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Abstract A graph is equitably k-colorable if G has a proper vertex k-coloring such
that the sizes of any two color classes differ by at most one. Chen, Lih and Wu
conjectured that any connected graph G with maximum degree � distinct from the
odd cycle, the complete graph K�+1 and the complete bipartite graph K�,� are
equitably m-colorable for every m ≥ �. Let Gk be the class of graphs G such that
e(G ′) ≤ k(v(G ′)−2) for every subgraph G ′ of G with order at least 3. In this paper, it
is proved that any graph in G4 with maximum degree� ≥ 17 is equitably m-colorable
for every m ≥ �. As corollaries, we confirm Chen–Lih–Wu Conjecture for 1-planar
graphs, 3-degenerate graphs and graphs with maximum average degree less than 6,
provided that � ≥ 17.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. By V (G), E(G),
δ(G) and �(G), we denote the vertex set, the edge set, the minimum degree and the
maximum degree of a graph G, respectively. Set e(G) = |E(G)| and v(G) = |V (G)|.
For X, Y ⊆ V (G), let e(X, Y ) = {xy ∈ E(G)|x ∈ X, y ∈ Y }. For a set S ⊆ V (G),
by G[S] we denote the graph induced by S. We say a graph G is d-degenerate if
δ(G ′) ≤ d for each G ′ ⊆ G. The maximum average degree of a graph G is mad(G) =
max{2e(G ′)/v(G ′)|G ′ ⊆ G}. For other undefined concepts, we refer the readers to
[1].

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by
at most one other edge. The notion of 1-planarity was introduced by Ringel [19] while
trying to simultaneously color the vertices and faces of a plane graph G such that any
pair of adjacent/incident elements receives different colors. One can trivially see that
the class of 1-planar graphs is a larger class than the one of planar graphs.

A k-coloring ofG is a function f from V (G) to {1, 2, . . . , k} such that f (u) �= f (v)

if uv ∈ E(G). We say a k-coloring of G is equitable if the size of any two color classes
differ by at most one. The smallest integer k such that G is equitably k-colorable is
the equitable chromatic number of G, denoted by χeq(G). Note that a graph may
have an equitable k-coloring but no equitable k + 1 colorings. Turán graph Tn,k (the
balanced complete k-partite graph with n-vertices) is such an example. In view of
this, another interesting parameter in the area of equitable coloring is presented. The
equitable chromatic threshold, denoted byχ∗

eq(G), is the smallest integer k such that G
is equitably k′-colorable for every k′ ≥ k. It is clear that χeq(G) ≤ χ∗

eq(G). Here, one
should be careful that these two parameters may vary a lot. Take the complete bipartite
graph K7,7 for example, one can calculate that χeq(K7,7) = 2 but χ∗

eq(K7,7) = 8.
In 1970, Hajnal and Szemerédi [8] answered a question of Erdős by proving that

every graph G with �(G) ≤ r has an equitable (r + 1)-coloring. Actually, Hajnal–
SzemerédiTheoremstates thatχ∗

eq(G) ≤ �(G)+1 for anygraphG. In 2008,Kierstead
andKostochka [10] simplified the proof of Hajnal–Szemerédi Theorem by a very tech-
nical method and provided a polynomial-time algorithm for such a coloring. Kierstead
and Kostochka [9] also proved that every graph G with d(x)+d(y) ≤ 2r +1 for every
edge xy has an equitable (r + 1)-coloring, which strengthened the Hajnal–Szemerédi
Theorem by weakening the degree constraint.

Here one should pay attention to the sharpness of the upper bound on χ∗
eq(G) in

Hajnal–Szemerédi Theorem, since the complete graphs and the odd cycles admit no
proper colorings with the number of involved colors being equal to their maximum
degree, and the complete bipartite graph K2m+1,2m+1 has an equitable 2-coloring but
no equitable (2m + 1)-colorings.

In view of this, a natural question is: can the upper bound for χ∗
eq(G) in Hajnal–

Szemerédi Theorem be reduced if we add some restrictions on the graph G? To answer
this question, we first ask about an equitable version of Brook’s Theorem. Actually,
many researches conducted in the area of equitable colorings have been focusing either
on Equitable Coloring Conjecture formulated by Meyer [17] in 1973 or on Equitable
�-Coloring Conjecture (also known as Chen–Lih–Wu Conjecture) made by Chen
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et al. [3] in 1994.Note that Equitable�-ColoringConjecture is stronger than Equitable
Coloring Conjecture, as one can see below.

Conjecture 1 (Equitable Coloring Conjecture) For any connected graph G, except
the complete graph and the odd cycle, χeq(G) ≤ �(G).

