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Abstract The problem of minimum number of choosability of graphs was first intro-
duced by Vizing. It appears in some practical problems when concerning frequency
assignment. In this paper, we study two important list coloring, list edge coloring and
list total coloring. We prove that χ ′

l (G) = Δ and χ ′′
l (G) = Δ + 1 for planar graphs

with Δ ≥ 8 and without adjacent 4-cycles.
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1 Introduction

The theory of graph coloring has important application in combinatorial optimiza-
tion, web design, computer science and so on. Particularly, in files transmission of a
computer network, channel assignment, pattern matching, computation of Hessians
matrix. In this paper, we consider two important coloring, list edge coloring and list
total coloring, which arise in some practical problems concerning frequency assign-
ment. Here are some other interesting colorings, we refer the readers to Angelini and
Frati (2012); Bessy and Havet (2013); Du et al. (2004); Garg et al. (1996); Li et al.
(2013); Wang et al. (2014b, a) etc.

All graphs considered in this paper are simple. Let G be a planar graph and has
embedded in the plane. We use V (G), E(G), F(G),Δ(G) and δ(G) to denote the
vertex set, the edge set, the face set, the maximum degree and the minimum degree
of G, respectively. For a vertex v of G, the degree d(v) denote the number of edges
incidentwith v, and for a face f ofG, thedegree d( f )denote the length of the boundary
walk of f . Denote by k-vertex the vertex of degree k, by k−-vertex the vertex of degree
at most k, by k+-vertex the vertex of degree at least k. If two cycles share at least one
edge, we call them adjacent. We use nk(v), fk(v) and nk( f ) to denote the number of
k-vertices adjacent to the vertex v, the number of k-faces incident with the vertex v,
and the number of k-vertices incident with the face f , respectively. In the following,
we shall introduce the notations of list total coloring and list edge coloring.

The problem of minimum number of choosability of graphs was first introduced
by Vizing (1976). Firstly, list total coloring is a type of coloring that combines list
coloring with total coloring. It is a choice of a color for each vertex or each edge, from
its list of allowed colors; the coloring is proper if no two adjacent or incident elements
receive the same color. Specifically, a mapping L is called to be a total assignment
for a graph G if it assigns a list L(x) of possible colors for each element x ∈ V ∪ E .
If G has a total coloring ϕ such that ϕ(x) ∈ L(x) for all x ∈ V ∪ E , and no two
adjacent or incident elements receive the same color, then we say that ϕ is a total-L
-coloring ofG orG is total-L -colorable. A graphG is called total-k -choosable if it is
total-L-colorable for every total assignment L satisfying |L(x)| ≥ k for each element
x ∈ V ∪ E . The list total chromatic number χ ′′

l (G) of G is the smallest integer k
such that G is total-k-choosable. Similarly, the list edge chromatic number χ ′

l (G) of
G can be defined in terms of coloring the edges alone. The ordinary edge chromatic
number of G are denoted by χ ′(G). Obviously, it holds that χ ′

l (G) ≥ χ ′(G) ≥ Δ and
χ ′′
l (G) ≥ χ ′′(G) ≥ Δ + 1.
As far as list edge colorings and list total colorings are widely studied, quite a few

interesting results have been obtained in recent years. Firstly, we introduce a famous
conjecture.

Conjecture 1 (List Coloring Conjecture) For any graph G,

(a) χ ′
l (G) = χ ′(G);

(b) χ ′′
l (G) = χ ′′(G).

Part (a) of Conjecture 1 was formulated independently by a number of people,
including Vizing, Gupta, Albertson and Collins, Bollobás and Harris (see Hägkvist

123



J Comb Optim (2016) 31:1013–1022 1015

and Chetwynd 1992 or Jensen and Toft 1995), and it is well known as the List Edge
Coloring Conjecture. Part (b) was formulated by Borodin et al. (1997), and it is well
known as theList Total ColoringConjecture. Although this conjecture has been proved
for a few special cases, for example outerplanar graphs and planar graphs withΔ ≥ 12
Borodin et al. (1997), List Coloring Conjecture remains open.

In graph coloring, we known famous Vizing’s Theorem and Total Coloring Con-
jecture, the later is for any graph G, Δ + 1 ≤ χ ′′(G) ≤ Δ + 2. Combining these two
results with List Coloring Conjecture, Conjecture 2 as follows is natural but remain
interesting.

