Total coloring of outer-1-planar graphs with near-independent crossings

Xin Zhang

Journal of Combinatorial Optimization

ISSN 1382-6905
Volume 34
Number 3
J Comb Optim (2017) 34:661-675
DOI 10.1007/s10878-016-0093-x

Journal of Combinatorial Optimization

[^0]Springer

Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

Total coloring of outer-1-planar graphs with near-independent crossings

Xin Zhang ${ }^{1}$

Published online: 26 November 2016
© Springer Science+Business Media New York 2016

Abstract

A graph G is outer-1-planar with near-independent crossings if it can be drawn in the plane so that all vertices are on the outer face and $\left|M_{G}\left(c_{1}\right) \cap M_{G}\left(c_{2}\right)\right| \leq 1$ for any two distinct crossings c_{1} and c_{2} in G, where $M_{G}(c)$ consists of the end-vertices of the two crossed edges that generate c. In Zhang and Liu (Total coloring of pseudoouterplanar graphs, arXiv:1108.5009), it is showed that the total chromatic number of every outer-1-planar graph with near-independent crossings and with maximum degree at least 5 is $\Delta+1$. In this paper we extend the result to maximum degree 4 by proving that the total chromatic number of every outer-1-planar graph with near-independent crossings and with maximum degree 4 is exactly 5 .

Keywords Outerplanar graph • Outer-1-planar graph \cdot Local structure \cdot Total coloring

1 Introduction

Graph coloring is an important optimization problem with many applications in computer science, such as frequency assignment in optical communication networks, computation of Hessian matrix, and pattern matching. There are various kinds of coloring, such as vertex coloring, edge coloring, total coloring, and so on.

A total coloring of a graph G is an assignment of colors to the vertices and edges of G such that every pair of adjacent or incident elements receive different colors. A total k-coloring of a graph G is a total coloring of G from a set of k colors. The minimum positive integer k for which G has a total k-coloring, denoted by $\chi^{\prime \prime}(G)$, is the total chromatic number of G. It is easy to see that $\chi^{\prime \prime}(G) \geq \Delta(G)+1$ for any graph G

[^1]by looking at the color of a vertex with maximum degree and its incident edges. On the other side, it is natural to look for a Brooks'-typed or Vizing-typed upper bound for the total chromatic number in terms of maximum degree. However, it turns out that the total coloring version of maximum degree upper bound is a difficult problem and has eluded mathematicians for nearly 50 years. The most well-known speculation is the total coloring conjecture, independently raised by Behzad (1965) and Vizing (1968), which asserts that every graph of maximum degree Δ admits a total $(\Delta+2)$ coloring. This conjecture remains open although many beautiful results concerning it have been obtained (cf. Yap 1996). In particular, the total chromatic number of outerplanar graphs has been determined completely by Zhang et al. (1988) and that of series-parallel graphs has been determined completely by Wu and Hu (2004).

A graph is outer-1-planar (olp) if it can be drawn in the plane such that all vertices are in the outer face and each edge is crossed at most once, see Auer et al. (2016). For example, $K_{2,3}$ and K_{4} are outer-1-planar graphs.

Outer-1-planar graphs were first introduced by Eggleton (1986) who called them outerplanar graphs with edge crossing number one, and were also investigated under the notion of pseudo-outerplanar graphs by Zhang et al. (2012), who proved that the edge chromatic number of every outer-1-planar graph with maximum degree $\Delta \geq 4$ is Δ and the linear arboricity of every outer-1-planar graph with maximum degree $\Delta \geq 5$ is $\lceil\Delta / 2\rceil$. Zhang and Liu [10] showed that the total chromatic number of every outer-1-planar graph with maximum degree $\Delta \geq 5$ is $\Delta+1$, and this result was recently generated to its list version by Zhang (2013).

A drawing of an outer-1-planar graph in the plane so that its outer-1-planarity is satisfied and the number of crossings is as few as possible is an outer-1-plane graph, and we call this drawing a good drawing. Note that every crossing in an outer-1-plane graph G is generated by two mutually crossed chords, thus for every crossing c there exists a vertex set $M_{G}(c)$ of size four, where $M_{G}(c)$ consists of the end-vertices of the two chords that generate c. For two distinct crossings c_{1} and c_{2} in an outer-1-plane graph G, it is easy to check that $\left|M_{G}\left(c_{1}\right) \cap M_{G}\left(c_{2}\right)\right| \leq 2$ by the definition of the outer-1-planarity.

A graph G is outer-1-planar with near-independent crossings (Nicop) if G is outer-1-planar and $\left|M_{G}\left(c_{1}\right) \cap M_{G}\left(c_{2}\right)\right| \leq 1$ for any two distinct crossings c_{1} and c_{2} in G. We define outer-1-plane graph with near-independent crossings as a "good" drawing of a Nicop graph. Note that every Nicop graph is olp, and on the other hand, Nicop can also be seen as the combination of outerplanar and planar with near-independent crossings that was introduced by Zhang (2014).

In this paper, we first investigate the local structures of Nicop graphs, and then prove that every Nicop graph with maximum degree $\Delta \geq 4$ has total chromatic number $\Delta+1$.

2 Preliminaries

From now on, when saying that a graph is Nicop we always mean that it is an outer-1-plane graph with near-independent crossings.

Let G be a 2 -connected Nicop graph. Denote by $v_{1}, \ldots, v_{|G|}$ the vertices of G with clockwise ordering on its boundary. Let $\mathcal{V}\left[v_{i}, v_{j}\right]=\left\{v_{i}, v_{i+1}, \ldots, v_{j}\right\}$ and

Fig. 1 Graphs defining co-crossed chords

left I^{1}-cluster

right I ${ }^{1}$-cluster

left I^{2}-cluster

right I^{2}-cluster

left II^{1}-cluster

right II ${ }^{1}$-cluster

left II^{2}-cluster

right II^{2}-cluster

Fig. 2 The definitions of I-clusters and II-clusters
$\mathcal{V}\left(v_{i}, v_{j}\right)=\mathcal{V}\left[v_{i}, v_{j}\right] \backslash\left\{v_{i}, v_{j}\right\}$, where the subscripts are taken modulo $|G|$. Set $\mathcal{V}\left[v_{i}, v_{i}\right]=V(G)$ and $\mathcal{V}\left(v_{i}, v_{i}\right)=V(G) \backslash\left\{v_{i}\right\}$.

A vertex set $\mathcal{V}\left[v_{i}, v_{j}\right]$ with $i \neq j$ is non-edge if $j=i+1$ and $v_{i} v_{j} \notin E(G)$, is path if $v_{k} v_{k+1} \in E(G)$ for all $i \leq k<j$, and is subpath if $j>i+1$ and some edges in the form $v_{k} v_{k+1}$ for $i \leq k<j$ are missing. An edge $v_{i} v_{j}$ in G is a chord if $j-i \neq 1$ or $1-|G|$. By $\mathcal{C}\left[v_{i}, v_{j}\right]$, we denote the set of chords $x y$ with $x, y \in \mathcal{V}\left[v_{i}, v_{j}\right]$. For a vertex set $V, G[V]$ denotes the subgraph of G induced by V. In any figure of this paper, the degree of a solid (or hollow) vertex is exactly (or at least) the number of edges that are incident with it, respectively. Moreover, solid vertices are distinct but two hollow vertices may be identified unless stated otherwise, and the edges drawn as crossed have to cross and the curving edges are chords.

Fig. 3 Local structures in Nicop graphs with maximum degree at most 4

Let $v_{i} v_{j}$ and $v_{k} v_{l}$ be two chords in a Nicop graph G so that $v_{i} v_{j}$ crosses $v_{k} v_{l}$ and v_{i}, v_{k}, v_{j} and v_{l} lie in a clockwise ordering. If $v_{i} v_{k}, v_{k} v_{j}, v_{j} v_{l} \in E(G), l-j=j-k=$ $k-i=1$ and $d\left(v_{k}\right)=d\left(v_{j}\right)=3$, or $v_{i} v_{k}, v_{k} v_{j}, v_{j} v_{l}, v_{k} v_{k+1}, v_{k+1} v_{j} \in E(G)$, $l-j=k-i=1, j-k=2, d\left(v_{k}\right)=d\left(v_{j}\right)=4$ and $d\left(v_{k+1}\right)=2$, then we call that $v_{i} v_{j}$ co-crosses $v_{k} v_{l}$, and $v_{i} v_{j}, v_{k} v_{l}$ are co-crossed chords in G, see Fig. 1 .

