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a b s t r a c t

An equitable partition of a graph G is a partition of the vertex set of G such that the sizes of
any two parts differ by at most one. In this note, we prove that every subcubic graph can
be equitably partitioned into k induced forests for any integer k ≥ 2.

© 2016 Elsevier B.V. All rights reserved.

All graphs considered in this note are finite, simple and undirected unless otherwise stated. By V (G), E(G), δ(G) and∆(G),
we denote the vertex set, the edge set, the minimum degree and the maximum degree of a graph G, respectively. The degree
of a vertex v in G, denoted by d(v,G), is the number of edges that are incident with v in G. By e(G), we denote the size of
G, i.e., the number of edges in G. For two disjoint vertex set U and W , we use e(U,W ) to denote the set of edges whose
end-vertices lie in both U andW . The subgraph of G induced by a vertex set U is denoted by G[U].

The vertex arboricity va(G) of a graph G is the minimum number of subsets into which the vertex set V (G) can be
partitioned so that each subset induces a forest. This notionwas introduced by Chartrand and Kronk [2] in 1969, who proved
that va(G) ≤ 3 for every planar graph.

In 2013, Wu, Zhang and Li [5] introduced an equitable version of the vertex arboricity. An equitable partition of a graph G
is a partition of the vertex set of G such that the sizes of any two parts differ by at most one. The equitable vertex arboricity
vaeq(G) of a graph G is the minimum number of induced forests into which G can be equitably partitioned, and the strong
equitable vertex arboricity va∗

eq(G) of G is theminimum integer t so that G can be equitably partitioned into t ′ induced forests
for any t ′ ≥ t . Note that vaeq(G) and va∗

eq(G) can vary a lot. For example, vaeq(Kn,n) = 2 and va∗
eq(Kn,n) = 2⌊(

√
8n + 9−1)/4⌋

if 2n = t(t + 3) and t is odd, see [5]. Concerning va∗
eq(G), Wu, Zhang, and Li made the following two conjectures:

Conjecture 1. va∗
eq(G) ≤ ⌈

∆(G)+1
2 ⌉ for every graph G.

Conjecture 2. There is a constant c so that va∗
eq(G) ≤ c for every planar graph G.

Recently, Esperet, Lemoine and Maffray [3] proved that va∗
eq(G) ≤ χa(G) − 1 for any graph G, where χa(G) denotes the

acyclic chromatic number of G. It was proved by Borodin [1] that any planar graph has an acyclic coloring with at most 5
colors. Therefore, the answer to Conjecture 2 is positive. In other words, va∗

eq(G) ≤ 4 for every planar graph G. On the other
hand, Conjecture 1 was confirmed for complete bipartite graphs [5] and graphs G with ∆(G) ≥ |G|/2 [6].
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A graph G is cubic if G is 3-regular, and is subcubic if it is a subgraph of a cubic graph. Grünbaum [4] showed that the
acyclic chromatic number of any subcubic graph is at most 4, and this assertion χa(G) ≤ 4 for any subcubic graph G is best
possible. Therefore, by the assertion va∗

eq(G) ≤ χa(G) − 1 of Esperet, Lemoine and Maffray, we immediately deduce that
va∗

eq(G) ≤ 3 for every subcubic graph G.
In the remaining of this note, we confirm Conjecture 1 for subcubic graphs by proving

Theorem 3. Every subcubic graph can be equitably partitioned into k induced forests for any integer k ≥ 2, i.e., va∗
eq(G) ≤ 2 for

every subcubic graph G.

Actually, since we already have va∗
eq(G) ≤ 3, we just need to prove the following

Theorem 4. Any subcubic graph G can be equitably partitioned into two induced forests.

Let G be a counterexample to Theorem 4 with |E(G)| + |V (G)| being as small as possible. It is obvious that δ(G) ≥ 2.

Lemma 5. G is a cubic graph.

