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Abstract A graph G is outer-1-planar with near-independent crossings if it can be
drawn in the plane so that all vertices are on the outer face and |MG(c1)∩MG(c2)| ≤ 1
for any two distinct crossings c1 and c2 inG, where MG(c) consists of the end-vertices
of the two crossed edges that generate c. In Zhang and Liu (Total coloring of pseudo-
outerplanar graphs, arXiv:1108.5009), it is showed that the total chromatic number of
every outer-1-planar graphwith near-independent crossings andwithmaximumdegree
at least 5 is �+ 1. In this paper we extend the result to maximum degree 4 by proving
that the total chromatic number of every outer-1-planar graph with near-independent
crossings and with maximum degree 4 is exactly 5.

Keywords Outerplanar graph ·Outer-1-planar graph ·Local structure · Total coloring

1 Introduction

Graph coloring is an important optimization problem with many applications in com-
puter science, such as frequency assignment in optical communication networks,
computation of Hessian matrix, and pattern matching. There are various kinds of
coloring, such as vertex coloring, edge coloring, total coloring, and so on.

A total coloring of a graph G is an assignment of colors to the vertices and edges of
G such that every pair of adjacent or incident elements receive different colors. A total
k-coloring of a graph G is a total coloring of G from a set of k colors. The minimum
positive integer k for which G has a total k-coloring, denoted by χ ′′(G), is the total
chromatic number of G. It is easy to see that χ ′′(G) ≥ �(G) + 1 for any graph G
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by looking at the color of a vertex with maximum degree and its incident edges. On
the other side, it is natural to look for a Brooks’-typed or Vizing-typed upper bound
for the total chromatic number in terms of maximum degree. However, it turns out
that the total coloring version of maximum degree upper bound is a difficult problem
and has eluded mathematicians for nearly 50 years. The most well-known speculation
is the total coloring conjecture, independently raised by Behzad (1965) and Vizing
(1968), which asserts that every graph of maximum degree � admits a total (� + 2)-
coloring. This conjecture remains open although many beautiful results concerning
it have been obtained (cf. Yap 1996). In particular, the total chromatic number of
outerplanar graphs has been determined completely by Zhang et al. (1988) and that of
series-parallel graphs has been determined completely by Wu and Hu (2004).

A graph is outer-1-planar (o1p) if it can be drawn in the plane such that all vertices
are in the outer face and each edge is crossed at most once, see Auer et al. (2016). For
example, K2,3 and K4 are outer-1-planar graphs.

Outer-1-planar graphs were first introduced by Eggleton (1986) who called them
outerplanar graphs with edge crossing number one, and were also investigated under
the notion of pseudo-outerplanar graphs by Zhang et al. (2012), who proved that the
edge chromatic number of every outer-1-planar graph with maximum degree � ≥ 4
is � and the linear arboricity of every outer-1-planar graph with maximum degree
� ≥ 5 is ��/2�. Zhang and Liu [10] showed that the total chromatic number of
every outer-1-planar graph with maximum degree � ≥ 5 is �+ 1, and this result was
recently generated to its list version by Zhang (2013).

A drawing of an outer-1-planar graph in the plane so that its outer-1-planarity is
satisfied and the number of crossings is as few as possible is an outer-1-plane graph,
and we call this drawing a good drawing. Note that every crossing in an outer-1-plane
graph G is generated by two mutually crossed chords, thus for every crossing c there
exists a vertex set MG(c) of size four, where MG(c) consists of the end-vertices of the
two chords that generate c. For two distinct crossings c1 and c2 in an outer-1-plane
graph G, it is easy to check that |MG(c1) ∩ MG(c2)| ≤ 2 by the definition of the
outer-1-planarity.

A graphG is outer-1-planar with near-independent crossings (Nicop) ifG is outer-
1-planar and |MG(c1) ∩ MG(c2)| ≤ 1 for any two distinct crossings c1 and c2 in G.
We define outer-1-plane graph with near-independent crossings as a “good” drawing
of a Nicop graph. Note that every Nicop graph is o1p, and on the other hand, Nicop
can also be seen as the combination of outerplanar and planar with near-independent
crossings that was introduced by Zhang (2014).

In this paper, we first investigate the local structures ofNicop graphs, and then prove
that everyNicop graphwithmaximumdegree� ≥ 4 has total chromatic number�+1.

2 Preliminaries

From now on, when saying that a graph is Nicop we always mean that it is an outer-
1-plane graph with near-independent crossings.

Let G be a 2-connected Nicop graph. Denote by v1, . . . , v|G| the vertices of G
with clockwise ordering on its boundary. Let V[vi , v j ] = {vi , vi+1, . . . , v j } and
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Fig. 1 Graphs defining co-crossed chords

Fig. 2 The definitions of I-clusters and II-clusters

V(vi , v j ) = V[vi , v j ]\{vi , v j }, where the subscripts are taken modulo |G|. Set
V[vi , vi ] = V (G) and V(vi , vi ) = V (G)\{vi }.

A vertex set V[vi , v j ]with i �= j is non-edge if j = i +1 and viv j /∈ E(G), is path
if vkvk+1 ∈ E(G) for all i ≤ k < j , and is subpath if j > i + 1 and some edges in
the form vkvk+1 for i ≤ k < j are missing. An edge viv j in G is a chord if j − i �= 1
or 1 − |G|. By C[vi , v j ], we denote the set of chords xy with x, y ∈ V[vi , v j ]. For
a vertex set V , G[V ] denotes the subgraph of G induced by V . In any figure of this
paper, the degree of a solid (or hollow) vertex is exactly (or at least) the number of
edges that are incident with it, respectively. Moreover, solid vertices are distinct but
two hollow vertices may be identified unless stated otherwise, and the edges drawn as
crossed have to cross and the curving edges are chords.
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Fig. 3 Local structures in Nicop graphs with maximum degree at most 4

Let viv j and vkvl be two chords in a Nicop graph G so that viv j crosses vkvl and
vi , vk, v j andvl lie in a clockwise ordering. Ifvivk, vkv j , v jvl ∈ E(G), l− j = j−k =
k − i = 1 and d(vk) = d(v j ) = 3, or vivk, vkv j , v jvl , vkvk+1, vk+1v j ∈ E(G),
l − j = k − i = 1, j − k = 2, d(vk) = d(v j ) = 4 and d(vk+1) = 2, then we call that
viv j co-crosses vkvl , and viv j , vkvl are co-crossed chords in G, see Fig. 1.