We call H a I-cluster in G if H is either a left I^{1}-cluster, or a right I^{1}-cluster, or a left I^{2}-cluster, or a right I^{2}-cluster, see Fig. 2. The II-cluster is defined similarly.

We use $\left[v_{L}, v_{R}\right]_{1}$ and $\left[v_{L}, v_{R}\right]_{2}$ to denote a I-cluster and II-cluster, respectively, where L and R are the subscripts of the far left vertex and the far right vertex on the boundary of G (see in a clockwise direction from left to right). The width of a cluster in Fig. 2 is defined to be the value of $\left|\mathcal{V}\left[v_{L}, v_{R}\right]\right|$. For example, the width of the left I^{1}-cluster $\left[v_{j}, v_{i+3}\right]_{1}$ in the figure is $(i+3)-j+1=i-j+4$, and the width of the right I^{1}-cluster $\left[v_{i}, v_{j}\right]_{1}$ in the figure is $j-i+1$. Of course, the final values should be taken modulo by $|G|$.

We now introduce some useful lemmas that are frequently used in the next sections. From now on, when mentioning the configuration G_{i} with $1 \leq i \leq 15$ we always refer to the corresponding picture in Fig. 3. Saying that G contains G_{i}, we mean that G contains a subgraph isomorphic to G_{i} such that the degree in G of any solid vertex in that picture is exactly the number of edges that are incident with it there. In particular, saying that a good drawing of a Nicop graph G contains G_{10}, we also mean that G contains a subgraph isomorphic to G_{10} with $y w$ not being a chord (so $y w$ is not crossed).

Lemma 2.1 (Zhang et al. 2012) Let v_{i} and v_{j} be vertices of a 2 -connected Nicop graph G. If there are no crossed chords in $\mathcal{C}\left[v_{i}, v_{j}\right]$ and no edges between $\mathcal{V}\left(v_{i}, v_{j}\right)$ and $\mathcal{V}\left(v_{j}, v_{i}\right)$, then $\mathcal{V}\left[v_{i}, v_{j}\right]$ is either non-edge or path.

Lemma 2.2 Let $\mathcal{V}\left[v_{i}, v_{j}\right]$ with $j-i \geq 3$ be path in a 2 -connected Nicop graph G with $\Delta(G) \leq 4$. If there are no crossed chords in $\mathcal{C}\left[v_{i}, v_{j}\right]$ and no edges between $\mathcal{V}\left(v_{i}, v_{j}\right)$ and $\mathcal{V}\left(v_{j}, v_{i}\right)$, then G contains G_{1} or G_{2} as a subgraph.

Proof If $\mathcal{C}\left[v_{i}, v_{j}\right] \backslash\left\{v_{i} v_{j}\right\}=\emptyset$, then $d\left(v_{i+1}\right)=d\left(v_{i+2}\right)=2$ and G_{1} appears. If there is at least one chord in $\mathcal{C}\left[v_{i}, v_{j}\right] \backslash\left\{v_{i} v_{j}\right\}$, then choose one, say $v_{a} v_{b}$ with $a<b$, so that there are no other chords in $\mathcal{C}\left[v_{a}, v_{b}\right]$. By the absences of the configurations G_{1} and G_{2}, we have $b-a=2, d\left(v_{a+1}\right)=2$ and $d\left(v_{a}\right), d\left(v_{b}\right) \geq 4$. Without loss of generality, assume that $b \neq j$. Let v_{c} be a vertex so that $v_{b} v_{c}$ is a chord. If $b<c$, then $c-b=2$ and $d\left(v_{b+1}\right)=2$, otherwise G_{1} occurs. This implies the appearance of the configuration G_{2} in G. If $b>c$, then $a \neq i$, which implies that there is a vertex v_{d} so that $v_{a} v_{d}$ is a chord with $d<a$. Afterwards, a copy of G_{1} occurs if $a-d \geq 3$, and G_{2} occurs if $a-d=2$, in which case we have $d\left(v_{a-1}\right)=2$.

Lemma 2.3 Let $v_{i} v_{j}$ and $v_{k} v_{l}$ with $i<k<j<l$ be two crossed chords in a 2connected Nicop graph G with $\Delta(G) \leq 4$ so that $v_{i} v_{j}$ crosses $v_{k} v_{l}$ and there is no other pair of crossed chords contained in the graph induced by $\mathcal{V}\left[v_{i}, v_{l}\right]$. We have
(1) at most one of $\mathcal{V}\left[v_{i}, v_{k}\right], \mathcal{V}\left[v_{k}, v_{j}\right]$ and $\mathcal{V}\left[v_{j}, v_{l}\right]$ is non-edge;
(2) if one of $\mathcal{V}\left[v_{i}, v_{k}\right], \mathcal{V}\left[v_{k}, v_{j}\right]$ and $\mathcal{V}\left[v_{j}, v_{l}\right]$ is non-edge, then G has a subgraph isomorphic to either G_{1} or G_{3};
(3) if all of $\mathcal{V}\left[v_{i}, v_{k}\right], \mathcal{V}\left[v_{k}, v_{j}\right]$ and $\mathcal{V}\left[v_{j}, v_{l}\right]$ are paths, then either $v_{i} v_{j}$ co-crosses $v_{k} v_{l}$ in G, or G has a subgraph isomorphic to one of the configurations among $G_{1}, G_{2}, G_{4}, G_{5}$ and G_{6}.

Proof The results (1) and (2) are proved in Zhang et al. (2012). We now prove (3).
Suppose that G is a counterexample. By Lemma 2.2, $\max \{k-i, j-k, l-j\} \leq 2$. Set $X=\mathcal{C}\left[v_{i}, v_{l}\right] \backslash\left\{v_{i} v_{j}, v_{k} v_{l}\right\}$ and let $x=|X|$. It is clear that $x \leq 2$ since $\Delta(G) \leq 4$.

Assume that $v_{i} v_{j}$ does not co-cross $v_{k} v_{l}$. If $x=0$, then G_{1} appears. If $x=1$, then G_{1} or G_{5} appears. If $x=2$, then one of the configurations among G_{1}, G_{4} and G_{6} appears. All are contradictions.

3 Local structures

Let G be a 2-connected Nicop graph with $\Delta(G) \leq 4$. If there are no crossings in G, then G is outerplanar, and the following result is immediate.

Lemma 3.1 (Wang and Zhang 1999) If there are no crossings in G, then G contains either G_{1} or G_{2}.

Suppose that G contains a crossing. Choose one pair of crossed chords $v_{i} v_{j}$ and $v_{k} v_{l}$ such that
(a) $v_{i} v_{j}$ crosses $v_{k} v_{l}$ in G and v_{i}, v_{k}, v_{j} and v_{l} lie in a clockwise ordering,
(b) there are no crossed chords contained in $\mathcal{C}\left[v_{i}, v_{l}\right]$ besides $v_{i} v_{j}$ and $v_{k} v_{l}$.

Lemma 3.2 If chords $v_{i} v_{j}$ and $v_{k} v_{l}$ satisfy the conditions (a) and (b), then $v_{i} v_{j}$ cocrosses $v_{k} v_{l}$ unless G contains one of the configurations among $G_{1}-G_{6}$.

Proof This follows directly from Lemmas 2.1 and 2.3.
In the following arguments, we assume that G does not contain any of the configurations among $G_{1}-G_{15}$.

By Lemma 3.2, we assume, without loss of generality, that $v_{i} v_{j}$ co-crosses $v_{k} v_{l}$ in G and $i=1$. Since $G_{7}-G_{10}$ are absent, $d\left(v_{l}\right)=4$ and thus there is a chord $v_{l} v_{s}$ with $s>l$.

Looking at the graph induced by $\mathcal{V}\left[v_{i}, v_{l}\right]$ and $v_{l} v_{s}$, we can find that it is a I-cluster in G. If there is another I-cluster contained in the graph induced by $\mathcal{V}\left[v_{i}, v_{s}\right]$ with shorter width, then we consider that instead of the previous one. Hence the following assumption is natural.

Assumption $1\left[v_{i}, v_{s}\right]_{1}$ is the shortest I-cluster contained in the graph induced by $\mathcal{V}\left[v_{i}, v_{s}\right]$.

