Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

An equitable partition of a graph G is a partition of the vertex set of G such that the sizes of

any two parts differ by at most one. In this note, we prove that every subcubic graph can

be equitably partitioned into *k* induced forests for any integer $k \ge 2$.

Note Equitable vertex arboricity of subcubic graphs*

Xin Zhang

School of Mathematics and Statistics, Xidian University, Xi'an 710071, China

ARTICLE INFO

ABSTRACT

Article history: Received 1 August 2015 Received in revised form 31 January 2016 Accepted 1 February 2016

Keywords: Equitable coloring Equitable partition Vertex arboricity Subcubic graph

All graphs considered in this note are finite, simple and undirected unless otherwise stated. By V(G), E(G), $\delta(G)$ and $\Delta(G)$, we denote the vertex set, the edge set, the minimum degree and the maximum degree of a graph *G*, respectively. The *degree* of a vertex *v* in *G*, denoted by d(v, G), is the number of edges that are incident with *v* in *G*. By e(G), we denote the *size* of *G*, i.e., the number of edges in *G*. For two disjoint vertex set *U* and *W*, we use e(U, W) to denote the set of edges whose end-vertices lie in both *U* and *W*. The subgraph of *G* induced by a vertex set *U* is denoted by G[U].

The vertex arboricity va(G) of a graph G is the minimum number of subsets into which the vertex set V(G) can be partitioned so that each subset induces a forest. This notion was introduced by Chartrand and Kronk [2] in 1969, who proved that $va(G) \leq 3$ for every planar graph.

In 2013, Wu, Zhang and Li [5] introduced an equitable version of the vertex arboricity. An *equitable partition* of a graph *G* is a partition of the vertex set of *G* such that the sizes of any two parts differ by at most one. The *equitable vertex arboricity* $va_{eq}(G)$ of a graph *G* is the minimum number of induced forests into which *G* can be equitably partitioned, and the *strong equitable vertex arboricity* $va_{eq}^*(G)$ of *G* is the minimum integer *t* so that *G* can be equitably partitioned into *t'* induced forests for any $t' \ge t$. Note that $va_{eq}(G)$ and $va_{eq}^*(G)$ can vary a lot. For example, $va_{eq}(K_{n,n}) = 2$ and $va_{eq}^*(K_{n,n}) = 2\lfloor(\sqrt{8n+9}-1)/4\rfloor$ if 2n = t(t+3) and *t* is odd, see [5]. Concerning $va_{eq}^*(G)$, Wu, Zhang, and Li made the following two conjectures:

Conjecture 1. $va_{eq}^*(G) \leq \lceil \frac{\Delta(G)+1}{2} \rceil$ for every graph *G*.

Conjecture 2. There is a constant *c* so that $va_{eq}^*(G) \leq c$ for every planar graph *G*.

Recently, Esperet, Lemoine and Maffray [3] proved that $va_{eq}^*(G) \le \chi_a(G) - 1$ for any graph *G*, where $\chi_a(G)$ denotes the acyclic chromatic number of *G*. It was proved by Borodin [1] that any planar graph has an acyclic coloring with at most 5 colors. Therefore, the answer to Conjecture 2 is positive. In other words, $va_{eq}^*(G) \le 4$ for every planar graph *G*. On the other hand, Conjecture 1 was confirmed for complete bipartite graphs [5] and graphs *G* with $\Delta(G) \ge |G|/2$ [6].

E-mail address: xzhang@xidian.edu.cn.

http://dx.doi.org/10.1016/j.disc.2016.02.003 0012-365X/© 2016 Elsevier B.V. All rights reserved.

© 2016 Elsevier B.V. All rights reserved.

^{*} Supported by SRFDP (No. 20130203120021), NSFC (Nos. 11301410, 11271230), and the Fundamental Research Funds for the Central Universities (No. JB150714).

A graph *G* is *cubic* if *G* is 3-regular, and is *subcubic* if it is a subgraph of a cubic graph. Grünbaum [4] showed that the acyclic chromatic number of any subcubic graph is at most 4, and this assertion $\chi_a(G) \le 4$ for any subcubic graph *G* is best possible. Therefore, by the assertion $va_{eq}^*(G) \le \chi_a(G) - 1$ of Esperet, Lemoine and Maffray, we immediately deduce that $va_{eq}^*(G) \le 3$ for every subcubic graph *G*.

In the remaining of this note, we confirm Conjecture 1 for subcubic graphs by proving

Theorem 3. Every subcubic graph can be equitably partitioned into k induced forests for any integer $k \ge 2$, i.e., $va_{eq}^*(G) \le 2$ for every subcubic graph *G*.

Actually, since we already have $va_{ea}^*(G) \leq 3$, we just need to prove the following

Theorem 4. Any subcubic graph G can be equitably partitioned into two induced forests.

Let *G* be a counterexample to Theorem 4 with |E(G)| + |V(G)| being as small as possible. It is obvious that $\delta(G) \ge 2$.

Lemma 5. G is a cubic graph.

