Note

Equitable vertex arboricity of subcubic graphs*

Xin Zhang
School of Mathematics and Statistics, Xidian University, Xi'an 710071, China

A R T I C L E I N F O

Article history:

Received 1 August 2015
Received in revised form 31 January 2016
Accepted 1 February 2016

Abstract

An equitable partition of a graph G is a partition of the vertex set of G such that the sizes of any two parts differ by at most one. In this note, we prove that every subcubic graph can be equitably partitioned into k induced forests for any integer $k \geq 2$.

© 2016 Elsevier B.V. All rights reserved.

Keywords:

Equitable coloring
Equitable partition
Vertex arboricity
Subcubic graph

All graphs considered in this note are finite, simple and undirected unless otherwise stated. By $V(G), E(G), \delta(G)$ and $\Delta(G)$, we denote the vertex set, the edge set, the minimum degree and the maximum degree of a graph G, respectively. The degree of a vertex v in G, denoted by $d(v, G)$, is the number of edges that are incident with v in G. By $e(G)$, we denote the size of G, i.e., the number of edges in G. For two disjoint vertex set U and W, we use $e(U, W)$ to denote the set of edges whose end-vertices lie in both U and W. The subgraph of G induced by a vertex set U is denoted by $G[U]$.

The vertex arboricity $v a(G)$ of a graph G is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces a forest. This notion was introduced by Chartrand and Kronk [2] in 1969, who proved that $v a(G) \leq 3$ for every planar graph.

In 2013, Wu, Zhang and Li [5] introduced an equitable version of the vertex arboricity. An equitable partition of a graph G is a partition of the vertex set of G such that the sizes of any two parts differ by at most one. The equitable vertex arboricity $v a_{e q}(G)$ of a graph G is the minimum number of induced forests into which G can be equitably partitioned, and the strong equitable vertex arboricity $v a_{e q}^{*}(G)$ of G is the minimum integer t so that G can be equitably partitioned into t^{\prime} induced forests for any $t^{\prime} \geq t$. Note that $v a_{e q}(G)$ and $v a_{e q}^{*}(G)$ can vary a lot. For example, $v a_{e q}\left(K_{n, n}\right)=2$ and $v a_{e q}^{*}\left(K_{n, n}\right)=2\lfloor(\sqrt{8 n+9}-1) / 4\rfloor$ if $2 n=t(t+3)$ and t is odd, see [5]. Concerning $v a_{e q}^{*}(G), \mathrm{Wu}, \mathrm{Zhang}$, and Li made the following two conjectures:

Conjecture 1. $v a_{e q}^{*}(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$ for every graph G.
Conjecture 2. There is a constant c so that $v a_{e q}^{*}(G) \leq c$ for every planar graph G.
Recently, Esperet, Lemoine and Maffray [3] proved that $v a_{e q}^{*}(G) \leq \chi_{a}(G)-1$ for any graph G, where $\chi_{a}(G)$ denotes the acyclic chromatic number of G. It was proved by Borodin [1] that any planar graph has an acyclic coloring with at most 5 colors. Therefore, the answer to Conjecture 2 is positive. In other words, $v a_{e q}^{*}(G) \leq 4$ for every planar graph G. On the other hand, Conjecture 1 was confirmed for complete bipartite graphs [5] and graphs G with $\Delta(G) \geq|G| / 2$ [6].

[^0]A graph G is cubic if G is 3-regular, and is subcubic if it is a subgraph of a cubic graph. Grünbaum [4] showed that the acyclic chromatic number of any subcubic graph is at most 4 , and this assertion $\chi_{a}(G) \leq 4$ for any subcubic graph G is best possible. Therefore, by the assertion $v a_{e q}^{*}(G) \leq \chi_{a}(G)-1$ of Esperet, Lemoine and Maffray, we immediately deduce that $v a_{e q}^{*}(G) \leq 3$ for every subcubic graph G.

In the remaining of this note, we confirm Conjecture 1 for subcubic graphs by proving
Theorem 3. Every subcubic graph can be equitably partitioned into k induced forests for any integer $k \geq 2$, i.e., va $a_{e q}^{*}(G) \leq 2$ for every subcubic graph G.