Claim $3.3 v_{l} v_{s}$ is a crossed chord.
Proof If $v_{l} v_{s}$ is not crossed, then there are no edges between $\mathcal{V}\left(v_{l}, v_{s}\right)$ and $\mathcal{V}\left(v_{s}, v_{l}\right)$. If $s-l=2$, then $d\left(v_{l+1}\right)=2$, which implies the appearance of G_{11} or G_{12}. If $s-l \geq 3$, then by Lemma 2.2, there is a pair of co-crossed chords $v_{i^{\prime}} v_{j^{\prime}}$ and $v_{k^{\prime}} v_{l^{\prime}}$ with $l \leq i^{\prime}<k^{\prime}<j^{\prime}<l^{\prime} \leq s$, otherwise G_{1} or G_{2} appears. Since $\Delta(G) \leq 4$ and $G_{7}-G_{10}$ are forbidden in $G, i^{\prime} \neq l$ and by Assumption 1, there is a chord $v_{i}^{\prime} v_{t}^{\prime}$ with $l^{\prime}<t^{\prime} \leq s$. Since G is Nicop, there is no chord in the form $v_{l^{\prime}} v_{s^{\prime}}$ with $s^{\prime}>t^{\prime}$. By the absences of $G_{7}-G_{10}$, there is a chord $v_{l^{\prime}} v_{s^{\prime}}$ with $l^{\prime}<s^{\prime} \leq t^{\prime}$, which contradicts Assumption 1.

Suppose that $v_{l} v_{s}$ is crossed by a chord $v_{r} v_{t}$ with $l<r<s$. Since G is a Nicop graph, $t \neq i$ and thus $t>s$. Note that the graph induced by $\mathcal{V}\left[v_{i}, v_{l}\right]$ and the chords $v_{l} v_{s}, v_{r} v_{t}$ is a II-cluster denoted by $\left[v_{i}, v_{t}\right]_{2}$. Again, the following assumption is natural.

Assumption $2\left[v_{i}, v_{t}\right]_{2}$ is the shortest II-cluster contained in the graph induced by $\mathcal{V}\left[v_{i}, v_{t}\right]$.

Claim 3.4 There are no crossed chords in $\mathcal{C}\left[v_{l}, v_{r}\right]$.
Proof Suppose that $v_{a} v_{b}$ crosses $v_{c} v_{d}$ with $l \leq a<c<b<d \leq r$. By Lemma 2.2, we can properly choose $v_{a} v_{b}$ and $v_{c} v_{d}$ so that one co-crosses the other. By Assumption 1, the fact that $\Delta(G) \leq 4$ and the absences of $G_{7}-G_{10}$, there are chords $v_{a} v_{\beta}$ and $v_{d} v_{\alpha}$ with $l \leq \alpha<a$ and $d<\beta \leq r$. This contradicts the definition of the Nicop.

Claim 3.5 $r-l=1$.
Proof By Lemma 2.1 and Claim 3.4, $\mathcal{V}\left[v_{l}, v_{r}\right]$ is non-edge or path. If $\mathcal{V}\left[v_{l}, v_{r}\right]$ is non-edge, then $r-l=1$. If $\mathcal{V}\left[v_{l}, v_{r}\right]$ is path, then by Lemma 2.2 and the absences of G_{11} and G_{12}, we also have $r-l=1$.

Claim 3.6 There are no crossed chords in $\mathcal{C}\left[v_{r}, v_{s}\right]$.
Proof Suppose that $v_{a} v_{b}$ crosses $v_{c} v_{d}$ with $r \leq a<c<b<d \leq s$. By Lemma 2.2, we can assume that $v_{a} v_{b}$ co-crosses $v_{c} v_{d}$. If $a=r$, then $d \neq s$ by the definition of the Nicop. Since $G_{7}-G_{10}$ are forbidden, there is a chord $v_{d} v_{\alpha}$ with $d<\alpha \leq s$, which contradicts Assumption 1. Hence $a \neq r$, and by similar reason, $d \neq s$. By Assumption 1 and the absences of $G_{7}-G_{10}$, there are chords $v_{a} v_{\beta}$ and $v_{d} v_{\alpha}$ with $r \leq \alpha<a$ and $d<\beta \leq s$. This again contradicts the definition of the Nicop.

Claim 3.7 $v_{r} v_{s} \in E(G)$ and $s-r \leq 2$ with equality only if $v_{l} v_{r}, v_{r} v_{r+1}, v_{r+1} v_{s} \in$ $E(G)$.

Proof By Lemma 2.1 and Claim 3.6, $\mathcal{V}\left[v_{r}, v_{s}\right]$ is non-edge or path.
If $\mathcal{V}\left[v_{r}, v_{s}\right]$ is non-edge, then $v_{l} v_{r} \in E(G)$, otherwise v_{r} has degree one, contradicting the 2 -connectivity of G. This implies that v_{r} has degree two, and thus G_{11} or G_{12} appears.

If $\mathcal{V}\left[v_{r}, v_{s}\right]$ is path, then Lemma 2.2, $s-r \leq 2$. If $s-r=1$, then $v_{r} v_{s} \in E(G)$. If $s-r=2$, then the graph induced by v_{r}, v_{r+1} and v_{s} is a triangle, and moreover, $v_{l} v_{r} \in E(G)$, otherwise $d\left(v_{r+1}\right)=2$ and $d\left(v_{r}\right) \leq 3$, which implies a copy of G_{1}.

Claim 3.8 There are no crossed chords in $\mathcal{C}\left[v_{s}, v_{t}\right]$.
Proof If this claim is false, then there is a pair of co-crossed chords $v_{i^{\prime}} v_{j^{\prime}}$ and $v_{k^{\prime}} v_{l^{\prime}}$ in $\mathcal{C}\left[v_{s}, v_{t}\right]$ with $s \leq i^{\prime}<k^{\prime}<j^{\prime}<l^{\prime} \leq t$. By the absences of $G_{7}-G_{10}$, there are chords $v_{l^{\prime}} v_{s^{\prime}}$ and $v_{i^{\prime}} v_{t^{\prime}}$ with $s^{\prime} \neq k^{\prime}, i^{\prime}$ and $t^{\prime} \neq j^{\prime}, l^{\prime}$.

First, assume that $l^{\prime}<s^{\prime} \leq t$ and, without loss of generality, that there are no chords in the form $v_{l^{\prime}} v_{s^{\prime \prime}}$ with $l^{\prime}<s^{\prime \prime}<s^{\prime}$. By Claim 3.3, $v_{l^{\prime}} v_{s^{\prime}}$ is crossed. By Assumption 2, we have to assume that $v_{l^{\prime}} v_{s^{\prime}}$ is crossed by a chord $v_{m} v_{m^{\prime}}$ with $l^{\prime}<m<s^{\prime}$ and $s \leq m^{\prime} \leq i^{\prime}$. By the definition of the Nicop, $m^{\prime} \neq i^{\prime}$. This implies that $m^{\prime} \leq t^{\prime}<i^{\prime}$, and then by Claim 3.3 and Assumption 2, $v_{i^{\prime}} v_{t^{\prime}}$ is crossed by a chord incident with $v_{l^{\prime}}$, contradicting the definition of the Nicop.

Hence, if $l^{\prime} \neq t$, then $s \leq s^{\prime} \leq t^{\prime}<i^{\prime}$. By Claim 3.3 and Assumption 2, $v_{l^{\prime}} v_{s^{\prime}}$ is crossed by a chord incident with $v_{l^{\prime}}$, which contradicts the definition of the Nicop. Therefore, $l^{\prime}=t$, and $i^{\prime}=s$ by symmetry. However, the definition of the Nicop declines this case.

Claim 3.9 $\mathcal{V}\left[v_{s}, v_{t}\right]$ is path and $t-s \leq 2$.
Proof By Lemma 2.1 and Claim 3.8, $\mathcal{V}\left[v_{s}, v_{t}\right]$ is either non-edge or path. Suppose that $\mathcal{V}\left[v_{s}, v_{t}\right]$ is non-edge.

If $s-r=2$, then by Claim 3.7, $d\left(v_{s-1}\right)=2$ and $d\left(v_{s}\right)=3$, which implies a copy of G_{1}.

If $s-r=1$, then $v_{r} v_{s} \in E(G)$ by Claim 3.7. This implies that $d\left(v_{s}\right)=2$ and $d\left(v_{r}\right) \leq 3$. Hence G_{1} appears, a contradiction.