Conjecture 2 For any graph G,

(a) χ ′
l (G) ≤ Δ + 1;

(b) χ ′′
l (G) ≤ Δ + 2.

There are some interesting results about Conjecture 2. Interestingly, the list edge
chromatic number and the list total chromatic number of planar graphs with large
maximum degree equals a lower bound. Hou et al. (2006) proved χ ′

l (G) = Δ and
χ ′′
l (G) = Δ+1 for planar graphs withΔ ≥ 7 and without 4-cycles. Li and Xu (2011)

proved this result for planar graphs with Δ ≥ 6 and no 3-cycles adjacent to 4-cycles.
Liu et al. (2009) proved χ ′

l (G) = Δ and χ ′′
l (G) = Δ+ 1 holds for planar graphs with

Δ ≥ 8 and without intersecting 4-cycles. In this paper, we strength this result and get
the following theorem.

Theorem 1 Suppose G is a planar graph without adjacent 4-cycles. If Δ ≥ 8, then
χ ′
l (G) = Δ and χ ′′

l (G) = Δ + 1.

2 Reducible configurations

In Borodin et al. (1997), Theorem 1 was proved for Δ ≥ 12. Henceforth, to prove
Theorem 1, it suffices to prove the result as follows.

• Let r be a positive integer and 8 ≤ r ≤ 11. Suppose G is a planar graph with
Δ ≤ r and without adjacent 4-cycles, then χ ′

l (G) ≤ max{8, r} and χ ′′
l (G) ≤

max{9, r + 1}.
Let an r − minimalgraph be a connected graph G = (V, E, F) with |V | + |E |

as small as possible. If G is not edge-max{8, r}-choosable, then there is an edge
assignment L for G with |L(e)| = max{8, r} for any edge e ∈ E such that G is not
edge-L-colorable. If G is not total-(max{9, r + 1})-choosable, then there is a total
assignment L for G with |L(x)| = max{9, r + 1} for any x ∈ V ∪ E , such that G is
not total-L-colorable.

By the minimality of G, we first show some known properties (see Borodin et al.
1997).

(a) G is connected;
(b) G contains no 2-alternating cycle;
(c) G contains no edge uv with min{d(u), d(v)} ≤ �max{8,r}

2 � and d(u) + d(v) ≤
max{9, r + 1}.
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Since G has properties (b) and (c), and any 4-cycles are not adjacent in G, we can
get the following observations easily:

(O1) Each face f is incident with at most � d( f )
2 � 3−-vertices. And furthermore, if

f is incident with exactly d( f )
2 3−-vertices (note that d( f ) is even), then f is

incident with at least one 3-vertex.
(O2) Each 5+-vertex v is incident with at most 	 d(v)+1

2 
 3-faces.
Let G2 be the subgraph induced by the edges incident with the 2-vertices of G.

By (b) and (c), we have G2 is a forest. We root G2 at a max{8, r}-vertex, then every
2-vertex has exactly one parent and exactly one child, which are all max{8, r}-vertices.
Moreover, if a max{8, r}-vertex is adjacent to at least two 2-vertices, this max{8, r}-
vertex may be the child of exactly one 2-vertex and the parent of the remaining 2-
vertices.

3 Discharging

We shall complete the proof of above result by using the discharging method. This is
an important and interesting tool during the proof of the colorings of planar graphs.

Case 1 r = 8.
Euler’s formula |V | − |E | + |F | = 2 can be rewritten as

∑

v∈V
(d(v) − 4) +

∑

f ∈F
(d( f ) − 4) = −8 < 0

We define c(x) to be the initial charge. Let c(x) = d(x) − 4 for each x ∈ V ∪ F .
So

∑
x∈V∪F c(x) = −8 < 0. Then we apply the following rules to redistribute the

initial charge that leads to a new charge c′(x).
(R1) From each face f to each of its incident vertices v, transfer

(R1-1) 1
2 , if d( f ) = 5 and d(v) = 2;

(R1-2) 3
4 , if d( f ) = 6 and d(v) = 2;

(R1-3) 1, if d( f ) ≥ 7 and d(v) = 2;

(R1-4) 1
2 , if d( f ) ≥ 5 and d(v) = 3;

(R1-5) 1
8 , if d( f ) ≥ 5, d(v) = 8 and n3−( f ) < � d( f )

2 �.