We call H a I-cluster in G if H is either a left I1-cluster, or a right I1-cluster, or a
left I2-cluster, or a right I2-cluster, see Fig. 2. The II-cluster is defined similarly.

We use [vL , vR]1 and [vL , vR]2 to denote a I-cluster and II-cluster, respectively,
where L and R are the subscripts of the far left vertex and the far right vertex on the
boundary of G (see in a clockwise direction from left to right). The width of a cluster
in Fig. 2 is defined to be the value of |V[vL , vR]|. For example, the width of the left
I1-cluster [v j , vi+3]1 in the figure is (i + 3) − j + 1 = i − j + 4, and the width of the
right I1-cluster [vi , v j ]1 in the figure is j − i + 1. Of course, the final values should
be taken modulo by |G|.

We now introduce some useful lemmas that are frequently used in the next sections.
From now on, when mentioning the configuration Gi with 1 ≤ i ≤ 15 we always
refer to the corresponding picture in Fig. 3. Saying that G contains Gi , we mean
that G contains a subgraph isomorphic to Gi such that the degree in G of any solid
vertex in that picture is exactly the number of edges that are incident with it there. In
particular, saying that a good drawing of a Nicop graph G contains G10, we also mean
that G contains a subgraph isomorphic to G10 with yw not being a chord (so yw is
not crossed).

Lemma 2.1 (Zhang et al. 2012) Let vi and v j be vertices of a 2-connected Nicop
graph G. If there are no crossed chords in C[vi , v j ] and no edges between V(vi , v j )

and V(v j , vi ), then V[vi , v j ] is either non-edge or path.
Lemma 2.2 Let V[vi , v j ] with j − i ≥ 3 be path in a 2-connected Nicop graph G
with �(G) ≤ 4. If there are no crossed chords in C[vi , v j ] and no edges between
V(vi , v j ) and V(v j , vi ), then G contains G1 or G2 as a subgraph.
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Proof If C[vi , v j ]\{viv j } = ∅, then d(vi+1) = d(vi+2) = 2 and G1 appears. If there
is at least one chord in C[vi , v j ]\{viv j }, then choose one, say vavb with a < b, so
that there are no other chords in C[va, vb]. By the absences of the configurations G1
and G2, we have b − a = 2, d(va+1) = 2 and d(va), d(vb) ≥ 4. Without loss of
generality, assume that b �= j . Let vc be a vertex so that vbvc is a chord. If b < c, then
c − b = 2 and d(vb+1) = 2, otherwise G1 occurs. This implies the appearance of the
configuration G2 in G. If b > c, then a �= i , which implies that there is a vertex vd so
that vavd is a chord with d < a. Afterwards, a copy of G1 occurs if a − d ≥ 3, and
G2 occurs if a − d = 2, in which case we have d(va−1) = 2. ��
Lemma 2.3 Let viv j and vkvl with i < k < j < l be two crossed chords in a 2-
connected Nicop graph G with �(G) ≤ 4 so that viv j crosses vkvl and there is no
other pair of crossed chords contained in the graph induced by V[vi , vl ]. We have
(1) at most one of V[vi , vk],V[vk, v j ] and V[v j , vl ] is non-edge;
(2) if one of V[vi , vk],V[vk, v j ] and V[v j , vl ] is non-edge, then G has a subgraph

isomorphic to either G1 or G3;
(3) if all of V[vi , vk],V[vk, v j ] and V[v j , vl ] are paths, then either viv j co-crosses

vkvl in G, or G has a subgraph isomorphic to one of the configurations among
G1,G2,G4,G5 and G6.

Proof The results (1) and (2) are proved in Zhang et al. (2012). We now prove (3).
Suppose that G is a counterexample. By Lemma 2.2, max{k − i, j − k, l − j} ≤ 2.

Set X = C[vi , vl ]\{viv j , vkvl} and let x = |X |. It is clear that x ≤ 2 since �(G) ≤ 4.
Assume that viv j does not co-cross vkvl . If x = 0, then G1 appears. If x = 1, then

G1 or G5 appears. If x = 2, then one of the configurations among G1, G4 and G6
appears. All are contradictions. ��

3 Local structures

Let G be a 2-connected Nicop graph with �(G) ≤ 4. If there are no crossings in G,
then G is outerplanar, and the following result is immediate.

Lemma 3.1 (Wang and Zhang 1999) If there are no crossings in G, then G contains
either G1 or G2.

Suppose that G contains a crossing. Choose one pair of crossed chords viv j and
vkvl such that

(a) viv j crosses vkvl in G and vi , vk, v j and vl lie in a clockwise ordering,
(b) there are no crossed chords contained in C[vi , vl ] besides viv j and vkvl .

Lemma 3.2 If chords viv j and vkvl satisfy the conditions (a) and (b), then viv j co-
crosses vkvl unless G contains one of the configurations among G1 – G6.

Proof This follows directly from Lemmas 2.1 and 2.3. ��
In the following arguments, we assume that G does not contain any of the config-

urations among G1 – G15.
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By Lemma 3.2, we assume, without loss of generality, that viv j co-crosses vkvl in
G and i = 1. Since G7 – G10 are absent, d(vl) = 4 and thus there is a chord vlvs with
s > l.