Therefore, $\mathcal{V}\left[v_{s}, v_{t}\right]$ is path, and $t-s \leq 2$ by Lemma 2.2.
Lemma 3.10 The graph induced by $\mathcal{V}\left[v_{i}, v_{t}\right]$ contains one of the configurations among $G_{1}-G_{15}$, and furthermore, v_{i} or v_{t} cannot be the solid vertex of any such configuration.

Proof If $t-s=1$, then $v_{s} v_{t} \in E(G)$ by Claim 3.9. If $s-r=1$ and $v_{r} v_{s} \in E(G)$, then $v_{l} v_{r} \in E(G)$ by Claim 3.5, otherwise G_{1} appears. This contradiction implies that the graph induced by $\mathcal{V}\left[v_{i}, v_{t}\right]$ contains a copy of G_{14} or G_{15}. Hence $s-r=2$ and $v_{r} v_{r+1}, v_{r+1} v_{s}, v_{r} v_{s} \in E(G)$ by Claim 3.7. Under this condition we have $v_{l} v_{r} \in$ $E(G)$ by Claim 3.5, otherwise G_{1} appeas, a contradiction. This implies that the graph induced by $\mathcal{V}\left[v_{i}, v_{t}\right]$ contains a copy of G_{13}. Therefore, $t-s=2$ by Claim 3.9. This implies that $d\left(v_{s+1}\right)=2$.

If $v_{s} v_{t} \in E(G)$, then $s-r=1$ and $v_{r} v_{s} \in E(G)$ by Claim 3.7, otherwise v_{s} has degree five, contradicting the fact that $\Delta(G) \leq 4$. If $v_{l} v_{r} \notin E(G)$, then v_{r} has degree two and G_{3} appears. If $v_{l} v_{r} \in E(G)$, then the graph induced by $\mathcal{V}\left[v_{l}, v_{t}\right]$ is a copy of G_{5}. In each case we obtain contradictions. Hence $v_{s} v_{t} \notin E(G)$.

If $s-r=1$, then by Claim 3.7, $v_{r} v_{s} \in E(G)$. This implies that v_{s} has degree three and thus G_{1} appears. Hence $s-r=2$.

By Claim 3.7, v_{r}, v_{r+1}, v_{s} induce a triangle with $d\left(v_{r+1}\right)=2$. Now the graph induced by $\mathcal{V}\left[v_{r}, v_{t}\right]$ is a copy of G_{4}, a contradiction.

At last, one can check that the proofs of any claims or lemmas in the previous arguments grantee that v_{i} or v_{t} is not a solid vertex in such configuration.

Theorem 3.11 Every Nicop graph with minimum degree at least 2 and with maximum degree at most 4 contains one of the configurations among $G_{1}-G_{15}$.

Proof Let G be a Nicop graph with maximum degree at most 4 . If G is 2 -connected, then this result holds by Lemma 3.10. Hence we assume that G is not 2 -connected and is a counterexample to the result.

Choose an end-block H of G with an unique cut vertex, say v_{1}, and let $v_{1}, \ldots, v_{|H|}$ be the vertices of H with clockwise ordering on its boundary.

Suppose that there is a pair of crossed chords $v_{i} v_{j}$ and $v_{k} v_{l}$ so that v_{i}, v_{k}, v_{j} and v_{l} lie in a clockwise ordering. Without loss of generality, assume that $1 \leq i<k<j<l$.

If there is another pair of crossed chords $v_{i^{\prime}} v_{j^{\prime}}$ and $v_{k^{\prime}} v_{l^{\prime}}$ with $i^{\prime}<k^{\prime}<j^{\prime}<l^{\prime}$ contained in $\mathcal{C}\left[v_{i}, v_{l}\right]$, then set $i:=i^{\prime}, j:=j^{\prime}, k:=k^{\prime}$ and $l:=l^{\prime}$. In other words, we always assume that there are no crossed chords contained in $\mathcal{C}\left[v_{i}, v_{l}\right]$ besides $v_{i} v_{j}$ and $v_{k} v_{l}$. Hence by Lemma 3.2, $v_{i} v_{j}$ co-crosses $v_{k} v_{l}$.

By the absences of $G_{7}-G_{10}$, there are chords $v_{l} v_{s}$ and $v_{i} v_{m}$ with $s \neq k, i$ and $t \neq j, l$. By the definition of Nicop, $v_{l} v_{s}$ does not cross $v_{i} v_{t}$, thus either $v_{1} \notin \mathcal{V}\left(v_{l}, v_{s}\right)$ or $v_{1} \notin \mathcal{V}\left(v_{m}, v_{i}\right)$. By symmetry, we assume, without loss of generality, that $v_{1} \notin$ $\mathcal{V}\left(v_{l}, v_{s}\right)$.

If $s \neq 1$, then by Claim 3.3, $v_{l} v_{s}$ is crossed by a chord $v_{r} v_{t}$ with $l<r<s$, otherwise the graph induced by $\mathcal{V}\left[v_{i}, v_{s}\right]$ (and thus G) contains one of the required configurations. By Lemma 3.10, $t \geq 1$, because otherwise the graph induced by $\mathcal{V}\left[v_{i}, v_{t}\right]$ (and thus G) contains one of the required configurations. This implies that $1 \leq m<i$. By Claim 3.3, $v_{i} v_{m}$ is crossed by a chord $v_{p} v_{q}$ with $q<m<p<i$. Since $t \geq 1, q \geq 1$, which implies that $v_{1} \notin \mathcal{V}\left(v_{q}, v_{l}\right)$. Hence by Lemma 3.10, the graph induced by $\mathcal{V}\left[v_{q}, v_{l}\right]$ (and thus G) contains one of the required configurations.

Therefore, $s=1$, which implies that $v_{1} \notin \mathcal{V}\left(v_{m}, v_{i}\right)$. Hence by similar arguments as previous paragraph, we also have $m=1$. This implies that $v_{l} v_{s}$ is not crossed, and thus by the proof of Claim 3.3, the graph induced by $\mathcal{V}\left[v_{i}, v_{s}\right]$ (and thus G) contains one of the required configurations.

Hence, H is outerplanar.
If H contains no chords, then G contains two adjacent 2 -valent vertices, a contradiction.

Let $v_{i} v_{j}$ with $1 \leq i<j$ be a chord so that it is the unique chord in $\mathcal{C}\left[v_{i}, v_{j}\right]$. It is easy to see that $j-i=2$ and $d\left(v_{i+1}\right)=2$, because otherwise G contains two adjacent 2 -valent vertices. By the absence of G_{1}, there are chords $v_{i} v_{s}$ and $v_{j} v_{t}$. Since H is outerplanar, either $v_{1} \notin \mathcal{V}\left(v_{j}, v_{t}\right)$ or $v_{1} \notin \mathcal{V}\left(v_{s}, v_{i}\right)$.

Without loss of generality, assume that $v_{1} \notin \mathcal{V}\left(v_{j}, v_{t}\right)$. By same reason as above, we have $t-j=2$ and $d\left(v_{j+1}\right)=2$. This implies a copy of G_{2} in the graph induced by $\mathcal{V}\left[v_{i}, v_{t}\right]$, a contradiction, and this completes the proof of the theorem.

In what follows, we list some important facts that are frequently used in the arguments of the next section.

Fact 1 Deleting edges or vertices from a Nicop graph results in a Nicop graph.
Proof This is obvious by the definition of the Nicop.
Fact 2 If G is a Nicop graph with $u v \notin E(G)$ and $G+u v$ is an outer-1-plane graph so that uv is non-crossed, then $G+u v$ is a Nicop graph.

Proof Since this operation does not generate new crossings and $M_{G}(c)=M_{G+u v}(c)$ for any crossing c in $G, G+u v$ is a Nicop graph.

Fact 3 If G is good drawing of a Nicop graph with maximum degree 4 and G contains the configuration G_{10}, then the graph obtained from G by deleting u, v and identifying x and y is still a Nicop graph.

Proof If $d(x)=3$, then the conclusion is obvious. Hence we assume that $d(x)=4$ and let z be the fourth neighbor of x.