Proof. Suppose, to the contrary, that there is an edge uv with d(u, G) = 2 and $2 \le d(v, G) \le 3$. By the minimality of G, the vertex set of the graph $G - \{u, v\}$ can be equitably partitioned into two subsets V_1 and V_2 so that each of them induces a forest. Without loss of generality, assume that $d(v, G[V_1]) \le 1$. Moving v to V_1 and u to V_2 , we get an equitable partition $V_1 \cup \{v\}$ and $V_2 \cup \{u\}$ of V(G), each of which induces a forest, a contradiction. \Box

Let *x* be a vertex with neighbors x_1 , x_2 and x_3 in *G*. By our assumption, the vertex set of $G - xx_1$ can be equitably partitioned into two subsets V_1 and V_2 so that each of them induces a forest. Since *G* is cubic by Lemma 5, the order of *G* is even, and thus $|V_1| = |V_2|$. Let $F_1 = G[V_1]$ and $F_2 = G[V_2]$. If *x* and x_1 belong to different subsets, or *x*, x_1 belong to a subset and x_2 , x_3 belong to the other subset, then *G* can be equitably partitioned into two induced forests F_1 and F_2 , a contradiction. Therefore, we assume, without loss of generality, that x, x_1 , $x_2 \in V_1$.

Lemma 6. Every vertex in V_2 has at least two neighbors in V_1 .

Proof. If $u \in V_2$ has at most one neighbor in V_1 , then move u to V_1 and move x to V_2 . It is easy to see that $V_1 \cup \{u\} \setminus \{x\}$ and $V_2 \cup \{x\} \setminus \{u\}$ is an equitable partition of V(G) so that each of them induces a forest, a contradiction. \Box

By Lemma 6, we split V_2 into two subsets

 $\mathcal{A} = \{ u \in V_2 \mid d(u, V_1) = 2 \}$

and

 $\mathcal{B} = \{ u \in V_2 \mid d(u, V_1) = 3 \}.$ Let $s = |V_1| = |V_2|$ and $a = |\mathcal{A}|$. We have $e(\mathcal{A} \cup \mathcal{B}, V_1) = 2a + 3(s - a) = 3s - a$

and

e(G)=3s.

It follows that

$$e(F_1) + e(G[\mathcal{A}]) = e(G) - e(\mathcal{A} \cup \mathcal{B}, V_1) = a.$$

Note that \mathcal{B} is an independent set and $e(\mathcal{A}, \mathcal{B}) = 0$.

Since every vertex in A has exactly two neighbors in V_1 and has none neighbor in B, it has exactly one neighbor in A. This implies that

$$e(G[\mathcal{A}])=\frac{a}{2}$$

and *a* is even. Therefore,

$$e(F_1 - xx_1) = e(F_1) - 1 = \frac{a}{2} - 1.$$

Lemma 7. If a vertex $v \in V_1$ has two neighbors $u, w \in A$, then $uw \in E(G)$.

Proof. If $uw \notin E(G)$, then move u and w to V_1 , and v and x to V_2 . Note that $v \neq x$, since x has at most one neighbor in A. Let $F'_1 := F_1 \cup \{u, w\} \setminus \{v, x\}$ and $F'_2 := F_2 \cup \{v, x\} \setminus \{u, w\}$. Since u and w have degrees at most 1 in F'_1 , and $uw \notin E(F'_1), F'_1$ is an induced forest. If $v \neq x_1, x_2, x_3$, then x and v have degrees at most 1 in F'_2 , and $xv \notin E(F'_2)$. If $v = x_j$ for some j = 1, 2, 3, then x has degree at most 2 in F'_2 and x is the unique neighbor of v in F'_2 . In either case, F'_2 is an induced forest. Hence G can be equitably partitioned into two induced forests F'_1 and F'_2 , a contradiction. \Box

Lemma 8. Every vertex in V_1 has at most two neighbors in A.

Proof. If a vertex in V_1 has three neighbors u, v, w in A, then by Lemma 7, u, v and w induce a triangle in G[A]. However, this is impossible, since G[A] is a forest.

Let $S = \{u \in V_1 \mid \exists v \in A, \text{ s.t. } uv \in E(G)\}$ denotes the set of vertices in V_1 that are adjacent to some vertex in A. By Lemma 8, $e(S, A) \leq 2|S|$. By the definition of A, we have $e(S, A) = e(V_1, A) = 2a$. This implies that

|S| > a.

Lemma 9. If a vertex $u \in A$ has two neighbors v and w in V_1 , then each of v and w is incident with at least one edge in $F_1 - xx_1$. In other words, $d(v, F_1 - xx_1) > 1$ for each $v \in S$.

Proof. Suppose, to the contrary, that $d(v, F_1 - xx_1) = 0$. Moving *u* to V_1 and *x* to V_2 , we obtain an equitable partition $V_1 \cup \{u\} \setminus \{x\}$ and $V_2 \cup \{x\} \setminus \{u\}$ of V(G), each of which induces a forest, a contradiction. \Box

Proof of Theorem 4. Let *G* be a counterexample to Theorem 4 with |E(G)| + |V(G)| being as small as possible. Since $|S| \ge a$, there are at least $\frac{a}{2}$ edges in $F_1 - xx_1$, otherwise there is at least one vertex in S that is incident with no edge in $F_1 - xx_1$, contradicting Lemma 9. However, this is impossible since $e(F_1 - xx_1) = \frac{a}{2} - 1$. This contradiction completes the proof.

References

- [1] O.V. Borodin, On acyclic coloring of planar graphs, Discrete Math. 25 (1979) 211-236.
- [2] G. Chartrand, H.V. Kronk, The point-arboricity of planar graphs, J. Lond. Math. Soc. 44 (1969) 612–616.
- [3] L. Esperet, L. Lemoine, F. Maffray, Equitable partition of graphs into induced forests, Discrete Math. 338 (8) (2015) 1481–1483.
- [4] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390–408.
- [5] J.-L. Wu, X. Zhang, H. Li, Equitable vertex arboricity of graphs, Discrete Math. 313 (2013) 2696–2701.
 [6] X. Zhang, J.-L. Wu, A conjecture on equitable vertex arboricity of graphs, Filomat 28 (1) (2014) 217–219.