(R2) From each vertex v to each of its incident 3-faces, transfer

(R2-1) 1
3 , if d(v) = 5;

(R2-2) 1
2 , if d(v) ≥ 6.
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Fig. 1 2 ≤ d(z) ≤ 3 in (b) and d(z) ≥ 4 in (c)

(R3) From each 7+-vertex v to each of its incident 3-vertices u, transfer

(R3-1) 1
4 , if d(v) ≥ 7 and Fig. 1a;

(R3-2) 1
6 , if d(v) ≥ 7 and f4(u) = 1.

(R4) From each 8+-vertex v to its parent u, transfer

(R4-1) 5
3 , if f3(u) = 1 and f4(u) = 1;

(R4-2) 3
2 , if f4−(u) = 1, f5(u) = 1 and except Fig. 1b, c;

(R4-3) 17
12 , if Fig. 1b;

(R4-4) 5
4 , if Fig. 1c;

(R4-5) 5
4 , if f4−(u) = 1 and f6(u) = 1;

(R4-6) 1, if f4−(u) = 1 and f7+(u) = 1;

(R4-7) 1, if f5+(u) = 2.

(R5) From each 8+-vertex v to each of its children u, transfer

(R5-1) 1
3 , if f3(u) = 1 and f4(u) = 1;

(R5-2) 1
4 , if Fig. 1b;

(R5-3) 1
12 , if Fig. 1c.

In the following we shall check c′(x) ≥ 0 for all x ∈ V ∪ F which will be the
desired contradiction.

Final charge of faces. Let f ∈ F . Suppose d( f ) = 3. Then c( f ) =
d( f ) − 4 = −1. If n4−( f ) = 1, then n6+( f ) = 2 by (c), and c′( f ) =
−1 + 1

2 × 2 = 0 by (R2). Otherwise, n5+( f ) = 3 and c′( f ) ≥ −1 +
1
3 × 3 = 0 by (R2). Suppose d( f ) = 4. Then f does not send out any

charge and c′( f ) = c( f ) = 0. Recall that n3−( f ) ≤ � d( f )
2 � by (O1). When

d( f ) ≥ 5, we consider two cases, n3−( f ) = � d( f )
2 � and n3−( f ) < � d( f )

2 �,
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Fig. 2 (O3) and (O4)

since just in the latter case f sends charge to its incident 8-vertices by (R1-5). Suppose
d( f ) = 5. Then c( f ) = 1 and c′( f ) ≥ 1 − max{ 12 × 2, 1

2 + 1
8 × 4, 1

8 × 8} = 0 by

(R1). Suppose d( f ) = 6. Then c( f ) = 2. Note that, if n3−( f ) = � d( f )
2 � = 3, then

n3( f ) ≥ 1 by (O1). Therefore, c′( f ) ≥ 2−max{ 34×2+ 1
2 ,

3
4×2+ 1

8×4} = 0 by (R1).

Suppose d( f ) ≥ 7. If n3−( f ) = � d( f )
2 �, then c′( f ) = c( f )−1×n2( f )− 1

2×n3( f ) ≥
(d( f ) − 4) − 1 × � d( f )

2 � ≥ 0. Otherwise, n3−( f ) < � d( f )
2 �. And therefore,

c′( f ) = c( f ) − 1× n2( f ) − 1
2 × n3( f ) − 1

8 × n8( f ) ≥ (d( f ) − 4) − 1× (� d( f )
2 � −

1) − 1
8 × (d( f ) − � d( f )

2 � + 1) ≥ 0 by (R1).
Let u be a 2-vertex of G. Suppose that v,w are the two vertices adjacent to u, and

that u is the child of w. We call u a bad parent of v if f3(u) = 1 and f4(u) = 1 (i.e.,
vw ∈ E and uv is incident with a 4-face). We call u a bad child of w if f3(u) = 1
and f5−(u) = 1 ( see Fig. 2a and b). Then each 8-vertex sends 5

3 to its bad parent, and
sends at most 1

3 to each of its bad children by (R4-1) and (R5). A 3-vertex u is bad
if f5+(u) = 1 (i.e., u is incident with exactly one 5+-face), and is good otherwise.
Moreover, a 3-vertex u is worst for v if Fig. 1a, and is worse if f4(u) = 1. So each
7+-vertex transfers charge only to bad 3-vertices adjacent to it by (R3). Moreover, we
have the following observations:

(O3) Let u be a 2-vertex in Fig. 2a. Then d( f1) ≥ 5 and d( f2) ≥ 4. Moreover, if
d(z) = 3, then z is a good 3-vertex.