Let G^{\prime} be the graph obtained from G by deleting u, v and identifying x and y into a common vertex x_{y}. It is clear that this operation do not generate new crossings and thus G^{\prime} is outer-1-planar. One can also check that x_{y} has degree exactly two in G^{\prime}, and $x_{y} w$ is a non-crossed edge in G^{\prime} by the definition of the configuration G_{10} (recall its definition mentioned before Lemma 2.1).

If $x_{y} z$ is not crossed in G^{\prime}, then for any crossing c in G^{\prime}, we have $x_{y} \notin M_{G^{\prime}}(c)$, which implies that $M_{G^{\prime}}(c)=M_{G}(c)$. Hence $\left|M_{G^{\prime}}\left(c_{1}\right) \cap M_{G^{\prime}}\left(c_{2}\right)\right|=\left|M_{G}\left(c_{1}\right) \cap M_{G}\left(c_{2}\right)\right| \leq 1$ for any two distinct crossings c_{1} and c_{2} in G^{\prime}, and thus G^{\prime} is a Nicop graph.

If $x_{y} z$ is crossed in G^{\prime}, then $x_{y} \in M_{G^{\prime}}\left(c_{0}\right)$, where c_{0} is the crossing on $x_{y} z$. Let c_{1} and c_{2} be two distinct crossings in G^{\prime}. If $c_{1} \neq c_{0}$ and $c_{2} \neq c_{0}$, then $x_{y} \notin M_{G^{\prime}}\left(c_{1}\right)$ and $x_{y} \notin M_{G^{\prime}}\left(c_{2}\right)$, which implies that $\left|M_{G^{\prime}}\left(c_{1}\right) \cap M_{G^{\prime}}\left(c_{2}\right)\right|=\left|M_{G}\left(c_{1}\right) \cap M_{G}\left(c_{2}\right)\right| \leq 1$. If $c_{1}=c_{0}$, then we also have $\left|M_{G^{\prime}}\left(c_{1}\right) \cap M_{G^{\prime}}\left(c_{2}\right)\right| \leq 1$. Otherwise, we assume that $M_{G^{\prime}}\left(c_{0}\right) \cap M_{G^{\prime}}\left(c_{2}\right)=\left\{s_{1}, s_{2}\right\}$. Since $x_{y} \in M_{G^{\prime}}\left(c_{0}\right)$ and $x_{y} \notin M_{G^{\prime}}\left(c_{2}\right)$, we have $\left\{s_{1}, s_{2}\right\} \subseteq V(G) \backslash\{u, v, x, y\}$. This implies that $\left|M_{G}\left(c_{1}\right) \cap M_{G}\left(c_{2}\right)\right|=\left|\left\{s_{1}, s_{2}\right\}\right|=2$, a contradiction.

4 Total coloring

Let G be a Nicop graph with maximum degree at most 4 satisfying:
(1) G does not admit any total 5-coloring, and
(2) any Nicop graph H with maximum degree at most 4 and with smaller order or size than G has a total 5 -coloring.

It is easy to see that G is 2 -connected.
Lemma 4.1 G does not contain a 2-valent vertex adjacent to a 3-valent vertex.

Proof Suppose, to the contrary, that $u v \in E(G), d(u)=2$ and $d(v) \leq 3$. By Fact 1 and (2), $G-u v$ has a total 5-coloring.

Delete the color on u and denote the resulting partial coloring by c. Since $u v$ is incident with at most four colored elements under $c, u v$ can be colored properly. Since u is incident with four colored elements after coloring $u v, u$ can also be colored properly. Therefore, we obtain a total 5 -coloring of G, a contradiction.

Lemma 4.2 G does not contain a cycle of length 4 with two nonadjacent vertices of degree 2.

Proof Suppose, to the contrary, that there is a cycle uxvy of length four with $d(u)=$ $d(v)=2$. By Fact 1 and (2), $G-\{u, v\}$ has a total 5-coloring c.

Since every edge in the cycle is incident with at most three colors, there are at least two available colors for each of them, which is sufficient for coloring the edges of the cycle $u x v y$. At last, we color u and v properly. This can be easily done since $d(u)=d(v)=2$ and $u v \notin E(G)$. Therefore, we obtain a total 5-coloring of G, a contradiction.

Lemma 4.3 G does not contain a triangle uvw with $d(v)=2$ and u adjacent to a vertex x of degree 2 .

Proof Suppose, to the contrary, that there is a triangle $u v w$ with $d(v)=2$ and u adjacent to a vertex x of degree 2. By Lemma 4.1, $d(u)=d(w)=4$. Let y and z be vertices with $u y, x z \in E(G)$. By Fact 1 and (2), $G-u x$ has a total 5-coloring. Remove the colors on x and v, and denote the resulting partial coloring by c.

If $\{c(u), c(u v), c(u w), c(u y), c(x z)\} \subset\{1,2,3,4,5\}$, then $u x$ can be colored properly and afterwards, x and v can be colored since $d(x)=d(v)=2$. Therefore, we assume, without loss of generality, that $c(u)=1, c(u v)=2, c(u w)=3, c(u y)=4$ and $c(x z)=5$. If $c(v w) \neq 5$, then recolor $u v$ with 5 and color $u x$ with 2 . If $c(v w)=5$, then exchange the colors on $v w$ and $u w$, and color $u x$ with 3. In each case we obtain a total 5-coloring of G after coloring x and v properly, which can be easily done since $d(x)=d(v)=2$.

We now consider the configurations \mathcal{A} and \mathcal{B} represented by G_{7} and G_{8} without the degree constraints.

Lemma 4.4 If G contains \mathcal{A}, then $x y \notin E(G)$.
Proof Suppose that G contains \mathcal{A} and $x y \in E(G)$. By the 2 -connectivity of G, $d(x)=d(y)=4$, otherwise G is the graph induced by \mathcal{A}. At this stage, we obtain a total 5-coloring of G by coloring $x, v y, u w$ with $1, u, v w, x y$ with $2, w, y, u v$ with $3, v, u x$ with 4 , and $x v, u y$ with 5 . Let x^{\prime} and y^{\prime} be the fourth neighbor of x and y, respectively. If $x^{\prime}=y^{\prime}$, then G is the graph induced by u, v, w, x, y and x^{\prime} by the 2-connectivity of G. We color $x, v y, u w$ with $1, u, x^{\prime}, v w, x y$ with $2, w, y, u v, x x^{\prime}$ with $3, v, u x, y x^{\prime}$ with 4 , and $x v, u y$ with 5 , and get a total 5 -coloring of G. Hence in the following we assume that $x^{\prime} \neq y^{\prime}$.

Let G^{\prime} be the graph obtained from G by deleting w. By Fact 1 and (2), G^{\prime} admits a total 5-coloring c. Without loss of generality, assume that $c(x)=1, c(y)=2$ and
$c(x y)=3$. If $c\left(x x^{\prime}\right)=c\left(y y^{\prime}\right)$, then one can easily check that G^{\prime} cannot be properly totally colored with only five colors, a contradiction. Hence $c\left(x x^{\prime}\right) \neq c\left(y y^{\prime}\right)$. We erase the colors on u, v and on its incident edges from c, and extend this partial total 5-coloring to G according to the following three cases.

If $c\left(x x_{1}\right)=c(y)=2$ and $c\left(y y_{1}\right)=c(x)=1$, then recolor y with a color in $\{4,5\} \backslash\left\{c\left(y^{\prime}\right)\right\}$, say 4 . Next, we construct a total 5 -coloring of G by coloring $w, u v$ with $1, u, v y$ with $2, v, u w$ with $3, v w, u x$ with 4 , and $u y, v x$ with 5 .

If $c\left(x x_{1}\right)=c(y)=2$ and $c\left(y y_{1}\right) \neq c(x)$ (here assume that $c\left(y y_{1}\right)=4$), then we construct a total 5-coloring of G by coloring $u w, v y$ with $1, w, u v$ with $2, u, v w$ with $3, v, u x$ with 4 , and $u y, v x$ with 5 .

If $c\left(x x_{1}\right) \neq c(y)$ and $c\left(y y_{1}\right) \neq c(x)$ (here assume that $c\left(x x_{1}\right)=4$ and $c\left(y y_{1}\right)=5$), then we construct a total 5 -coloring of G by coloring $v w, u y$ with $1, u w, v x$ with 2 , $w, u v$ with $3, u, v y$ with 4 , and $v, u x$ with 5 .