Looking at the graph induced by V[vi , vl ] and vlvs , we can find that it is a I-cluster
in G. If there is another I-cluster contained in the graph induced by V[vi , vs] with
shorter width, then we consider that instead of the previous one. Hence the following
assumption is natural.

Assumption 1 [vi , vs]1 is the shortest I-cluster contained in the graph induced by
V[vi , vs].
Claim 3.3 vlvs is a crossed chord.

Proof If vlvs is not crossed, then there are no edges between V(vl , vs) and V(vs, vl).
If s − l = 2, then d(vl+1) = 2, which implies the appearance of G11 or G12. If
s − l ≥ 3, then by Lemma 2.2, there is a pair of co-crossed chords vi ′v j ′ and vk′vl ′
with l ≤ i ′ < k′ < j ′ < l ′ ≤ s, otherwise G1 or G2 appears. Since �(G) ≤ 4 and
G7 – G10 are forbidden in G, i ′ �= l and by Assumption 1, there is a chord v′

iv
′
t with

l ′ < t ′ ≤ s. Since G is Nicop, there is no chord in the form vl ′vs′ with s′ > t ′. By
the absences of G7 – G10, there is a chord vl ′vs′ with l ′ < s′ ≤ t ′, which contradicts
Assumption 1. ��

Suppose that vlvs is crossed by a chord vrvt with l < r < s. Since G is a Nicop
graph, t �= i and thus t > s. Note that the graph induced by V[vi , vl ] and the chords
vlvs, vrvt is a II-cluster denoted by [vi , vt ]2. Again, the following assumption is nat-
ural.

Assumption 2 [vi , vt ]2 is the shortest II-cluster contained in the graph induced by
V[vi , vt ].
Claim 3.4 There are no crossed chords in C[vl , vr ].
Proof Suppose that vavb crosses vcvd with l ≤ a < c < b < d ≤ r . By Lemma 2.2,
we can properly choose vavb and vcvd so that one co-crosses the other. ByAssumption
1, the fact that �(G) ≤ 4 and the absences of G7 – G10, there are chords vavβ and
vdvα with l ≤ α < a and d < β ≤ r . This contradicts the definition of the Nicop. ��
Claim 3.5 r − l = 1.

Proof By Lemma 2.1 and Claim 3.4, V[vl , vr ] is non-edge or path. If V[vl , vr ] is
non-edge, then r − l = 1. If V[vl , vr ] is path, then by Lemma 2.2 and the absences of
G11 and G12, we also have r − l = 1. ��
Claim 3.6 There are no crossed chords in C[vr , vs].
Proof Suppose that vavb crosses vcvd with r ≤ a < c < b < d ≤ s. By Lemma
2.2, we can assume that vavb co-crosses vcvd . If a = r , then d �= s by the definition
of the Nicop. Since G7 – G10 are forbidden, there is a chord vdvα with d < α ≤ s,
which contradicts Assumption 1. Hence a �= r , and by similar reason, d �= s. By
Assumption 1 and the absences of G7 – G10, there are chords vavβ and vdvα with
r ≤ α < a and d < β ≤ s. This again contradicts the definition of the Nicop. ��
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Claim 3.7 vrvs ∈ E(G) and s − r ≤ 2 with equality only if vlvr , vrvr+1, vr+1vs ∈
E(G).

Proof By Lemma 2.1 and Claim 3.6, V[vr , vs] is non-edge or path.
If V[vr , vs] is non-edge, then vlvr ∈ E(G), otherwise vr has degree one, contra-

dicting the 2-connectivity of G. This implies that vr has degree two, and thus G11 or
G12 appears.

If V[vr , vs] is path, then Lemma 2.2, s − r ≤ 2. If s − r = 1, then vrvs ∈ E(G).
If s − r = 2, then the graph induced by vr , vr+1 and vs is a triangle, and moreover,
vlvr ∈ E(G), otherwise d(vr+1) = 2 and d(vr ) ≤ 3, which implies a copy of G1. ��
Claim 3.8 There are no crossed chords in C[vs, vt ].
Proof If this claim is false, then there is a pair of co-crossed chords vi ′v j ′ and vk′vl ′
in C[vs, vt ] with s ≤ i ′ < k′ < j ′ < l ′ ≤ t . By the absences of G7 – G10, there are
chords vl ′vs′ and vi ′vt ′ with s′ �= k′, i ′ and t ′ �= j ′, l ′.

First, assume that l ′ < s′ ≤ t and, without loss of generality, that there are no chords
in the form vl ′vs′′ with l ′ < s′′ < s′. By Claim 3.3, vl ′vs′ is crossed. By Assumption
2, we have to assume that vl ′vs′ is crossed by a chord vmvm′ with l ′ < m < s′ and
s ≤ m′ ≤ i ′. By the definition of the Nicop, m′ �= i ′. This implies that m′ ≤ t ′ < i ′,
and then by Claim 3.3 and Assumption 2, vi ′vt ′ is crossed by a chord incident with
vl ′ , contradicting the definition of the Nicop.

Hence, if l ′ �= t , then s ≤ s′ ≤ t ′ < i ′. By Claim 3.3 and Assumption 2, vl ′vs′
is crossed by a chord incident with vl ′ , which contradicts the definition of the Nicop.
Therefore, l ′ = t , and i ′ = s by symmetry. However, the definition of the Nicop
declines this case. ��
Claim 3.9 V[vs, vt ] is path and t − s ≤ 2.

Proof By Lemma 2.1 and Claim 3.8, V[vs, vt ] is either non-edge or path. Suppose
that V[vs, vt ] is non-edge.

If s − r = 2, then by Claim 3.7, d(vs−1) = 2 and d(vs) = 3, which implies a copy
of G1.

If s − r = 1, then vrvs ∈ E(G) by Claim 3.7. This implies that d(vs) = 2 and
d(vr ) ≤ 3. Hence G1 appears, a contradiction.