(O4) Let z be a 3-vertex in Fig. 2b–d. Then z is a good 3-vertex.

Final charge of vertices. Let v ∈ V . Note that G has no vertex of degree one.
Suppose d(v) = 2. Then c(v) = d(v) − 4 = −2 and n8(v) = 2 by (c). First, suppose
f4−(v) = 2. Then f3(v) = 1 and f4(v) = 1 since G has no adjacent 4-cycles. So
c′(v) ≥ −2 + 5

3 + 1
3 = 0 by (R4-1) and (R5-1). Second, suppose f4−(v) = 1.

If f5(v) = 1, then c′(v) = −2 + min{ 12 + 3
2 ,

1
2 + 17

12 + 1
12 ,

1
2 + 5

4 + 1
4 } = 0. If

f6(v) = 1, then c′(v) = −2 + 3
4 + 5

4 = 0 by (R1-2) and (R4-5). If f7+(v) = 1, then
c′(v) = −2 + 1 + 1 = 0 by (R1-3) and (R4-6). Third, suppose f5+(v) = 2. Then
c′(v) ≥ −2 + 1

2 × 2 + 1 = 0 by (R1-1) and (R4-7).
Suppose d(v) = 3. Then c(v) = −1, and n7+(v) = 3 by (c). Note that f5+(v) ≥ 1

since G has no adjacent 4-cycles. If f5+(v) = 1, then clearly c′(v) = −1 + min{ 12 +
1
6 × 3, 1

2 + 1
4 × 2} = 0 by (R1-4) and (R3). Otherwise, f5+(v) ≥ 2 and c′(v) ≥

−1 + 1
2 × 2 = 0 by (R1-4). Suppose d(v) = 4. Then clearly c′(v) = c(v) =

0. Suppose d(v) = 5. Then c(v) = 1, and n4−(v) = 0 by (c). Note that by our
discharging rules, v sends charge only to its incident 3-faces. By (O2), f3(v) ≤ 3.
Hence, c′(v) ≥ 1 − 1

3 × 3 = 0 by (R2). Suppose d(v) = 6. This case is similar to
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that of d(v) = 5. We have c(v) = 2, n3−(v) = 0 by (c), and f3(v) ≤ 4 by (O2). So
c′(v) ≥ 2 − 1

2 × 4 = 0 by (R2). Suppose d(v) = 7. Then c(v) = 3, n2(v) = 0 by
(c), and f3(v) ≤ 4. If f3(v) = 4, then v is adjacent to at most two bad 3-vertices, and
c′(v) ≥ 3− 1

2 ×4− 1
4 ×2 = 1

2 > 0 by (R2) and (R3). If f3(v) = 3, then v is adjacent
to at most four bad 3-vertices, and c′(v) ≥ 3− 1

2 × 3− 1
4 × 4 = 1

2 > 0. If f3(v) ≤ 3,
then c′(v) > 3 − 1

2 × 3 − 1
4 × 3 − 1

6 × 4 = 1
12 > 0.

Suppose d(v) = 8. Then c(v) = 4, and f3(v) ≤ 5 by (O2). Suppose n2(v) = 0. If
f3(v) = 5, then v is adjacent to at most one bad 3-vertex. So c′(v) ≥ 4− 1

2 ×5− 1
4 =

5
4 > 0. If f3(v) ≤ 4, then c′(v) ≥ 4 − 1

2 × 4 − 1
4 × 4 − 1

6 × 4 = 1
3 > 0 by (R2) and

(R3).
Suppose n2(v) = 1. Let u be the 2-vertex adjacent to v. Suppose u is a child of

v. Then v sends at most 1
3 to u by R5. If f3(v) = 5. then v is adjacent to at most

one bad 3-vertex, so c′(v) ≥ 4 − 1
2 × 5 − 1

3 − 1
4 = 11

12 > 0. If f3(v) ≤ 4, then
c′(v) ≥ 4 − 1

2 × 4 − 1
3 − 1

4 × 4 − 1
6 × 3 = 1

6 > 0. Suppose u is the parent of v.
Then v sends at most 5

3 to u by R4. First, suppose u is a bad parent (also see Fig. 2a).
Then f3(v) ≤ 4 since G has no adjacent 4-cycles. If f3(v) = 4, then v is adjacent to
at most one bad 3-vertex by (O3) and (O4). So c′(v) ≥ 4− 1

2 × 4− 5
3 − 1

4 = 1
12 > 0.