Hence $x y \notin E(G)$ if G contains \mathcal{A}.
Corollary 4.5 G does not contain any of the configurations among $G_{1}-G_{4}$ and G_{9}.
Proof This is a direct corollary from Lemmas 4.1, 4.2, 4.3 and 4.4.
Lemma 4.6 If G contains \mathcal{A} or \mathcal{B}, then $d(x)=d(y)=4$
Proof Suppose that G contains \mathcal{A} and $d(x) \leq 3$. By the 2-connectivity of G, we shall assume that $d(x)=3$. Otherwise G is isomorphic to the graph induced by u, v, w, x and y, and this graph is totally 5-colorable, since it is just the graph obtained from K_{5} by removing two adjacent edges. Without loss of generality, assume that $d(y)=4$. Let x_{1}, y_{1}, y_{2} be vertices with $x x_{1}, y y_{1}, y y_{2} \in E(G)$. Delete u, v, w from G and add a new edge $x y$. By Fact 1, Fact 2 and (2), the resulting graph G^{\prime} has a total 5-coloring c. Without loss of generality, assume that $c(x)=1, c(y)=2$ and $c(x y)=5$.

If $c\left(x x_{1}\right)=2$ and $1 \in\left\{c\left(y y_{1}, c\left(y y_{2}\right)\right)\right\}$ (here assume that $c\left(y y_{1}\right)=1$ and $c\left(y y_{2}\right)=$ 3), then recolor x with a color in $\{4,5\} \backslash\left\{c\left(x_{1}\right)\right\}$, say 4 , and then extend this updated partial coloring to a total 5-coloring of G by coloring $u, x v$ with $1, w, u v$ with $2, v, u w$ with $3, v w$, $u y$ with 4 , and $u x, v y$ with 5 .

If $c\left(x x_{1}\right)=2$ and $1 \notin\left\{c\left(y y_{1}, c\left(y y_{2}\right)\right)\right\}$ (here assume that $c\left(y y_{1}\right)=3$ and $c\left(y y_{2}\right)=$ 4), then extend c to a total 5-coloring of G by coloring $v w, u y$ with $1, w, u v$ with 2 , $u, x v$ with $3, v, u w$ with 4 , and $u x, v y$ with 5 .

If $c\left(x x_{1}\right) \neq 2$ and $1 \in\left\{c\left(y y_{1}, c\left(y y_{2}\right)\right)\right\}$ (here assume that $c\left(x x_{1}\right)=3$ and $c\left(y y_{1}\right)=$ 1), then extend c to a total 5 -coloring of G by coloring $w, u v$ with $1, v w, u x$ with 2 , $v, u w$ with $c\left(y y_{2}\right), u$, $v y$ with $\{3,4\} \backslash\left\{c\left(y y_{2}\right)\right\}$, and $v x$, uy with 5 . Note that $c\left(y y_{2}\right) \in$ $\{3,4\}$.

If $c\left(x x_{1}\right) \neq 2$ and $1 \notin\left\{c\left(y y_{1}, c\left(y y_{2}\right)\right)\right\}$ (here assume that $c\left(x x_{1}\right)=c\left(y y_{1}\right)=3$ and $c\left(y y_{2}\right)=4$), then extend c to a total 5 -coloring of G by coloring $v w, u y$ with 1 , $w, u v$ with $2, v, u w$ with $3, u, x v$ with 4 , and $u x$, $v y$ with 5 .

Hence $d(x)=4$, and $d(y)=4$ by symmetry. By similar arguments, the same result hold if G contains \mathcal{B}.

Lemma 4.7 If G contains \mathcal{A} or \mathcal{B}, then the neighbors of x and y have degrees at least 3.

Proof By Lemma 4.6, $d(x)=d(y)=4$. Let $x_{1}, x_{2}, y_{1}, y_{2}$ be vertices with $x x_{1}, x x_{2}, y y_{1}, y y_{2} \in E(G)$. Suppose, to the contrary, that G contains \mathcal{A} with $d\left(x_{1}\right)=2$. Let x_{3} be a vertex with $x_{1} x_{3} \in E(G)$.

Delete u, v from G and add three new edges $x y, w x$ and $w y$. It is easy to check by Facts 1 and 2 that the resulting graph G^{\prime} is a Nicop graph with maximum degree at most 4 , and thus by (2), G^{\prime} admits a total 5 -coloring c. Without loss of generality, assume that $c\left(y y_{1}\right)=1, c\left(y y_{2}\right)=2, c(y)=3$ and $c(x y)=5$.

First, suppose that the color on x is either 1 or 2 , say 1 .
If $3 \in\left\{c\left(x x_{1}\right), c\left(x x_{2}\right)\right\}$, then $2 \notin\left\{c\left(x x_{1}\right), c\left(x x_{2}\right)\right\}$, otherwise $w x$ and $w y$ are colored with 4 , a contradiction. Therefore, we assume that $c\left(x x_{1}\right)=3$ and $c\left(x x_{2}\right)=4$. Remove the color on x_{1} (which can be easily completed at the last stage) and recolor $x x_{1}$ with a color in $\{2,5\} \backslash\left\{c\left(x_{1} x_{3}\right)\right\}$. Denote the resulting coloring still by c. We extend c to a total 5-coloring of G by coloring $w, u v$ with $1, v w$ with $2, u w, x v$ with $3, v, u y$ with 4 , $v y$ with $5, u$ with $c\left(x x_{1}\right)$, and $u x$ with $\{2,5\} \backslash\left\{c\left(x x_{1}\right)\right\}$.

If $3 \notin\left\{c\left(x x_{1}\right), c\left(x x_{2}\right)\right\}$, then $\left\{c\left(x x_{1}\right), c\left(x x_{2}\right)\right\}=\{2,4\}$, and c can be extended to a total 5-coloring of G by coloring $w, u v$ with $1, u, v w$ with $2, u w, x v$ with $3, v, u y$ with 4 , and $u x, v y$ with 5 .

Second, suppose that the color on x is neither 1 nor 2. This implies that $c(x)=4$ and $\left\{c\left(x x_{1}\right), c\left(x x_{2}\right)\right\} \cap\{1,2\} \neq \emptyset$. By symmetry, assume that $c\left(x x_{1}\right)=1$.

If $c\left(x x_{2}\right)=3$, then extend c to a total 5 -coloring of G by coloring $v, u w$ with 1 , $u, x v$ with $2, w, u v$ with $3, v w, u y$ with 4 , and $u x, v y$ with 5 .

If $c\left(x x_{2}\right) \neq 3$, then $c\left(x x_{2}\right)=2$. Remove the color on x_{1} (which can be easily completed at the last stage) and recolor $x x_{1}$ with a color in $\{3,5\} \backslash\left\{c\left(x_{1} x_{3}\right)\right\}$. Denote the resulting partial coloring still by c. If $c\left(x x_{1}\right)=3$, then extend c to a total 5-coloring of G by coloring $v, u x$ with $1, u, v w$ with $2, w, u v$ with $3, u w, v y$ with 4 , and $x v, u y$ with 5. If $c\left(x x_{1}\right)=5$, then extend c to a total 5-coloring of G by coloring $v, u x$ with $1, w, u v$ with $2, u w, x v$ with $3, v w, u y$ with 4 , and $u, v y$ with 5 .

Therefore, $d\left(x_{1}\right) \geq 3$, and by symmetry, $d\left(x_{2}\right), d\left(y_{1}\right), d\left(y_{2}\right) \geq 3$. This implies that the neighbors of x and y have degree at least 3 . By similar arguments as above, one can prove the same result if G contains \mathcal{B}.

Corollary 4.8 G does not contain any of the configurations among G_{7}, G_{8}, G_{11} and G_{12}.

Proof This is a direct corollary from Lemmas 4.6 and 4.7.
Lemma 4.9 G does not contain the configuration G_{6}.
Proof Suppose this claim is false. If $x y \in E(G)$ or $\min \{d(x), d(y)\}=3$, then by the 2-connectivity of G, G is isomorphic to the graph induced by x, z, u, v, w and y. At this stage, we get a total 5 -coloring of G by coloring $z, w, u x, v y$ with $1, y, u v, x z$ with $2, v, u z$ with $3, u, v x, w y$ with $4, x, v w, u y$ with 5 , and $x y$ with 3 if it exists, a contradiction. Hence $x y \notin E(G)$ and $d(x)=d(y)=4$.