Therefore, V[vs, vt ] is path, and t − s ≤ 2 by Lemma 2.2. ��
Lemma 3.10 The graph induced by V[vi , vt ] contains one of the configurations
among G1 – G15, and furthermore, vi or vt cannot be the solid vertex of any such
configuration.

Proof If t − s = 1, then vsvt ∈ E(G) by Claim 3.9. If s − r = 1 and vrvs ∈ E(G),
then vlvr ∈ E(G) by Claim 3.5, otherwise G1 appears. This contradiction implies
that the graph induced by V[vi , vt ] contains a copy of G14 or G15. Hence s − r = 2
and vrvr+1, vr+1vs, vrvs ∈ E(G) by Claim 3.7. Under this condition we have vlvr ∈
E(G) by Claim 3.5, otherwise G1 appeas, a contradiction. This implies that the graph
induced by V[vi , vt ] contains a copy of G13. Therefore, t − s = 2 by Claim 3.9. This
implies that d(vs+1) = 2.
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If vsvt ∈ E(G), then s − r = 1 and vrvs ∈ E(G) by Claim 3.7, otherwise vs has
degree five, contradicting the fact that �(G) ≤ 4. If vlvr /∈ E(G), then vr has degree
two and G3 appears. If vlvr ∈ E(G), then the graph induced by V[vl , vt ] is a copy of
G5. In each case we obtain contradictions. Hence vsvt /∈ E(G).

If s− r = 1, then by Claim 3.7, vrvs ∈ E(G). This implies that vs has degree three
and thus G1 appears. Hence s − r = 2.

By Claim 3.7, vr , vr+1, vs induce a triangle with d(vr+1) = 2. Now the graph
induced by V[vr , vt ] is a copy of G4, a contradiction.

At last, one can check that the proofs of any claims or lemmas in the previous
arguments grantee that vi or vt is not a solid vertex in such configuration. ��
Theorem 3.11 Every Nicop graph with minimum degree at least 2 and with maximum
degree at most 4 contains one of the configurations among G1 – G15.

Proof Let G be a Nicop graph with maximum degree at most 4. If G is 2-connected,
then this result holds by Lemma 3.10. Hence we assume that G is not 2-connected
and is a counterexample to the result.

Choose an end-block H of G with an unique cut vertex, say v1, and let v1, . . . , v|H |
be the vertices of H with clockwise ordering on its boundary.

Suppose that there is a pair of crossed chords viv j and vkvl so that vi , vk, v j and vl
lie in a clockwise ordering.Without loss of generality, assume that 1 ≤ i < k < j < l.

If there is another pair of crossed chords vi ′v j ′ and vk′vl ′ with i ′ < k′ < j ′ < l ′
contained in C[vi , vl ], then set i := i ′, j := j ′, k := k′ and l := l ′. In other words,
we always assume that there are no crossed chords contained in C[vi , vl ] besides viv j

and vkvl . Hence by Lemma 3.2, viv j co-crosses vkvl .
By the absences of G7 – G10, there are chords vlvs and vivm with s �= k, i and

t �= j, l. By the definition ofNicop, vlvs does not cross vivt , thus either v1 /∈ V(vl , vs)

or v1 /∈ V(vm, vi ). By symmetry, we assume, without loss of generality, that v1 /∈
V(vl , vs).

If s �= 1, then by Claim 3.3, vlvs is crossed by a chord vrvt with l < r < s,
otherwise the graph induced by V[vi , vs] (and thus G) contains one of the required
configurations. By Lemma 3.10, t ≥ 1, because otherwise the graph induced by
V[vi , vt ] (and thus G) contains one of the required configurations. This implies that
1 ≤ m < i . By Claim 3.3, vivm is crossed by a chord vpvq with q < m < p < i .
Since t ≥ 1, q ≥ 1, which implies that v1 /∈ V(vq , vl). Hence by Lemma 3.10, the
graph induced by V[vq , vl ] (and thus G) contains one of the required configurations.

Therefore, s = 1, which implies that v1 /∈ V(vm, vi ). Hence by similar arguments
as previous paragraph, we also have m = 1. This implies that vlvs is not crossed, and
thus by the proof of Claim 3.3, the graph induced by V[vi , vs] (and thus G) contains
one of the required configurations.

Hence, H is outerplanar.
If H contains no chords, then G contains two adjacent 2-valent vertices, a contra-

diction.
Let viv j with 1 ≤ i < j be a chord so that it is the unique chord in C[vi , v j ]. It

is easy to see that j − i = 2 and d(vi+1) = 2, because otherwise G contains two
adjacent 2-valent vertices. By the absence of G1, there are chords vivs and v jvt . Since
H is outerplanar, either v1 /∈ V(v j , vt ) or v1 /∈ V(vs, vi ).
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Without loss of generality, assume that v1 /∈ V(v j , vt ). By same reason as above,
we have t − j = 2 and d(v j+1) = 2. This implies a copy of G2 in the graph induced
by V[vi , vt ], a contradiction, and this completes the proof of the theorem. ��

In what follows, we list some important facts that are frequently used in the argu-
ments of the next section.

Fact 1 Deleting edges or vertices from a Nicop graph results in a Nicop graph.

Proof This is obvious by the definition of the Nicop. ��
Fact 2 If G is a Nicop graph with uv /∈ E(G) and G + uv is an outer-1-plane graph
so that uv is non-crossed, then G + uv is a Nicop graph.

Proof Since this operation does not generate new crossings and MG(c) = MG+uv(c)
for any crossing c in G, G + uv is a Nicop graph. ��
Fact 3 If G is good drawing of a Nicop graph with maximum degree 4 and G contains
the configuration G10, then the graph obtained from G by deleting u, v and identifying
x and y is still a Nicop graph.

Proof If d(x) = 3, then the conclusion is obvious. Hence we assume that d(x) = 4
and let z be the fourth neighbor of x .

