteriza-
tion of r-equitably k-colorable trees for any given integer r ≥ 1. Actually, the
study on the r-equitable colorability of graphs is still at the early stage. As far
as we know, Wang, Yan, and Zhang [5] considered the r-equitable colorings of
Kronecker products of complete graphs, and Yen [6] proposed a necessary and
sufficient condition for a complete multipartite graph G := Kn1,n2,...,nt to have an
r-equitable k-coloring, and gave exact value of χr=(G) as follows.

Theorem 1. [6] For any r ≥ 1, χr=(Kn1,n2,...,nt ) =
∑t

i=1dni/(θ + r)e, where θ =

max{s ∈ N : bni/sc ≥ dni/(s + r)e}.

Using Theorem 1, we can easily deduce a similar result on complete bipartite
graphs.

Theorem 2. Let Km,n be a compete bipartite graph with m ≥ n ≥ 2. If r ≥ n − 1,
then

χr=(Km,n) =

⌈ m
n + r

⌉
+ 1.

Proof. Let m = a(n + r) − b with a = dm/(n + r)e and 0 ≤ b < n + 1. Since
bn/sc = 0 < 1 ≤ dn/(s + r)e for any s > n and bn/nc = 1 = dn/(n + r)e, θ ≤ n. On
the other hand, if a ≥ 2, then bm/nc = b(ar − b)/nc + a ≥ b(ar − n)/nc + a ≥ a,
since ar − n ≥ a(n − 1) − n ≥ n − 2 ≥ 0, and if a = 1, then bm/nc ≥ 1 = a. In
each case we have bm/nc ≥ dm/(n + r)e. Therefore, θ = n and thus χr=(Km,n) =

dm/(n + r)e + dn/(n + r)e = dm/(n + r)e + 1 by Theorem 1. �

In this paper, we consider the r-equitable colorings of bipartite graphs which
may be not complete. The aim of this paper is to generate the following result of
Lih and Wu [3] to its r-equitable colorability version.

Theorem 3. [3] Let G(X,Y) be a connected bipartite graph with ε edges. If
|X| = m ≥ n = |Y | and ε < bm/(n + 1)c(m−n) + 2m, then χ1=(G) ≤ dm/(n + 1)e+ 1.

In the next section, we give the detailed proof of the following main result of
this paper.

Theorem 4. Let G(X,Y) be a connected bipartite graph with ε edges. If |X| =

m ≥ n = |Y | and

ε <

⌊
n(q + 2)

(q + 1)(n + r) − m

⌋
(m − n − r + 1) + 2n, (1)

where q = b m
n+r c , then

χr=(G) ≤
⌈ m
n + r

⌉
+ 1. (2)
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Now we use Theorem 4 to show the result of Lih and Wu (Theorem 3). Let
q′ = b m

n+1 c and m = q′(n + 1) + p with 0 ≤ p < n + 1. If p′ = 0, then we parti-
tion X into q′ independent subsets X1, X2, . . . , Xq′ of size n + 1, and the partition
{X1, X2, . . . , Xq′ ,Y} of V(G) implies a (q′ + 1)-equitable coloring of G. If p′ ≥ 1,
then ε <

⌊ n(q′+2)
(q′+1)(n+1)−m

⌋
(m− n) + 2n, because otherwise ε ≥

⌊ n(q′+2)
(q′+1)(n+1)−m

⌋
(m− n) +

2n =
⌊ n(q′+2)

n+1−p′
⌋
(m− n) + 2n ≥ (q′ + 2)(m− n) + 2n = q′(m− n) + 2m, a contradiction

to the condition for Theorem 3. Hence χ1=(G) ≤
⌈ m

n+1
⌉

+ 1 by Theorem 4.
To end this section, we show that the upper bound in (2) of Theorem 4 cannot

be reduced in the general case. Choose r to be an integer no less than n − 1. For
example, let r = n (other values of r can be similarly discussed). One can check
that if

n ≤
m + 2 +

√
4m3 + 5m2 + 4m + 4

4m
,

then ⌊
n(q + 2)

(q + 1)(n + r) − m

⌋
(m − n − r + 1) + 2n > mn.

Therefore, the complete bipartite graph G := Km,n satisfies the restriction (1) on
the number of edges, and thus χr=(G) =

⌈
m

n+r

⌉
+ 1 by Theorem 2.

2 The proof of Theorem 4
Let q = bm/(n + r)c. It follows that m = q(n + r) + p with 0 ≤ p < n + r, and
dm/(n + r)e is q if p = 0, and is q + 1 if p , 0. Therefore, we just generate that
χr=(G) ≤ q + 1 if p = 0, and χr=(G) ≤ q + 2 if p , 0. If q = 0, then m = p < n + r
and G is r-equitably 2-colorable (coloring X with one color and Y with the other
color). Hence in the following we always assume that q ≥ 1.

Case 1: p = 0.
In this case, we have |X| = q(n + r). Dividing X into q independent subsets of

size n + r, and recognizing Y as a single independent subset of G, we obtain an
r-equitable (q + 1)-coloring of G.

Case 2: n ≤ p < n + r.
We divide X into q + 1 independent subsets so that q of them have size n + r

and one of them has size p. Those q + 1 independent subsets along with Y form
an r-equitable (q + 2)-coloring of G.