Let x_{1}, y_{1} be the vertices with $x x_{1}, y y_{1} \in E(G)$. If $x_{1}=y_{1}$, then by the 2 connectivity of G, G is isomorphic to he graph induced by x, z, u, v, w, y and x_{1}. However, we can obtain a total 5-coloring of this special graph by coloring $x, u v, y x_{1}$ with $1, y, u z, v w, x x_{1}$ with $2, v, x z, u y$ with $3, z, w, u x, v y$ with $4, u, x_{1}, v x$, $w y$ with 5 , a contradiction. Hence $x_{1} \neq y_{1}$.

Delete z, u, v, w from G and add a new edge $x y$. It is easy to check by Facts 1 and 2 that the resulting graph is a Nicop graph with maximum degree at most 4. Hence by (2), G^{\prime} admits a total 5-coloring c. Without loss of generality, assume that $c(x)=1, c(y)=2$ and $c(x y)=3$.

If $c\left(x x_{1}\right)=c(y)=2$ and $c\left(y y_{1}\right)=c(x)=1$, then we construct a total 5 -coloring of G by coloring $u v$ with $1, u z, v w$ with $2, v, x z$, uy with $3, z, w, u x, v y$ with 4 , $u, v x, w y$ with 5 .

If $c\left(x x_{1}\right)=c(y)=2$ and $c\left(y y_{1}\right) \neq c(x)$ (here assume that $c\left(y y_{1}\right)=4$), then we construct a total 5 -coloring of G by coloring $u, w, v y$ with $1, u v$ with $2, x z, v w, u y$ with $3, v, z, u x$ with 4 , and $u z, w y, v x$ with 5 .

If $c\left(x x_{1}\right) \neq c(y)$ and $c\left(y y_{1}\right) \neq c(x)$, then we consider two subcases. First, if $c\left(x x_{1}\right) \neq c\left(y y_{1}\right)$ (here assume that $c\left(x x_{1}\right)=4$ and $c\left(y y_{1}\right)=5$), then we construct a total 5-coloring of G by coloring $w, u z, v y$ with $1, x z, u v$ with $2, u, v x, w y$ with 3 , $v w, u y$ with 4 , and $v, z, u x$ with 5 . Second, if $c\left(x x_{1}\right)=c\left(y y_{1}\right)=4$, then we construct a total 5-coloring of G by coloring $v w, u y$ with $1, u v, x z$ with $2, z, w, u x, v y$ with 3 , $v, u z$ with 4 , and $u, v x, w y$ with 5 .

Lemma 4.10 G does not contain the configuration G_{5}.

Proof Suppose this claim is false. If $x y \in E(G)$, or $d(y)=3$, or $d(x)=2$, then by the 2 -connectivity of G, G is isomorphic to the graph induced by u, v, w, x and y. At this stage, we get a total 5 -coloring of G by coloring $w, u x$, $v y$ with $1, y, u v$ with $2, v$ with $3, u, v x$, wy with $4, x, v w$, $u y$ with 5 , and $x y$ with 3 if it exists, a contradiction. Hence $x y \notin E(G), d(y)=4$ and $2 \leq d(x) \leq 3$.

If $d(x)=3$, then by highly similar arguments as in the proof of Lemma 4.9, one can obtain a total 5 -coloring of G, a contradiction. Hence we have $d(x)=4$. Let x_{1}, x_{2}, y_{1} be the vertices with $x x_{1}, x x_{2}, y y_{1} \in E(G)$.

Delete u, v, w from G and add a new edge $x y$. By Fact 1, Fact 2 and (2), the resulting graph G^{\prime} has a total 5-coloring c. Without loss of generality, assume that $c\left(x x_{1}\right)=1, c\left(x x_{2}\right)=2, c(x)=3$ and $c(x y)=5$.

First, suppose that the color on y is either 1 or 2 , say 1 . We first extend c to a partial coloring c^{\prime} of G by coloring $u, v w$ with $1, v$ with $2, u v$ with $3, x v$ with 4 , and $x u, v y, w$ with 5 . Afterwards, extend c^{\prime} to a total 5 -coloring of G by coloring $w y, u y$ with 3, 4 if $c\left(y y_{1}\right)=2,2$, 4 if $c\left(y y_{1}\right)=3$, and 3, 2 if $c\left(y y_{1}\right)=4$, respectively.

Second, suppose that the color on y is neither 1 nor 2. This implies that $c(y)=4$. We first extend c to a partial coloring c^{\prime} of G by coloring $u y, v w$ with $2, w$ with 3 , $u, x v$ with 4 , and $v, x u$, wy with 5 . Afterwards, extend c^{\prime} to a total 5-coloring of G by coloring $u v$, $v y$ with 1,3 if $c\left(y y_{1}\right)=1$, and 3,1 if $c\left(y y_{1}\right)=3$, respectively.

Lemma 4.11 G does not contain the configuration G_{10}.
Proof Suppose, to the contrary, that G contains G_{10}. If $d(x)=3$, then w is a cutvertex or a vertex of degree one, which contradicts the fact that G is 2 -connected. Hence $d(x)=4$. By z, we denote the fourth neighbor of x in G. If $z=w$, then by the 2-connectivity of G, G is isomorphic to the the graph derived from K_{5} by removing two adjacent edges, which admits a total 5-coloring. Hence $z \neq w$. Delete u, v from G and identify x with y. By G^{\prime} and x_{y} we denote the resulting graph and the common vertex in G^{\prime} indicating x or y. By Fact 3 and (2), G^{\prime} admits a total 5-coloring c.

Without loss of generality, assume that $c\left(x_{y}\right)=1, c\left(x_{y} z\right)=2$ and $c\left(x_{y} w\right)=3$. Remove the color on x_{y}. We now extend this partial coloring to a total 5-coloring of G as follows. First, color x with 1, and y with a color in $\{4,5\} \backslash\{c(w)\}$, say 4 . Afterwards, we color $u y$ with $1, u, v y$ with $2, v, u x$ with $3, v x$ with 4 , and $u v, x y$ with 5 . This results in a total 5 -coloring of G, a contradiction.

Lemma 4.12 G does not contain any of the configurations among G_{13}, G_{14} and G_{15}.

Proof We just prove that G does not contain G_{13} by contradiction, since another two results can be obtained by highly similar arguments. By the definition of the Nicop, $x \neq x^{\prime}$. By Lemma 4.6, $d(x)=d\left(x^{\prime}\right)=4$.

If $x x^{\prime} \in E(G)$, then let x_{1} and x_{1}^{\prime} be the vertices with $x x_{1}, x^{\prime} x_{1}^{\prime} \in E(G)$. Construct a graph G^{\prime} from G by deleting $u, v, w, u^{\prime}, v^{\prime}, w^{\prime}$ and y. One can easily check by Fact 1 that the resulting graph G is a Nicop graph with maximum degree at most 4. Hence by (2), G^{\prime} has a total 5 -coloring c.

Without loss of generality, assume that $c(x)=1, c\left(x^{\prime}\right)=2$ and $c\left(x x^{\prime}\right)=3$. We extend this partial total 5 -coloring to G according to the following cases.

If $c\left(x x_{1}\right)=c\left(x^{\prime}\right)=2$ and $c\left(x^{\prime} x_{1}^{\prime}\right)=c(x)=1$, then we construct a total 5 -coloring of G by coloring $w, w^{\prime}, u v, u^{\prime} v^{\prime}$ with $1, u, v w, u^{\prime} y, v^{\prime} w^{\prime}$ with $2, v, u^{\prime}, u w, v^{\prime} y$ with $3, v^{\prime}, u x, v y, u^{\prime} x^{\prime}$ with 4 , and $u y, v x, v^{\prime} x^{\prime}, u^{\prime} w^{\prime}$ with 5 .

If $c\left(x x_{1}\right)=c\left(x^{\prime}\right)=2$ and $c\left(x^{\prime} x_{1}^{\prime}\right) \neq c(x)$ (here assume that $c\left(x^{\prime} x_{1}^{\prime}\right)=4$), then we construct a total 5-coloring of G by coloring $w, u v, u^{\prime} w^{\prime}, v^{\prime} x^{\prime}$ with $1, u, v w, v^{\prime} w^{\prime}, u^{\prime} y$ with $2, v, u^{\prime}, u w, v^{\prime} y$ with $3, w^{\prime}, u x, v y, u^{\prime} v^{\prime}$ with 4 , and $v^{\prime}, v x, u y, u^{\prime} x^{\prime}$ with 5 .