Actually, since we already have $v a_{e q}^{*}(G) \leq 3$, we just need to prove the following
Theorem 4. Any subcubic graph G can be equitably partitioned into two induced forests.
Let G be a counterexample to Theorem 4 with $|E(G)|+|V(G)|$ being as small as possible. It is obvious that $\delta(G) \geq 2$.
Lemma 5. G is a cubic graph.
Proof. Suppose, to the contrary, that there is an edge $u v$ with $d(u, G)=2$ and $2 \leq d(v, G) \leq 3$. By the minimality of G, the vertex set of the graph $G-\{u, v\}$ can be equitably partitioned into two subsets V_{1} and V_{2} so that each of them induces a forest. Without loss of generality, assume that $d\left(v, G\left[V_{1}\right]\right) \leq 1$. Moving v to V_{1} and u to V_{2}, we get an equitable partition $V_{1} \cup\{v\}$ and $V_{2} \cup\{u\}$ of $V(G)$, each of which induces a forest, a contradiction.

Let x be a vertex with neighbors x_{1}, x_{2} and x_{3} in G. By our assumption, the vertex set of $G-x x_{1}$ can be equitably partitioned into two subsets V_{1} and V_{2} so that each of them induces a forest. Since G is cubic by Lemma 5 , the order of G is even, and thus $\left|V_{1}\right|=\left|V_{2}\right|$. Let $F_{1}=G\left[V_{1}\right]$ and $F_{2}=G\left[V_{2}\right]$. If x and x_{1} belong to different subsets, or x, x_{1} belong to a subset and x_{2}, x_{3} belong to the other subset, then G can be equitably partitioned into two induced forests F_{1} and F_{2}, a contradiction. Therefore, we assume, without loss of generality, that $x, x_{1}, x_{2} \in V_{1}$.

Lemma 6. Every vertex in V_{2} has at least two neighbors in V_{1}.
Proof. If $u \in V_{2}$ has at most one neighbor in V_{1}, then move u to V_{1} and move x to V_{2}. It is easy to see that $V_{1} \cup\{u\} \backslash\{x\}$ and $V_{2} \cup\{x\} \backslash\{u\}$ is an equitable partition of $V(G)$ so that each of them induces a forest, a contradiction.

By Lemma 6, we split V_{2} into two subsets

$$
\mathcal{A}=\left\{u \in V_{2} \mid d\left(u, V_{1}\right)=2\right\}
$$

and

$$
\begin{aligned}
& \mathscr{B}=\left\{u \in V_{2} \mid d\left(u, V_{1}\right)=3\right\} . \\
& \text { Let } s=\left|V_{1}\right|=\left|V_{2}\right| \text { and } a=|\mathscr{A}| \text {. We have } \\
& \quad e\left(\mathscr{A} \cup \mathscr{B}, V_{1}\right)=2 a+3(s-a)=3 s-a
\end{aligned}
$$

and

$$
e(G)=3 s
$$

It follows that

$$
e\left(F_{1}\right)+e(G[\mathcal{A}])=e(G)-e\left(\mathcal{A} \cup \mathscr{B}, V_{1}\right)=a
$$

Note that \mathscr{B} is an independent set and $e(\mathcal{A}, \mathscr{B})=0$.
Since every vertex in \mathcal{A} has exactly two neighbors in V_{1} and has none neighbor in \mathscr{B}, it has exactly one neighbor in \mathcal{A}. This implies that