If f3(v) = 3, then v is adjacent to at most two worst 3-vertices and at most one
worse 3-vertex. So c′(v) ≥ 4 − 1

2 × 3 − 5
3 − 1

4 × 2 − 1
6 = 1

6 > 0. If f3(v) ≤ 2, then
c′(v) ≥ 4− 1

2×2− 5
3− 1

4− 1
6×3 = 7

12 > 0. Second, suppose u is not a bad parent. Then
v transfers at most 32 to u by R4. If f3(v) ≤ 2, then c′(v) ≥ 4− 1

2 ×2− 3
2 − 1

4 − 1
6 ×6 =

1
4 > 0. If f3(v) = 3, then v is adjacent to at most three worst 3-vertices and at most
one worse 3-vertex. So c′(v) ≥ 4 − 1

2 × 3 − 3
2 − 1

4 × 3 − 1
6 = 1

12 > 0. Suppose
f3(v) = 4. Then v is adjacent to at most three bad 3-vertices. If v is adjacent to at
most two bad 3-vertices, then c′(v) ≥ 4 − 1

2 × 4 − 3
2 − 1

4 × 2 = 0. Otherwise, v

is adjacent to three bad 3-vertices. If the parent of v is incident with a 6+-face, then
c′(v) ≥ 4 − 1

2 × 4 − 5
4 − 1

4 × 3 = 0. Otherwise, u receives at most 5
4 from v (see

Fig. 1c), so c′(v) ≥ 4− 1
2 × 4− 5

4 − 1
4 × 2− 1

6 = 1
12 > 0. Suppose f3(v) = 5. Then

v is adjacent to at most one bad 3-vertex by (O4). If uv is incident with a 5-face, then
c′(v) ≥ 4 − 1

2 × 5 − max{ 1712 , ( 54 + 1
6 )} = 1

12 > 0. Otherwise, uv is incident with a
6+-face and v transfers to u at most 5

4 by (R4). So c′(v) ≥ 4 − 1
2 × 5 − 5

4 − 1
4 = 0.

In the following, we assume n2(v) ≥ 2. Then v is adjacent to at most three bad
children since v is incident with no adjacent 4-cycle.

First, suppose v is adjacent to three bad children. Then f3(v) = 3 and v is adjacent
to on bad 3-vertices and no bad parent. So c′(v) ≥ 4 − 1

2 × 3 − 3
2 − 1

3 × 3 = 0.
Second, suppose v is adjacent to two bad children. Then v is adjacent to at most

one bad parent and f3(v) ≤ 5. If v is adjacent to one bad parent, then f3(v) = 3 and
v is adjacent to on bad 3-vertices. So c′(v) ≥ 4 − 1

2 × 3 − 5
3 − 1

3 × 2 = 1
6 > 0.

Otherwise, v is adjacent to no bad parent. Suppose f3(v) = 5. Then v is adjacent to
no parent and v is adjacent to no bad 3-vertex. So c′(v) ≥ 4− 1

2 ×5− 1
3 ×2 = 5

6 > 0.
Suppose f3(v) = 4. If v is adjacent to no bad vertices, then the parent of v receives
at most 5

4 from v, so c′(v) ≥ 4 − 1
2 × 4 − 5

4 − 1
3 × 2 = 1

12 > 0. Otherwise, v is
adjacent to at most bad 3-vertex. If the parent of v receives at most 1 from v, then
c′(v) ≥ 4 − 1 − 1

2 × 4 − 1
3 × 2 − 1

4 = 1
12 > 0. Otherwise, the parent of v receives
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at most 5
4 from v, then the bad 3-vertex of v is a worse 3-vertex and v is incident

with a 5+-face which sends 1
8 to v. So c′(v) ≥ 4 + 1

8 − 5
4 − 1

2 × 4 − 1
3 × 2 − 1

6 =
1
24 > 0. Suppose f3(v) = 3. Then v is adjacent to at most one bad 3-vertex by
O2 and c′(v) ≥ 4 − 3

2 − 1
3 × 2 − 1

2 × 3 − 1
4 = 0. Suppose f3(v) ≤ 2. Then

c′(v) ≥ 4 − 3
2 − 1

2 × 2 − 1
3 × 2 − 1

6 × 4 = 1
6 > 0.