Conjecture 2 (Equitable�-ColoringConjecture) For any connected graph G, except
the complete graph, the odd cycle and the complete bipartite graph K2m+1,2m+1,
χ∗
eq(G) ≤ �(G).

As far as we know, Equitable �-Coloring Conjecture has already been confirmed
for many classes of graphs such as graphs with � ≤ 3 [3,4] or � = 4 [11] or
� ≥ (|G| + 1)/3 [2,3], bipartite graphs [16], interval graphs [6], outerplanar graphs
[23], series–parallel graphs [25], pseudo-outerplanar graphs [20], planar graphs with
� ≥ 9 [18], d-degenerate graphs with d ≤ (�−1)/14 [13] or d ≤ �/10 and� ≥ 46
[12], and graphs with � ≥ 46 and maximum average degree at most �/5 [12]. In
general, Equitable Coloring Conjecture and Equitable�-Coloring Conjecture are still
wide open. Recently in 2013, Lih [15] gives a nice survey on the recent progresses
on equitable colorings of graphs. For other colorings of sparse graphs such as planar
graphs, one can refer to [5,21,22] for an extending reading.

Let Gk be the class of graphs G such that e(G ′) ≤ k(v(G ′)− 2) for every subgraph
G ′ of G with order at least 3. Yap and Zhang [24] proved that χ∗

eq(G) ≤ �(G) for
every planar graph G with maximum degree at least 13. Indeed, their proof in that
reference implies the following more general result.

Theorem 3 [24] If G ∈ G3 is a graph with maximum degree � ≥ 13, then G is
equitably m-colorable for every m ≥ �.

In this paper, we consider the class G4 and prove that Equitable �-Coloring Con-
jecture holds for the class G4, provided that � is large enough. The following theorem
is the main result of this paper.

Theorem 4 If G ∈ G4 is a graph with maximum degree � ≥ 17, then G is equitably
m-colorable for every m ≥ �.

It is known that the class of 1-planar graphs is a subclass of G4 [7]. We immediately
have the following corollary.

Corollary 5 If G is a 1-planar graph with maximum degree � ≥ 17, then G is
equitably m-colorable for every m ≥ �.

Note that for any d-degenerate graph G it trivially holds that e(G) ≤ dv(G) since
we can destroy G by successively deleting vertices of degree at most d. Let G be
a 3-degenerate graph and let G ′ be an arbitrary subgraph of G with v(G ′) ≥ 3. If
v(G ′) ≥ 8, then e(G ′) ≤ 3v(G ′) ≤ 4v(G ′) − 8. If v(G ′) = 7, then G ′ �= K7
since the complete graph K7 is not 3-degenerate, and thus, we shall have e(G ′) ≤(
v(G ′)(v(G ′) − 1)

)
/2 − 1 = 4v(G ′) − 8. If 3 ≤ v(G ′) ≤ 6, then one can also

easily check that e(G ′) ≤ (
v(G ′)(v(G ′) − 1)

)
/2 ≤ 4v(G ′) − 8. Hence, the class

of 3-degenerate graphs is exactly a subclass of G4, and we obtain another immediate
consequence of Theorem 4.
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Corollary 6 If G is a 3-degenerate graph with maximum degree � ≥ 17, then G is
equitably m-colorable for every m ≥ �.

Note that it was proved in [13] by Kostochka and Nakprasitthat that the equitable
chromatic threshold of a 3-degenerate graph G is at most �(G) if �(G) ≥ 43, which
is the best known result in terms of �(G) to our knowledge, so Corollary 6 can be
viewed as an improvement of the corresponding result in [13].

Another immediate corollary of Theorem 4 is a partial improvement of Kostochka
and Nakprasitthat’s result on the equitable �-coloring of graphs with low average
degree in [12]. Let G be a graph with mad(G) < 6 and let G ′ be an arbitrary subgraph
of G with v(G ′) ≥ 3. If v(G ′) ≥ 7, then e(G ′) ≤ 3v(G ′) − 1 ≤ 4v(G ′) − 8. If
3 ≤ v(G ′) ≤ 6, then we also have e(G ′) ≤ (

v(G ′)(v(G ′) − 1)
)
/2 ≤ 4v(G ′) − 8.

Hence, the class of graphs with maximum average degree less than 6 is also contained
in G4. Thus, the following corollary seems natural.

Corollary 7 If G is a graph with mad(G)<6 and maximum degree � ≥ 17, then G
is equitably m-colorable for every m ≥ �.

2 Some Useful Lemmas

In this section, we first introduce some notions that may be used in next arguments and
give some useful lemmas. Let G be a class of graphs and let G be a graph belonging
to G. By δ(G), we denote the maximum minimum degree of the class G, that is, the
value of maxG∈G δ(G).

Lemma 8 δ(G3) = 5, δ(G4) = 7 and δ(Gk) ≤ 2k − 1 for every k ≥ 5.