$$
e(G[\mathcal{A}])=\frac{a}{2}
$$

and a is even. Therefore,

$$
e\left(F_{1}-x x_{1}\right)=e\left(F_{1}\right)-1=\frac{a}{2}-1
$$

Lemma 7. If a vertex $v \in V_{1}$ has two neighbors $u, w \in \mathcal{A}$, then $u w \in E(G)$.
Proof. If $u w \notin E(G)$, then move u and w to V_{1}, and v and x to V_{2}. Note that $v \neq x$, since x has at most one neighbor in \mathcal{A}. Let $F_{1}^{\prime}:=F_{1} \cup\{u, w\} \backslash\{v, x\}$ and $F_{2}^{\prime}:=F_{2} \cup\{v, x\} \backslash\{u, w\}$. Since u and w have degrees at most 1 in F_{1}^{\prime}, and $u w \notin E\left(F_{1}^{\prime}\right), F_{1}^{\prime}$ is an induced forest. If $v \neq x_{1}, x_{2}, x_{3}$, then x and v have degrees at most 1 in F_{2}^{\prime}, and $x v \notin E\left(F_{2}^{\prime}\right)$. If $v=x_{j}$ for some $j=1,2$, 3, then x has degree at most 2 in F_{2}^{\prime} and x is the unique neighbor of v in F_{2}^{\prime}. In either case, F_{2}^{\prime} is an induced forest. Hence G can be equitably partitioned into two induced forests F_{1}^{\prime} and F_{2}^{\prime}, a contradiction.

Lemma 8. Every vertex in V_{1} has at most two neighbors in \mathcal{A}.
Proof. If a vertex in V_{1} has three neighbors u, v, w in \mathcal{A}, then by Lemma $7, u, v$ and w induce a triangle in $G[\mathcal{A}]$. However, this is impossible, since $G[\mathcal{A}]$ is a forest.

Let $S=\left\{u \in V_{1} \mid \exists v \in \mathcal{A}\right.$, s.t. $\left.u v \in E(G)\right\}$ denotes the set of vertices in V_{1} that are adjacent to some vertex in \mathcal{A}. By Lemma $8, e(S, \mathcal{A}) \leq 2|S|$. By the definition of \mathcal{A}, we have $e(S, \mathcal{A})=e\left(V_{1}, \mathcal{A}\right)=2 a$. This implies that

$$
|S| \geq a .
$$

Lemma 9. If a vertex $u \in \mathcal{A}$ has two neighbors v and w in V_{1}, then each of v and w is incident with at least one edge in $F_{1}-x x_{1}$. In other words, $d\left(v, F_{1}-x x_{1}\right) \geq 1$ for each $v \in S$.
Proof. Suppose, to the contrary, that $d\left(v, F_{1}-x x_{1}\right)=0$. Moving u to V_{1} and x to V_{2}, we obtain an equitable partition $V_{1} \cup\{u\} \backslash\{x\}$ and $V_{2} \cup\{x\} \backslash\{u\}$ of $V(G)$, each of which induces a forest, a contradiction.
Proof of Theorem 4. Let G be a counterexample to Theorem 4 with $|E(G)|+|V(G)|$ being as small as possible. Since $|S| \geq a$, there are at least $\frac{a}{2}$ edges in $F_{1}-x x_{1}$, otherwise there is at least one vertex in S that is incident with no edge in $F_{1}-x x_{1}$, contradicting Lemma 9 . However, this is impossible since $e\left(F_{1}-x x_{1}\right)=\frac{a}{2}-1$. This contradiction completes the proof.

References

[1] O.V. Borodin, On acyclic coloring of planar graphs, Discrete Math. 25 (1979) 211-236.
[2] G. Chartrand, H.V. Kronk, The point-arboricity of planar graphs, J. Lond. Math. Soc. 44 (1969) 612-616.
[3] L. Esperet, L. Lemoine, F. Maffray, Equitable partition of graphs into induced forests, Discrete Math. 338 (8) (2015) 1481-1483.
[4] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390-408.
[5] J.-L. Wu, X. Zhang, H. Li, Equitable vertex arboricity of graphs, Discrete Math. 313 (2013) 2696-2701.
[6] X. Zhang, J.-L. Wu, A conjecture on equitable vertex arboricity of graphs, Filomat 28 (1) (2014) 217-219.

[^0]: ${ }^{t}$ Supported by SRFDP (No. 20130203120021), NSFC (Nos. 11301410, 11271230), and the Fundamental Research Funds for the Central Universities (No. JB150714).

 E-mail address: xzhang@xidian.edu.cn.