Third, suppose v is adjacent to exactly one bad child, say u. Then v is adjacent to at
most one bad parent. Suppose v is adjacent to exactly one bad parent. Then f3(v) ≤ 4.
Suppose f3(v) = 4. Then v is adjacent to at most one bad 3-vertex. If f3(v) = 4 and v

is adjacent to no bad 3-vertex, then c′(v) ≥ 4− 5
3 − 1

2 ×4− 1
3 = 0. If f3(v) = 4 and v is

adjacent to one bad 3-vertex, then the bad child of v receives at most 1
12 from v by R(5-

3). So c′(v) ≥ 4− 5
3− 1

2×4− 1
4− 1

12 = 0. If f3(v) = 3, then v is adjacent to atmost two
bad 3-vertices by O2. So c′(v) ≥ 4− 5

3 − 1
2 ×3− 1

3 − 1
4 ×2 = 0. If f3(v) ≤ 2, then v is

adjacent to at most three bad 3-vertices and c′(v) ≥ 4− 5
3 − 1

2 ×2− 1
3 − 1

4 ×3 = 1
4 > 0.

Suppose v is adjacent to no bad parent. Then clearly, f3(v) ≤ 5. If f3(v) ≤ 2, then
c′(v) ≥ 4− 3

2 − 1
2 ×2− 1

3 − 1
6 ×7 = 0. If f3(v) = 3, then v is adjacent to at most three

bad 3-vertices by O3 and c′(v) ≥ 4− 3
2− 1

2×3− 1
3− 1

4×2− 1
6 = 0. Suppose f3(v) = 4.

Then v is adjacent to at most two bad 3-vertices by O3. If v is adjacent to no bad 3-
vertices, then c′(v) ≥ 4− 3

2 − 1
2 ×4− 1

3 = 1
6 > 0. Suppose v is adjacent to exactly one

bad 3-vertex. If u receives at most 1
4 from v, then c′(v) ≥ 4− 3

2 − 1
2 × 4− 1

4 − 1
4 = 0.

Otherwise, u receives 1
3 from v and the parent of v receives at most 5

4 from v. So
c′(v) ≥ 4− 5

4 − 1
2 × 4− 1

3 − 1
4 = 1

6 > 0. Suppose v is adjacent to two bad 3-vertices.
Then u receives at most 1

12 from v. If the parent is incident with a 6+-face, then
c′(v) ≥ 4 − 5

4 − 1
2 × 4 − 1

4 − 1
4 × 2 = 0. If the parent is incident with two 5+-faces,

then c′(v) ≥ 4−1− 1
2 ×4− 1

4 − 1
4 ×2 = 1

4 > 0. So the parent is incident with exactly
one 5-face and v is incident with at most one worse 3-vertex and no worst 3-vertices.
So c′(v) ≥ 4 − 3

2 − 1
2 × 4 − 1

12 − 1
4 − 1

6 = 0. Suppose f3(v) = 5. Then u receives
at most 1

4 from v and v is adjacent to no bad 3-vertices. If the parent of v is incident
with a 6+-face f , then c′(v) ≥ 4 − 5

4 − 1
2 × 5 − 1

4 = 0. If the parent of v is incident
with a 5-face and u receives 17

12 from v, then v is adjacent to no bad 3-vertices and
c′(v) ≥ 4 − 17

12 − 1
2 × 5 = 1

12 > 0. If the parent of v is incident with a 5-face and u

receives 5
4 from v, then c′(v) ≥ 4 − 5

4 − 1
2 × 5 − 1

4 = 0.
Fourth, we suppose that v is adjacent to no bad child. If v is adjacent to no parent,

then c′(v) ≥ 4 − 1
2 × 5 − 1

6 × 8 = 1
6 > 0. Otherwise, v is adjacent to a parent,

say u. Suppose f3(v) = 5. Then v is adjacent to at most one bad 3-vertex. If u is
incident with a 6+-face, then c′(v) ≥ 4 − 5