Let G ′ be the graph obtained from G by deleting u, v and identifying x and y into
a common vertex xy . It is clear that this operation do not generate new crossings and
thus G ′ is outer-1-planar. One can also check that xy has degree exactly two in G ′,
and xyw is a non-crossed edge in G ′ by the definition of the configuration G10 (recall
its definition mentioned before Lemma 2.1).

If xyz is not crossed inG ′, then for any crossing c inG ′, we have xy /∈ MG ′(c), which
implies thatMG ′(c) = MG(c). Hence |MG ′(c1)∩MG ′(c2)| = |MG(c1)∩MG(c2)| ≤ 1
for any two distinct crossings c1 and c2 in G ′, and thus G ′ is a Nicop graph.

If xyz is crossed in G ′, then xy ∈ MG ′(c0), where c0 is the crossing on xyz. Let c1
and c2 be two distinct crossings in G ′. If c1 �= c0 and c2 �= c0, then xy /∈ MG ′(c1) and
xy /∈ MG ′(c2), which implies that |MG ′(c1) ∩ MG ′(c2)| = |MG(c1) ∩ MG(c2)| ≤ 1.
If c1 = c0, then we also have |MG ′(c1) ∩ MG ′(c2)| ≤ 1. Otherwise, we assume that
MG ′(c0) ∩ MG ′(c2) = {s1, s2}. Since xy ∈ MG ′(c0) and xy /∈ MG ′(c2), we have
{s1, s2} ⊆ V (G)\{u, v, x, y}. This implies that |MG(c1) ∩ MG(c2)| = |{s1, s2}| = 2,
a contradiction. ��

4 Total coloring

Let G be a Nicop graph with maximum degree at most 4 satisfying:
(1) G does not admit any total 5-coloring, and
(2) any Nicop graph H with maximum degree at most 4 and with smaller order or

size than G has a total 5-coloring.
It is easy to see that G is 2-connected.

Lemma 4.1 G does not contain a 2-valent vertex adjacent to a 3-valent vertex.
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Proof Suppose, to the contrary, that uv ∈ E(G), d(u) = 2 and d(v) ≤ 3. By Fact 1
and (2), G − uv has a total 5-coloring.

Delete the color on u and denote the resulting partial coloring by c. Since uv is
incident with at most four colored elements under c, uv can be colored properly.
Since u is incident with four colored elements after coloring uv, u can also be colored
properly. Therefore, we obtain a total 5-coloring of G, a contradiction. ��
Lemma 4.2 G does not contain a cycle of length 4 with two nonadjacent vertices of
degree 2.

Proof Suppose, to the contrary, that there is a cycle uxvy of length four with d(u) =
d(v) = 2. By Fact 1 and (2), G − {u, v} has a total 5-coloring c.

Since every edge in the cycle is incident with at most three colors, there are at
least two available colors for each of them, which is sufficient for coloring the edges
of the cycle uxvy. At last, we color u and v properly. This can be easily done since
d(u) = d(v) = 2 and uv /∈ E(G). Therefore, we obtain a total 5-coloring of G, a
contradiction. ��
Lemma 4.3 G does not contain a triangle uvw with d(v) = 2 and u adjacent to a
vertex x of degree 2.

Proof Suppose, to the contrary, that there is a triangle uvw with d(v) = 2 and u
adjacent to a vertex x of degree 2. By Lemma 4.1, d(u) = d(w) = 4. Let y and z
be vertices with uy, xz ∈ E(G). By Fact 1 and (2), G − ux has a total 5-coloring.
Remove the colors on x and v, and denote the resulting partial coloring by c.

If {c(u), c(uv), c(uw), c(uy), c(xz)} ⊂ {1, 2, 3, 4, 5}, then ux can be colored prop-
erly and afterwards, x and v can be colored since d(x) = d(v) = 2. Therefore, we
assume, without loss of generality, that c(u) = 1, c(uv) = 2, c(uw) = 3, c(uy) = 4
and c(xz) = 5. If c(vw) �= 5, then recolor uvwith 5 and color ux with 2. If c(vw) = 5,
then exchange the colors on vw and uw, and color ux with 3. In each case we obtain
a total 5-coloring of G after coloring x and v properly, which can be easily done since
d(x) = d(v) = 2. ��

We now consider the configurations A and B represented by G7 and G8 without
the degree constraints.

Lemma 4.4 If G contains A, then xy /∈ E(G).

Proof Suppose that G contains A and xy ∈ E(G). By the 2-connectivity of G,
d(x) = d(y) = 4, otherwise G is the graph induced by A. At this stage, we obtain
a total 5-coloring of G by coloring x, vy, uw with 1, u, vw, xy with 2, w, y, uv with
3, v, ux with 4, and xv, uy with 5. Let x ′ and y′ be the fourth neighbor of x and y,
respectively. If x ′ = y′, then G is the graph induced by u, v, w, x, y and x ′ by the
2-connectivity of G. We color x, vy, uw with 1, u, x ′, vw, xy with 2, w, y, uv, xx ′
with 3, v, ux, yx ′ with 4, and xv, uy with 5, and get a total 5-coloring of G. Hence in
the following we assume that x ′ �= y′.

Let G ′ be the graph obtained from G by deleting w. By Fact 1 and (2), G ′ admits
a total 5-coloring c. Without loss of generality, assume that c(x) = 1, c(y) = 2 and
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c(xy) = 3. If c(xx ′) = c(yy′), then one can easily check that G ′ cannot be properly
totally colored with only five colors, a contradiction. Hence c(xx ′) �= c(yy′). We
erase the colors on u, v and on its incident edges from c, and extend this partial total
5-coloring to G according to the following three cases.

If c(xx1) = c(y) = 2 and c(yy1) = c(x) = 1, then recolor y with a color in
{4, 5}\{c(y′)}, say 4. Next, we construct a total 5-coloring of G by coloring w, uv

with 1, u, vy with 2, v, uw with 3, vw, ux with 4, and uy, vx with 5.
If c(xx1) = c(y) = 2 and c(yy1) �= c(x) (here assume that c(yy1) = 4), then we

construct a total 5-coloring of G by coloring uw, vy with 1, w, uv with 2, u, vw with
3, v, ux with 4, and uy, vx with 5.