Case 3: 0 < p < n.
We generate that χr=(G) ≤ q + 2. Hence if we can find a scheme which can

r-equitably color G with q + 2 colors, then we prove the theorem.
To find the scheme, we reclassify the vertices first by moving a set B consisting

of k vertices from Y to X, where

k =

⌊
n − p + r

q + 2

⌋
.
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By the definition of k, we know that

n − k ≥ n −
n − p + r

q + 2
=

n(q + 2) −
(
(q + 1)(n + r) − m

)
q + 2

≥
(q + 1)(n + r) − m

q + 2
·

⌊
n(q + 2)

(q + 1)(n + r) − m
− 1

⌋
>

(q + 1)(n + r) − m
q + 2

·

(
ε − 2n

m − n − r + 1
− 1

)
≥

(q + 1)(n + r) − m
q + 2

·

(
m − n − 1

m − n − r + 1
− 1

)
=

(q + 1)(n + r) − m
q + 2

·

(
r − 2

m − n − r + 1

)
≥ 0

if r ≥ 2,

n − k ≥ n −
n − p + 1

q + 2
≥ n −

n
3
> 0

if r = 1, and

n − 2k + r ≥ n −
2(n − p + r)

q + 2
+ r ≥ n −

2(n − p + r)
3

+ r >
1
3

n +
1
3

r > 0.

Let n − p + r = k(q + 2) + t with 0 ≤ t < q + 2. Since

(m + k)− t(n− k + r − 1)− (q + 1− t)(n− k + r) = k(q + 2) + t − n + p− r = 0 (3)

we can partition m + k elements into t classes of size n − k + r − 1 and q + 1 − t
classes of size n − k + r.

If k = 0, then we divide X into t independent subsets of size n + r− 1, q + 1− t
independent subsets of size n + r, and then recognize Y as a single independent
subset of G. This implies an r-equitable (q + 2)-coloring of G. Therefore, we
assume that k > 0.

Moving Lemma: If k > 0, then there exist A ⊆ X and B ⊆ Y such that |A| =

n − 2k + r, |B| = k and A ∪ B is an independent set of size n − k + r.

Proof. Let n = ak + b, where a = b n
k c and 0 ≤ b < k. Suppose Y consists of

vertices v1, v2, . . . , vn with deg(v1) ≥ deg(v2) ≥ . . . ≥ deg(vn).
If b , 0, then choose U = {v1, v2, . . . , vb}. If U contains no vertex of degree

1, then it is clear that e(U) ≥ 2b. If U contains at least one vertex of degree 1,
then deg(vi) = 1 for every b < i ≤ n, which implies that e(U) = ε − (n − b) ≥
(m + n − 1) − (n − b) = m + b − 1 ≥ n + b > 2b. Note that we have assumed
that m > n here, since it is trivial that χr=(G) ≤ 2 =

⌈ m
n+r

⌉
+ 1 if m = n. If b = 0,

then choose U = ∅ and then e(U) = 0 = 2b. Indeed, in any case we have that
e(U) ≥ 2b.

Next, we partition Y − U into a independent subsets Y1,Y2, . . . ,Ya so that
|Yi| = k for any 1 ≤ i ≤ a.
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If e(Yi) ≥ m − n + 2k − r + 1 for any 1 ≤ i ≤ a, then

ε =

a∑
i=1

E(Yi) + e(U)

≥ a(m − n + 2k − r + 1) + 2b
= a(m − n − r + 1) + 2n

=

⌊n
k

⌋
(m − n − r + 1) + 2n

≥

⌊
n(q + 2)
n − p + r

⌋
(m − n − r + 1) + 2n.

However, we have
ε <

⌊
n(q + 2)

(q + 1)(n + r) − m

⌋
(m − n − r + 1) + 2n

=

⌊
n(q + 2)

n −
(
m − q(n + r)

)
+ r

⌋
(m − n − r + 1) + 2n

=

⌊
n(q + 2)
n − p + r

⌋
(m − n − r + 1) + 2n.

This contradiction implies that there exists a set Yi with e(Yi) ≤ m − n + 2k − r
for some 1 ≤ i ≤ a. Since there are only m vertices in X, X contains at least
m − (m − n + 2k − r) = n − 2k + r vertices which are independent of Yi. Hence we
are able to choose the required sets A and B from X and Y , respectively. �

Let A ⊆ X and B ⊆ Y be the vertex sets found by the moving lemma. By (3),
we can divide X − A into t independent subsets of size n − k + r − 1 and q − t
independent subsets of size n − k + r. Those q independent subsets along with
A ∪ B (an independent subset of size n − k + r) and Y − B (an independent subset
of size n − k) imply an r-equitable (q + 2)-coloring of G.

This completes the proof of Theorem 4. �

References
[1] A. Hertz, and B. Ries, On r-equitable colorings of trees and forests. Les

Cahiers du GERAD, (2011) G–2011–40.
[2] A. Hertz, and B. Ries, A note on r-equitable k-colorings of trees. Yugosl J.

Oper. Res., 24 (2014) 293–298.
[3] K.-W. Lih, P.-L. Wu, On equitable coloring of bipartite graphs. Discrete

Math., 151 (1996) 155–160.
[4] W. Meyer, Equitable coloring, Amer. Math. Monthly, 80 (1973) 920–922.
[5] W. Wang, Z. Yan, X. Zhang, On r-equitable chromatic threshold of Kro-

necker products of complete graphs, Discrete Appl. Math., 175 (2014) 129-
134.

[6] C.-H Yen, On r-equitable coloring of complete mulipartite graphs. Tai-
wanese J. Math., 17(3) (2013) 991–998.

165