Proof. Suppose, to the contrary, that there is an edge uv with d(u,G) = 2 and 2 ≤ d(v,G) ≤ 3. By the minimality of G,
the vertex set of the graph G − {u, v} can be equitably partitioned into two subsets V1 and V2 so that each of them induces
a forest. Without loss of generality, assume that d(v,G[V1]) ≤ 1. Moving v to V1 and u to V2, we get an equitable partition
V1 ∪ {v} and V2 ∪ {u} of V (G), each of which induces a forest, a contradiction. �

Let x be a vertexwith neighbors x1, x2 and x3 inG. By our assumption, the vertex set ofG−xx1 can be equitably partitioned
into two subsets V1 and V2 so that each of them induces a forest. Since G is cubic by Lemma 5, the order of G is even, and
thus |V1| = |V2|. Let F1 = G[V1] and F2 = G[V2]. If x and x1 belong to different subsets, or x, x1 belong to a subset and x2, x3
belong to the other subset, then G can be equitably partitioned into two induced forests F1 and F2, a contradiction. Therefore,
we assume, without loss of generality, that x, x1, x2 ∈ V1.

Lemma 6. Every vertex in V2 has at least two neighbors in V1.

Proof. If u ∈ V2 has at most one neighbor in V1, then move u to V1 and move x to V2. It is easy to see that V1 ∪ {u} \ {x} and
V2 ∪ {x} \ {u} is an equitable partition of V (G) so that each of them induces a forest, a contradiction. �

By Lemma 6, we split V2 into two subsets

A = {u ∈ V2 | d(u, V1) = 2}

and

B = {u ∈ V2 | d(u, V1) = 3}.

Let s = |V1| = |V2| and a = |A|. We have

e(A ∪ B, V1) = 2a + 3(s − a) = 3s − a

and

e(G) = 3s.

It follows that

e(F1) + e(G[A]) = e(G) − e(A ∪ B, V1) = a.

Note that B is an independent set and e(A, B) = 0.
Since every vertex in A has exactly two neighbors in V1 and has none neighbor in B, it has exactly one neighbor in A.

This implies that

e(G[A]) =
a
2

and a is even. Therefore,

e(F1 − xx1) = e(F1) − 1 =
a
2

− 1.

Lemma 7. If a vertex v ∈ V1 has two neighbors u, w ∈ A, then uw ∈ E(G).

Proof. If uw ∉ E(G), then move u and w to V1, and v and x to V2. Note that v ≠ x, since x has at most one neighbor in A. Let
F ′

1 := F1 ∪ {u, w} \ {v, x} and F ′

2 := F2 ∪ {v, x} \ {u, w}. Since u and w have degrees at most 1 in F ′

1, and uw ∉ E(F ′

1), F
′

1 is
an induced forest. If v ≠ x1, x2, x3, then x and v have degrees at most 1 in F ′

2, and xv ∉ E(F ′

2). If v = xj for some j = 1, 2, 3,
then x has degree at most 2 in F ′

2 and x is the unique neighbor of v in F ′

2. In either case, F ′

2 is an induced forest. Hence G can
be equitably partitioned into two induced forests F ′

1 and F ′

2, a contradiction. �
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Lemma 8. Every vertex in V1 has at most two neighbors in A.

Proof. If a vertex in V1 has three neighbors u, v, w in A, then by Lemma 7, u, v and w induce a triangle in G[A]. However,
this is impossible, since G[A] is a forest. �

Let S = {u ∈ V1 | ∃v ∈ A, s.t. uv ∈ E(G)} denotes the set of vertices in V1 that are adjacent to some vertex in A. By
Lemma 8, e(S, A) ≤ 2|S|. By the definition of A, we have e(S, A) = e(V1, A) = 2a. This implies that

|S| ≥ a.

Lemma 9. If a vertex u ∈ A has two neighbors v and w in V1, then each of v and w is incident with at least one edge in F1 − xx1.
In other words, d(v, F1 − xx1) ≥ 1 for each v ∈ S.

Proof. Suppose, to the contrary, that d(v, F1 − xx1) = 0. Moving u to V1 and x to V2, we obtain an equitable partition
V1 ∪ {u} \ {x} and V2 ∪ {x} \ {u} of V (G), each of which induces a forest, a contradiction. �

Proof of Theorem 4. Let G be a counterexample to Theorem 4with |E(G)|+ |V (G)| being as small as possible. Since |S| ≥ a,
there are at least a

2 edges in F1 − xx1, otherwise there is at least one vertex in S that is incident with no edge in F1 − xx1,
contradicting Lemma 9. However, this is impossible since e(F1 − xx1) =

a
2 − 1. This contradiction completes the proof. �
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