If c(xx1) �= c(y) and c(yy1) �= c(x) (here assume that c(xx1) = 4 and c(yy1) = 5),
then we construct a total 5-coloring of G by coloring vw, uy with 1, uw, vx with 2,
w, uv with 3, u, vy with 4, and v, ux with 5.

Hence xy /∈ E(G) if G contains A. ��
Corollary 4.5 G does not contain any of the configurations among G1 – G4 and G9.

Proof This is a direct corollary from Lemmas 4.1, 4.2, 4.3 and 4.4. ��
Lemma 4.6 If G contains A or B, then d(x) = d(y) = 4

Proof Suppose that G containsA and d(x) ≤ 3. By the 2-connectivity of G, we shall
assume that d(x) = 3. Otherwise G is isomorphic to the graph induced by u, v, w, x
and y, and this graph is totally 5-colorable, since it is just the graph obtained from K5
by removing two adjacent edges. Without loss of generality, assume that d(y) = 4.
Let x1, y1, y2 be vertices with xx1, yy1, yy2 ∈ E(G). Delete u, v, w from G and add
a new edge xy. By Fact 1, Fact 2 and (2), the resulting graph G ′ has a total 5-coloring
c. Without loss of generality, assume that c(x) = 1, c(y) = 2 and c(xy) = 5.

If c(xx1) = 2 and 1 ∈ {c(yy1, c(yy2))} (here assume that c(yy1) = 1 and c(yy2) =
3), then recolor x with a color in {4, 5}\{c(x1)}, say 4, and then extend this updated
partial coloring to a total 5-coloring ofG by coloring u, xv with 1,w, uv with 2, v, uw

with 3, vw, uy with 4, and ux, vy with 5.
If c(xx1) = 2 and 1 /∈ {c(yy1, c(yy2))} (here assume that c(yy1) = 3 and c(yy2) =

4), then extend c to a total 5-coloring of G by coloring vw, uy with 1, w, uv with 2,
u, xv with 3, v, uw with 4, and ux, vy with 5.

If c(xx1) �= 2 and 1 ∈ {c(yy1, c(yy2))} (here assume that c(xx1) = 3 and c(yy1) =
1), then extend c to a total 5-coloring of G by coloring w, uv with 1, vw, ux with 2,
v, uw with c(yy2), u, vy with {3, 4}\{c(yy2)}, and vx, uy with 5. Note that c(yy2) ∈
{3, 4}.

If c(xx1) �= 2 and 1 /∈ {c(yy1, c(yy2))} (here assume that c(xx1) = c(yy1) = 3
and c(yy2) = 4), then extend c to a total 5-coloring of G by coloring vw, uy with 1,
w, uv with 2, v, uw with 3, u, xv with 4, and ux, vy with 5.

Hence d(x) = 4, and d(y) = 4 by symmetry. By similar arguments, the same result
hold if G contains B. ��
Lemma 4.7 If G containsA or B, then the neighbors of x and y have degrees at least
3.

123

Author's personal copy



672 J Comb Optim (2017) 34:661–675

Proof By Lemma 4.6, d(x) = d(y) = 4. Let x1, x2, y1, y2 be vertices with
xx1, xx2, yy1, yy2 ∈ E(G). Suppose, to the contrary, that G contains A with
d(x1) = 2. Let x3 be a vertex with x1x3 ∈ E(G).

Delete u, v from G and add three new edges xy, wx and wy. It is easy to check
by Facts 1 and 2 that the resulting graph G ′ is a Nicop graph with maximum degree
at most 4, and thus by (2), G ′ admits a total 5-coloring c. Without loss of generality,
assume that c(yy1) = 1, c(yy2) = 2, c(y) = 3 and c(xy) = 5.

First, suppose that the color on x is either 1 or 2, say 1.
If 3 ∈ {c(xx1), c(xx2)}, then 2 /∈ {c(xx1), c(xx2)}, otherwise wx and wy are

coloredwith 4, a contradiction. Therefore, we assume that c(xx1) = 3 and c(xx2) = 4.
Remove the color on x1 (which can be easily completed at the last stage) and recolor
xx1 with a color in {2, 5}\{c(x1x3)}. Denote the resulting coloring still by c.We extend
c to a total 5-coloring of G by coloring w, uv with 1, vw with 2, uw, xv with 3, v, uy
with 4, vy with 5, u with c(xx1), and ux with {2, 5}\{c(xx1)}.

If 3 /∈ {c(xx1), c(xx2)}, then {c(xx1), c(xx2)} = {2, 4}, and c can be extended to
a total 5-coloring of G by coloring w, uv with 1, u, vw with 2, uw, xv with 3, v, uy
with 4, and ux, vy with 5.

Second, suppose that the color on x is neither 1 nor 2. This implies that c(x) = 4
and {c(xx1), c(xx2)} ∩ {1, 2} �= ∅. By symmetry, assume that c(xx1) = 1.

If c(xx2) = 3, then extend c to a total 5-coloring of G by coloring v, uw with 1,
u, xv with 2, w, uv with 3, vw, uy with 4, and ux, vy with 5.

If c(xx2) �= 3, then c(xx2) = 2. Remove the color on x1 (which can be easily
completed at the last stage) and recolor xx1 with a color in {3, 5}\{c(x1x3)}. Denote
the resulting partial coloring still by c. If c(xx1) = 3, then extend c to a total 5-coloring
of G by coloring v, ux with 1, u, vw with 2, w, uv with 3, uw, vy with 4, and xv, uy
with 5. If c(xx1) = 5, then extend c to a total 5-coloring of G by coloring v, ux with
1, w, uv with 2, uw, xv with 3, vw, uy with 4, and u, vy with 5.