4 − 1
2 × 5 − 1

4 = 0. If u is incident
with a 5-face and u receives 17

12 from v, then v is adjacent to no bad 3-vertices and
c′(v) ≥ 4− 17

12 − 1
2 × 5 = 1

12 > 0. If u is incident with a 5-face and u receives 5
4 from

v, then c′(v) ≥ 4 − 5
4 − 1

2 × 5 − 1
4 = 0. Suppose f3(v) = 4. Then v is adjacent to at

most two bad 3-vertices. If v is adjacent to two bad 3-vertices, then u receives at most
5
4 from v. Otherwise, c′(v) ≥ 4− 5

3 − 1
2 ×4− 1

4 = 1
120. Suppose f3(v) = 3. Then v is

adjacent to at most three bad 3-vertices and c′(v) ≥ 4− 5
3 − 1

2 × 3− 1
4 × 3 = 1

12 > 0.
Suppose f3(v) ≤ 2. Then c′(v) ≥ 4 − 5

3 − 1
2 × 2 − 1

4 × 2 − 1
6 × 5 = 0.
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Case 2 9 ≤ r ≤ 11.
We also rewritten Euler’s formula as

∑

v∈V
(d(v) − 4) +

∑

f ∈F
(d( f ) − 4) = −8 < 0

(r1) From each face f to each of its incident vertices v, transfer

(r1-1) 1
2 , if d( f ) = 5 and d(v) = 2;

(r1-2) 3
4 , if d( f ) ≥ 6 and d(v) = 2;

(r1-3) 1
2 , if d( f ) ≥ 5 and d(v) = 3.

(r2) From each vertex v to each of its incident 3-faces, transfer 1
2 , if d(v) ≥ 6.

(r3) From each 8+-vertex v to each of its incident 3-vertices u, transfers 1
6 , if

f5+(u) = 1.

(r4) From each 9+-vertex v to its parent u, transfer

(r4-1) 2, if f3(u) = 1 and f4(u) = 1;

(r4-2) 3
2 , if f4−(u) = 1, f5(u) = 1;

(r4-3) 5
4 , otherwise.

Clearly, for all faces f , c′( f ) ≥ 0 and for all vertices v and c′(v) ≥ 0, if d(v) ≤ 5.
If d(v) = 6, then c(v) = 2, n3−(v) = 0 by (c), and f3(v) ≤ 4. So c′(v) ≥ 2 −
1
2 × 4 = 0. If d(v) = 7, then c(v) = 3, n3−(v) = 0 by (c), and f3(v) ≤ 4. So
c′(v) ≥ 3 − 1

2 × 4 = 1 > 0. If d(v) = 8, then c(v) = 4, n2−(v) = 0 by (c),
and f3(v) ≤ 5. So c′(v) ≥ 4 − 1

2 × 5 − 1
6 × 8 = 1

6 > 0. Suppose d(v) = 9.
Then c(v) = 5, f3(v) ≤ 6. If f3(v) = 6, then the parent of v (if exists) is incident
with a 6+-face and v is incident with at most three 3-vertices each of which receives
charge from v. So c′(v) ≥ 5 − 5

4 − 1
2 × 6 − 1

6 × 3 = 1
4 > 0. If f3(v) = 5,

then c′(v) ≥ 5 − max{(2 + 1
2 × 5 + 1

6 × 2), ( 32 + 1
2 × 5 + 1

6 × 4)} = 1
6 > 0.

If f3(v) = 4, then c′(v) ≥ 5 − 2 − 1
2 × 4 − 1

6 × 6 = 0. If f3(v) ≤ 3, then
c′(v) ≥ 5 − 2 − 1

2 × 3 − 1
6 × 9 = 0. Suppose d(v) = 10. Then c(v) = 6, f3(v) ≤ 6.

If f3(v) = 6, then v is adjacent to at most four 3-vertices each of which needs receive
charge from v, so c′(v) ≥ 6− 2− 1

2 × 6− 1
6 × 4 = 1

3 > 0. Otherwise, f3(v) ≤ 5 and
c′(v) ≥ 6 − 2 − 1

2 × 5 − 1
6 × 9 = 0. Suppose d(v) = 11. Then c(v) = 7, f3(v) ≤ 7.

If f3(v) = 7, then v is adjacent to at most four 3-vertices each of which needs receive
charge from v, so c′(v) ≥ 7− 2− 1

2 × 7− 1
6 × 4 = 5

6 > 0. Otherwise, f3(v) ≤ 6 and
c′(v) ≥ 7 − 2 − 1

2 × 6 − 1
6 × 10 = 1

3 > 0.
Hence we complete the proof of Theorem 1.
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