If $c\left(x x_{1}\right) \neq c\left(x^{\prime}\right)$ and $c\left(x^{\prime} x_{1}^{\prime}\right) \neq c(x)$, then we consider two subcases. First, if $c\left(x x_{1}\right) \neq c\left(x^{\prime} x_{1}^{\prime}\right)$ (here assume that $c\left(x x_{1}\right)=4$ and $c\left(x^{\prime} x_{1}^{\prime}\right)=5$), then we construct a total 5-coloring of G by coloring $w, u v, u^{\prime} w^{\prime}, v^{\prime} x^{\prime}$ with $1, w^{\prime}, u x, v y, u^{\prime} v^{\prime}$ with 2 , $v, v^{\prime}, u w, u^{\prime} y$ with $3, u, v w, v^{\prime} y, u^{\prime} x^{\prime}$ with 4 , and $u^{\prime}, v x, u y, v^{\prime} w^{\prime}$ with 5 . Second, if $c\left(x x_{1}\right)=c\left(x^{\prime} x_{1}^{\prime}\right)=4$, then we construct a total 5 -coloring of G by coloring $w, u v, u^{\prime} w^{\prime}, v^{\prime} x^{\prime}$ with $1, w^{\prime}, u x, v y, u^{\prime} v^{\prime}$ with $2, v, v^{\prime}, u w, u^{\prime} y$ with $3, u, u^{\prime}, v w, v^{\prime} y$, with 4 , and $v x, u y, v^{\prime} w^{\prime}, u^{\prime} x^{\prime}$ with 5 .

Hence we assume that $x x^{\prime} \notin E(G)$.
Let $x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}$ be vertices with $x x_{1}, x x_{2}, x^{\prime} x_{1}^{\prime}, x^{\prime} x_{2}^{\prime} \in E(G)$. Delete u, v, w, u^{\prime}, v^{\prime}, w^{\prime} from G and add three new edges $y x, y x^{\prime}$ and $x x^{\prime}$. It is easy to check by Facts 1 and 2 that the resulting graph G^{\prime} is a Nicop graph with maximum degree at most 4, hence by (2), G^{\prime} admits a total 5-coloring c. Without loss of generality, assume that $c\left(x^{\prime} x_{1}^{\prime}\right)=1, c\left(x^{\prime} x_{2}^{\prime}\right)=2, c\left(x^{\prime}\right)=3$ and $c\left(x x^{\prime}\right)=5$.

First, suppose that the color on x is either 1 or 2 , say 1 .
If $3 \in\left\{c\left(x x_{1}\right), c\left(x x_{2}\right)\right\}$, then $2 \notin\left\{c\left(x x_{1}\right), c\left(x x_{2}\right)\right\}$, otherwise $x y$ and $x^{\prime} y$ are colored with 4 , a contradiction. Therefore, we assume that $c\left(x x_{1}\right)=3$ and $c\left(x x_{2}\right)=4$. Extend c to a total 5-coloring of G by coloring $w, w^{\prime}, y, u v, u^{\prime} v^{\prime}$ with $1, u^{\prime}, u x, v y, v^{\prime} w^{\prime}$ with $2, u, v w, u^{\prime} w^{\prime}, v^{\prime} y$ with $3, v, u w, u^{\prime} y, v^{\prime} x^{\prime}$ with 4 , and $v^{\prime}, u y, v x, u^{\prime} x^{\prime}$ with 5 .

If $3 \notin\left\{c\left(x x_{1}\right), c\left(x x_{2}\right)\right\}$, then $\left\{c\left(x x_{1}\right), c\left(x x_{2}\right)\right\}=\{2,4\}$, and extend c to a total 5 -coloring of G by coloring $w, w^{\prime}, y, u v, u^{\prime} v^{\prime}$ with $1, u, u^{\prime}, v y, v^{\prime} w^{\prime}$ with 2 , $u x, v w, u^{\prime} w^{\prime}, v^{\prime} y$ with $3, v, u w, u^{\prime} y^{\prime}, v^{\prime} x^{\prime}$ with 4 , and $v^{\prime}, u y, v x, u^{\prime} x^{\prime}$ with 5 .

Second, suppose that the color on x is neither 1 nor 2 . This implies that $c(x)=4$ and $\left\{c\left(x x_{1}\right), c\left(x x_{2}\right)\right\} \cap\{1,2\} \neq \emptyset$. By symmetry, assume that $c\left(x x_{1}\right)=1$, and thus $c\left(x x_{2}\right) \in\{2,3\}$.

If $c\left(x x_{2}\right)=2$, then extend c to a total 5-coloring of G by coloring $u, v^{\prime}, v w, u^{\prime} y$ with $1, v, u^{\prime}, u w, v^{\prime} y$ with $2, w^{\prime}, u x, v y, u^{\prime} v^{\prime}$ with $3, w, u v, v^{\prime} w^{\prime}, u^{\prime} x^{\prime}$ with 4 , and $v x, u y, u^{\prime} w^{\prime}, v^{\prime} x^{\prime}$ with 5.

If $c\left(x x_{2}\right)=3$, then extend c to a total 5-coloring of G by coloring $u, v^{\prime}, v w, u^{\prime} y$ with $1, v, u^{\prime}, u x, v^{\prime} y$ with $2, w^{\prime}, u w, v y, u^{\prime} v^{\prime}$ with $3, w, u v, v^{\prime} w^{\prime}, u^{\prime} x^{\prime}$ with 4 , and $v x, u y, u^{\prime} w^{\prime}, v^{\prime} x^{\prime}$ with 5.

Theorem 4.13 Every Nicop graph with maximum degree at most 4 is total 5-colorable.
Proof Let G be a minimum counterexample to this claim in terms of $|V(G)|+|E(G)|$. By Corollaries 4.5 and 4.8, and Lemmas 4.9, 4.10, 4.11 and 4.12, G does not contain any configurations among $G_{1}-G_{15}$. This contradicts Theorem 3.11.

Corollary 4.14 If G is a Nicop graph with maximum degree $\Delta \geq 4$, then $\chi^{\prime \prime}(G)=$ $\Delta+1$.

Proof Zhang's result in [10] implies this claim for the case when $\Delta \geq 5$, and Theorem 4.13 implies this for the case when $\Delta=4$.

Since K_{4} is a Nicop graph with maximum degree 3 and total chromatic number 5, the lower bound for Δ in Corollary 4.14 is sharp.

Acknowledgements The author appreciates the anonymous referees sincerely for their helpful comments. This paper is supported by National Natural Science Foundation of China (No. 11301410), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130203120021), and the Fundamental Research Funds for the Central Universities (No. JB150714).

References

Auer C, Bachmaier C, Brandenburg FJ et al (2016) Outer 1-planar graphs. Algorithmica 74(4):1293-1320
Behzad M (1965) Graphs and their chromatic numbers. Doctoral thesis, Michigan State University
Eggleton RB (1986) Rectilinear drawings of graphs. Utilitas Math 29:149-172
Vizing V (1968) Some unsolved problems in graph theory. Uspekhi Mat Nauk 23:117-134
Wang W, Zhang K (1999) Δ-Matchings and edge-face chromatic numbers. Acta Math Appl Sin 22:236-242
Wu JL, Hu D (2004) Total coloring of series-parallel graphs. ARS Comb 73:209-211
Yap HP (1996) Total colourings of graphs. Lecture notes in mathematics 1623. Springer, Berlin
Zhang X (2013) List total coloring of pseodo-outerplanar graphs. Discret Math 313:2297-2306
Zhang X (2014) Drawing complete multipartite graphs on the plane with restrictions on crossings. Acta Math Sin (Engl Ser) 30(12):2045-2053
Zhang X, Liu G Total coloring of pseudo-outerplanar graphs. arXiv:1108.5009
Zhang X, Liu G, Wu JL (2012) Edge covering pseudo-outerplanar graphs with forests. Discret Math 312:2788-2799
Zhang Z, Zhang J, Wang J (1988) The total chromatic number of some graphs. Sci Sin Ser A 31:1434-1441

[^0]: Springer

[^1]: X Xin Zhang
 xzhang@xidian.edu.cn
 1 School of Mathematics and Statistics, Xidian University, Xi'an 710071, China