Therefore, d(x1) ≥ 3, and by symmetry, d(x2), d(y1), d(y2) ≥ 3. This implies that
the neighbors of x and y have degree at least 3. By similar arguments as above, one
can prove the same result if G contains B. ��
Corollary 4.8 G does not contain any of the configurations among G7,G8,G11 and
G12.

Proof This is a direct corollary from Lemmas 4.6 and 4.7. ��
Lemma 4.9 G does not contain the configuration G6.

Proof Suppose this claim is false. If xy ∈ E(G) or min{d(x), d(y)} = 3, then by the
2-connectivity of G, G is isomorphic to the graph induced by x, z, u, v, w and y. At
this stage, we get a total 5-coloring of G by coloring z, w, ux, vy with 1, y, uv, xz
with 2, v, uz with 3, u, vx, wy with 4, x, vw, uy with 5, and xy with 3 if it exists, a
contradiction. Hence xy /∈ E(G) and d(x) = d(y) = 4.

Let x1, y1 be the vertices with xx1, yy1 ∈ E(G). If x1 = y1, then by the 2-
connectivity of G, G is isomorphic to he graph induced by x, z, u, v, w, y and x1.
However, we can obtain a total 5-coloring of this special graph by coloring x, uv, yx1
with 1, y, uz, vw, xx1 with 2, v, xz, uy with 3, z, w, ux, vy with 4, u, x1, vx, wy with
5, a contradiction. Hence x1 �= y1.
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Delete z, u, v, w from G and add a new edge xy. It is easy to check by Facts
1 and 2 that the resulting graph is a Nicop graph with maximum degree at most 4.
Hence by (2), G ′ admits a total 5-coloring c. Without loss of generality, assume that
c(x) = 1, c(y) = 2 and c(xy) = 3.

If c(xx1) = c(y) = 2 and c(yy1) = c(x) = 1, then we construct a total 5-coloring
of G by coloring uv with 1, uz, vw with 2, v, xz, uy with 3, z, w, ux, vy with 4,
u, vx, wy with 5.

If c(xx1) = c(y) = 2 and c(yy1) �= c(x) (here assume that c(yy1) = 4), then we
construct a total 5-coloring of G by coloring u, w, vy with 1, uv with 2, xz, vw, uy
with 3, v, z, ux with 4, and uz, wy, vx with 5.

If c(xx1) �= c(y) and c(yy1) �= c(x), then we consider two subcases. First, if
c(xx1) �= c(yy1) (here assume that c(xx1) = 4 and c(yy1) = 5), then we construct a
total 5-coloring of G by coloring w, uz, vy with 1, xz, uv with 2, u, vx, wy with 3,
vw, uy with 4, and v, z, ux with 5. Second, if c(xx1) = c(yy1) = 4, then we construct
a total 5-coloring of G by coloring vw, uy with 1, uv, xz with 2, z, w, ux, vy with 3,
v, uz with 4, and u, vx, wy with 5. ��
Lemma 4.10 G does not contain the configuration G5.

Proof Suppose this claim is false. If xy ∈ E(G), or d(y) = 3, or d(x) = 2, then by
the 2-connectivity of G, G is isomorphic to the graph induced by u, v, w, x and y. At
this stage, we get a total 5-coloring of G by coloring w, ux, vy with 1, y, uv with 2, v
with 3, u, vx, wy with 4, x, vw, uy with 5, and xy with 3 if it exists, a contradiction.
Hence xy /∈ E(G), d(y) = 4 and 2 ≤ d(x) ≤ 3.

If d(x) = 3, then by highly similar arguments as in the proof of Lemma 4.9, one
can obtain a total 5-coloring of G, a contradiction. Hence we have d(x) = 4. Let
x1, x2, y1 be the vertices with xx1, xx2, yy1 ∈ E(G).

Delete u, v, w from G and add a new edge xy. By Fact 1, Fact 2 and (2), the
resulting graph G ′ has a total 5-coloring c. Without loss of generality, assume that
c(xx1) = 1, c(xx2) = 2, c(x) = 3 and c(xy) = 5.

First, suppose that the color on y is either 1 or 2, say 1. We first extend c to a
partial coloring c′ of G by coloring u, vw with 1, v with 2, uv with 3, xv with 4, and
xu, vy, w with 5. Afterwards, extend c′ to a total 5-coloring of G by coloring wy, uy
with 3, 4 if c(yy1) = 2, 2, 4 if c(yy1) = 3, and 3, 2 if c(yy1) = 4, respectively.

Second, suppose that the color on y is neither 1 nor 2. This implies that c(y) = 4.
We first extend c to a partial coloring c′ of G by coloring uy, vw with 2, w with 3,
u, xv with 4, and v, xu, wy with 5. Afterwards, extend c′ to a total 5-coloring of G
by coloring uv, vy with 1, 3 if c(yy1) = 1, and 3, 1 if c(yy1) = 3, respectively. ��
Lemma 4.11 G does not contain the configuration G10.

Proof Suppose, to the contrary, that G contains G10. If d(x) = 3, then w is a cut-
vertex or a vertex of degree one, which contradicts the fact that G is 2-connected.
Hence d(x) = 4. By z, we denote the fourth neighbor of x in G. If z = w, then by the
2-connectivity of G, G is isomorphic to the the graph derived from K5 by removing
two adjacent edges, which admits a total 5-coloring. Hence z �= w. Delete u, v from
G and identify x with y. By G ′ and xy we denote the resulting graph and the common
vertex in G ′ indicating x or y. By Fact 3 and (2), G ′ admits a total 5-coloring c.
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Without loss of generality, assume that c(xy) = 1, c(xyz) = 2 and c(xyw) = 3.
Remove the color on xy . We now extend this partial coloring to a total 5-coloring of G
as follows. First, color x with 1, and y with a color in {4, 5}\{c(w)}, say 4. Afterwards,
we color uy with 1, u, vy with 2, v, ux with 3, vx with 4, and uv, xy with 5. This
results in a total 5-coloring of G, a contradiction. ��

Lemma 4.12 G does not contain any of the configurations among G13,G14 and G15.

