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All graphs considered in this note are finite, simple and undirected unless otherwise stated. By V(G), E(G), §(G) and A(G),
we denote the vertex set, the edge set, the minimum degree and the maximum degree of a graph G, respectively. The degree
of a vertex v in G, denoted by d(v, G), is the number of edges that are incident with v in G. By e(G), we denote the size of
G, i.e.,the number of edges in G. For two disjoint vertex set U and W, we use e(U, W) to denote the set of edges whose
end-vertices lie in both U and W. The subgraph of G induced by a vertex set U is denoted by G[U].

The vertex arboricity va(G) of a graph G is the minimum number of subsets into which the vertex set V(G) can be
partitioned so that each subset induces a forest. This notion was introduced by Chartrand and Kronk [2] in 1969, who proved
that va(G) < 3 for every planar graph.

In 2013, Wu, Zhang and Li [5] introduced an equitable version of the vertex arboricity. An equitable partition of a graph G
is a partition of the vertex set of G such that the sizes of any two parts differ by at most one. The equitable vertex arboricity
Vdeq(G) of a graph G is the minimum number of induced forests into which G can be equitably partitioned, and the strong
equitable vertex arboricity vaz, (G) of G is the minimum integer t so that G can be equitably partitioned into t’ induced forests

foranyt’ > t.Note that vae(G) and vajq (G) canvary alot. For example, vaeq (K, n) = 2 and va:q (Knn) = 21(/8n+9-1)/4]
if2n = t(t + 3) and t is odd, see [5]. Concerning vag, (G), Wu, Zhang, and Li made the following two conjectures:
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Conjecture 1. vajq G <T 1 for every graph G.

Conjecture 2. There is a constant c so that vajq (G) < c for every planar graph G.

Recently, Esperet, Lemoine and Maffray [3] proved that vag (G) < xq(G) — 1 for any graph G, where x,(G) denotes the
acyclic chromatic number of G. It was proved by Borodin [ 1] that any planar graph has an acyclic coloring with at most 5
colors. Therefore, the answer to Conjecture 2 is positive. In other words, va;, (G) < 4 for every planar graph G. On the other
hand, Conjecture 1 was confirmed for complete bipartite graphs [5] and graphs G with A(G) > |G| /2 [6].
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A graph G is cubic if G is 3-regular, and is subcubic if it is a subgraph of a cubic graph. Griinbaum [4] showed that the
acyclic chromatic number of any subcubic graph is at most 4, and this assertion x,(G) < 4 for any subcubic graph G is best

*

possible. Therefore, by the assertion Vg, (G) < xqa(G) — 1 of Esperet, Lemoine and Maffray, we immediately deduce that
vag, (G) < 3 for every subcubic graph G.
In the remaining of this note, we confirm Conjecture 1 for subcubic graphs by proving

Theorem 3. Every subcubic graph can be equitably partitioned into k induced forests for any integer k > 2, i.e., va:q (G) < 2for
every subcubic graph G.

Actually, since we already have va;, (G) < 3, we just need to prove the following

Theorem 4. Any subcubic graph G can be equitably partitioned into two induced forests.

Let G be a counterexample to Theorem 4 with |E(G)| 4+ |V (G)| being as small as possible. It is obvious that §(G) > 2.

Lemma 5. G is a cubic graph.

Proof. Suppose, to the contrary, that there is an edge uv with d(u, G) = 2 and 2 < d(v, G) < 3. By the minimality of G,
the vertex set of the graph G — {u, v} can be equitably partitioned into two subsets V; and V; so that each of them induces
a forest. Without loss of generality, assume that d(v, G[V{]) < 1. Moving v to V; and u to V,, we get an equitable partition
Vi U {v} and V, U {u} of V(G), each of which induces a forest, a contradiction. O

Let x be a vertex with neighbors x1, x; and x5 in G. By our assumption, the vertex set of G—xx; can be equitably partitioned
into two subsets V; and V, so that each of them induces a forest. Since G is cubic by Lemma 5, the order of G is even, and
thus |V1| = |V,|. Let F; = G[V7] and F, = G[V]. If x and x; belong to different subsets, or x, x; belong to a subset and x;, x3
belong to the other subset, then G can be equitably partitioned into two induced forests F; and F,, a contradiction. Therefore,
we assume, without loss of generality, that x, x{, x, € V.

Lemma 6. Every vertex in V5 has at least two neighbors in V7.

Proof. If u € V, has at most one neighbor in V1, then move u to V; and move x to V5. It is easy to see that V; U {u} \ {x} and
Vo U {x} \ {u} is an equitable partition of V(G) so that each of them induces a forest, a contradiction. O

By Lemma 6, we split V, into two subsets
A={ueV,|du V) =2}
and
B ={ueV,|du,V,) =3}
Lets = |V4| = |V;| and a = |A|. We have
e(AUB, V) =2a+3(s—a)=3s—a
and
e(G) = 3s.
It follows that
e(F;) + e(G[4A]) = e(G) —e(AU B, V) = a.

Note that 8 is an independent set and e(4, 8) = 0.
Since every vertex in 4 has exactly two neighbors in V; and has none neighbor in B, it has exactly one neighbor in .
This implies that

a
e(G[A]) = =
(G[AD 5

and a is even. Therefore,

a
e(Fi —xx1) =e(F)) — 1= 3~ 1.

Lemma 7. If a vertex v € Vq has two neighbors u, w € 4, then uw € E(G).

Proof. If uw ¢ E(G), then move u and w to V7, and v and x to V5. Note that v # x, since x has at most one neighbor in +. Let
F =F U{u,w}\ {v,x}and F, :== F, U {v, x} \ {u, w}. Since u and w have degrees at most 1 in F;, and uw ¢ E(F;), F; is
an induced forest. If v # x4, X, X3, then x and v have degrees at most 1in F;, and xv ¢ E(F;).If v = x; for some j = 1, 2, 3,
then x has degree at most 2 in F; and x is the unique neighbor of v in F,. In either case, F; is an induced forest. Hence G can
be equitably partitioned into two induced forests F; and F}, a contradiction. O
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Lemma 8. Every vertex in V1 has at most two neighbors in A.

Proof. If a vertex in V; has three neighbors u, v, w in #, then by Lemma 7, u, v and w induce a triangle in G[4]. However,
this is impossible, since G[4] is a forest. O

LetS = {u € Vi | Jv € A,s.t.uv € E(G)} denotes the set of vertices in V; that are adjacent to some vertex in 4. By
Lemma 8, e(S, ) < 2|S|. By the definition of 4, we have e(S, 4) = e(Vy, A) = 2a. This implies that

IS| > a.

Lemma 9. Ifa vertex u € A has two neighbors v and w in V1, then each of v and w is incident with at least one edge in F; — xX.
In other words, d(v, F; — xx1) > 1foreachv € S.

Proof. Suppose, to the contrary, that d(v, F; — xx;) = 0. Moving u to V; and x to V,, we obtain an equitable partition
Vi U {u} \ {x} and V5, U {x} \ {u} of V(G), each of which induces a forest, a contradiction. O

Proof of Theorem 4. Let G be a counterexample to Theorem 4 with |E(G)| 4 |V (G)| being as small as possible. Since |S| > g,
there are at least % edges in F; — xxq, otherwise there is at least one vertex in S that is incident with no edge in F; — xx;,
contradicting Lemma 9. However, this is impossible since e(F; — xx{) = % — 1. This contradiction completes the proof. O
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