Proof We just prove that G does not contain G13 by contradiction, since another two
results can be obtained by highly similar arguments. By the definition of the Nicop,
x �= x ′. By Lemma 4.6, d(x) = d(x ′) = 4.

If xx ′ ∈ E(G), then let x1 and x ′
1 be the vertices with xx1, x

′x ′
1 ∈ E(G). Construct

a graph G ′ from G by deleting u, v, w, u′, v′, w′ and y. One can easily check by Fact
1 that the resulting graph G is a Nicop graph with maximum degree at most 4. Hence
by (2), G ′ has a total 5-coloring c.

Without loss of generality, assume that c(x) = 1, c(x ′) = 2 and c(xx ′) = 3. We
extend this partial total 5-coloring to G according to the following cases.

If c(xx1) = c(x ′) = 2 and c(x ′x ′
1) = c(x) = 1, then we construct a total 5-coloring

of G by coloring w,w′, uv, u′v′ with 1, u, vw, u′y, v′w′ with 2, v, u′, uw, v′y with
3, v′, ux, vy, u′x ′ with 4, and uy, vx, v′x ′, u′w′ with 5.

If c(xx1) = c(x ′) = 2 and c(x ′x ′
1) �= c(x) (here assume that c(x ′x ′

1) = 4), then we
construct a total 5-coloring ofG by coloringw, uv, u′w′, v′x ′ with 1, u, vw, v′w′, u′y
with 2, v, u′, uw, v′y with 3, w′, ux, vy, u′v′ with 4, and v′, vx, uy, u′x ′ with 5.

If c(xx1) �= c(x ′) and c(x ′x ′
1) �= c(x), then we consider two subcases. First, if

c(xx1) �= c(x ′x ′
1) (here assume that c(xx1) = 4 and c(x ′x ′

1) = 5), then we construct
a total 5-coloring of G by coloring w, uv, u′w′, v′x ′ with 1, w′, ux, vy, u′v′ with 2,
v, v′, uw, u′y with 3, u, vw, v′y, u′x ′ with 4, and u′, vx, uy, v′w′ with 5. Second,
if c(xx1) = c(x ′x ′

1) = 4, then we construct a total 5-coloring of G by coloring
w, uv, u′w′, v′x ′ with 1, w′, ux, vy, u′v′ with 2, v, v′, uw, u′y with 3, u, u′, vw, v′y,
with 4, and vx, uy, v′w′, u′x ′ with 5.

Hence we assume that xx ′ /∈ E(G).
Let x1, x2, x ′

1, x
′
2 be vertices with xx1, xx2, x

′x ′
1, x

′x ′
2 ∈ E(G). Delete u, v, w, u′,

v′, w′ from G and add three new edges yx, yx ′ and xx ′. It is easy to check by Facts
1 and 2 that the resulting graph G ′ is a Nicop graph with maximum degree at most 4,
hence by (2), G ′ admits a total 5-coloring c. Without loss of generality, assume that
c(x ′x ′

1) = 1, c(x ′x ′
2) = 2, c(x ′) = 3 and c(xx ′) = 5.

First, suppose that the color on x is either 1 or 2, say 1.
If 3 ∈ {c(xx1), c(xx2)}, then 2 /∈ {c(xx1), c(xx2)}, otherwise xy and x ′y

are colored with 4, a contradiction. Therefore, we assume that c(xx1) = 3 and
c(xx2) = 4. Extend c to a total 5-coloring of G by coloring w,w′, y, uv, u′v′
with 1, u′, ux, vy, v′w′ with 2, u, vw, u′w′, v′y with 3, v, uw, u′y, v′x ′ with 4, and
v′, uy, vx, u′x ′ with 5.

If 3 /∈ {c(xx1), c(xx2)}, then {c(xx1), c(xx2)} = {2, 4}, and extend c to a
total 5-coloring of G by coloring w,w′, y, uv, u′v′ with 1, u, u′, vy, v′w′ with 2,
ux, vw, u′w′, v′y with 3, v, uw, u′y′, v′x ′ with 4, and v′, uy, vx, u′x ′ with 5.
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Second, suppose that the color on x is neither 1 nor 2. This implies that c(x) = 4
and {c(xx1), c(xx2)} ∩ {1, 2} �= ∅. By symmetry, assume that c(xx1) = 1, and thus
c(xx2) ∈ {2, 3}.

If c(xx2) = 2, then extend c to a total 5-coloring of G by coloring u, v′, vw, u′y
with 1, v, u′, uw, v′y with 2, w′, ux, vy, u′v′ with 3, w, uv, v′w′, u′x ′ with 4, and
vx, uy, u′w′, v′x ′ with 5.

If c(xx2) = 3, then extend c to a total 5-coloring of G by coloring u, v′, vw, u′y
with 1, v, u′, ux, v′y with 2, w′, uw, vy, u′v′ with 3, w, uv, v′w′, u′x ′ with 4, and
vx, uy, u′w′, v′x ′ with 5. ��
Theorem 4.13 EveryNicopgraphwithmaximumdegree atmost 4 is total 5-colorable.

Proof LetG be aminimum counterexample to this claim in terms of |V (G)|+|E(G)|.
By Corollaries 4.5 and 4.8, and Lemmas 4.9, 4.10, 4.11 and 4.12, G does not contain
any configurations among G1 – G15. This contradicts Theorem 3.11. ��
Corollary 4.14 If G is a Nicop graph with maximum degree � ≥ 4, then χ ′′(G) =
� + 1.

Proof Zhang’s result in [10] implies this claim for the case when� ≥ 5, and Theorem
4.13 implies this for the case when � = 4. ��

Since K4 is a Nicop graph with maximum degree 3 and total chromatic number 5,
the lower bound for � in Corollary 4.14 is sharp.
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