Lemma 9 Every graph G ∈ Gk is 2k-colorable, K2k−1-free and (2k −1)-degenerate.

The proofs of above two lemmas are directly followed from the definition of Gk .
Here note that there exists a 5-regular planar graph and a 7-regular 1-planar graph (see
Figure 1 in [7]); hence, δ(G3) = 5 and δ(G4) = 7.

Lemma 10 Let m ≥ 1 and k ≥ 3 be two fixed integers. If any graph G ∈ Gk of
order mt is equitably m-colorable for any integer t ≥ 1, then any graph in Gk is also
equitably m-colorable.

Proof Let G be a graph in Gk . If v(G) is not divisible by m, then we can assume,
without loss of generality, that δ(G) = 2k − 1 with k ≥ 3 and |G| = mt − j with
0 < j < m. If m ≤ 2k − 1, then it is trivial that 0 < j < 2k − 1. Now we claim
that 0 < j < 2k − 1 holds for m ≥ 2k. Suppose this does not hold. Let u be a
vertex in G with d(u) = δ(G). Using induction on |G|, the graph G − u admits an
equitably m-coloring with color classes V1, . . . , Vm , where |Vi | = t − 1 or t for all
i ≥ 1. Assume that N (u) ∈ ⋃2k−1

i=1 Vi . If there exists a class Vi with i ≥ 2k such that
|Vi | = t − 1, then move u to Vi , and thus, we can get an equitably m-coloring of G.
If |Vi | = t for all i ≥ 2k, then we also have |G| = mt − j with 0 < j < 2k − 1. Let
G ′ = G ∪ K j . One can easily see that |G ′| = mt and G ′ ∈ Gk . Hence, G ′ is equitably
m-colorable by the assumption, and so is G by restricting the coloring of G ′ to G. 
�
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Lemma 11 [24] Let m ≥ 4, t ≥ 1 be two fixed integers and let G be an m-colorable
graph of order mt. If e(G) ≤ (m − 1)t , then G is equitably m-colorable.

Lemma 12 Let m ≥ 1, s ≥ 1 and t ≥ 3 be integers. Suppose that G is a Kt -free graph
with �(G) ≤ m. If G has an independent s-set I and there exists A ⊆ V (G)\I such
that |A| >

s(m+t−2)
2 and e(v, I ) ≥ 1 for all v ∈ A, then A contains two nonadjacent

vertices α and β that are adjacent to exactly one and the same vertex γ ∈ I .

Lemma 13 Let m ≥ 3, t ≥ 1 be integers and let G be a class of graphs with δ(G) ≤
m − 2. Suppose that G ∈ G is a graph with order mt and maximum degree �. If
e(G) ≤ (2m − 3)t − max{� − 3, t}, then G is equitably m-colorable.

The proofs of Lemmas 12 and 13 are highly similar to the proofs of Lemmas 4 and
5 in the reference [24]. Hence, we omit them here.

Lemma 14 Let G be a class of graphs with δ(G) := δ and let G ∈ G be an m-
colorable graph with order mt, where m ≥ δ + 1. Suppose that uv is an edge in G
with d(u) ≤ δ. If G has no equitable m-colorings but G − uv admits an equitable
m-coloring having color classes V1, . . . , Vm, where |Vi | = t for all 1 ≤ i ≤ m, such
that u, v ∈ V1 and N (u) ⊆ ⋃δ

i=1 Vi , then the following results hold.

(a) If V ′
1 = V1\{u}, then

e

(
m⋃

i=δ+1

Vi , V ′
1

)

≥ (m − δ)t. (1)

(b) If there exists w ∈ Vj for some 2 ≤ j ≤ δ such that e(w, V ′
1) = 0, then

e

(
m⋃

i=δ+1

Vi , V ′
j

)

≥ (m − δ)t, (2)

where V ′
j = Vj\{w}.

(c) If there exists x ∈ Vk for some 2 ≤ k ≤ δ and k �= j [here j is defined by (b)]
such that e(x, V ′

j ) = 0, then

e

(
m⋃

i=δ+1

Vi , V ′
k

)

≥ (m − δ)t, (3)

where V ′
k = Vk\{x}.

(d) If there exists v j ∈ Vj such that e(v j , V ′
1) = 0 for each 2 ≤ j ≤ δ, then

e

⎛

⎝
m⋃

i=δ+1

Vi ,

δ⋃

j=1

V ′
j

⎞

⎠ ≥ δ(m − δ)t, (4)

where V ′
j = Vj\{v j } for each 1 ≤ j ≤ δ and u = v1.
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(e) Let μ be a fixed integer between 2 and δ − 1. If there exists v j ∈ Vj such that
e(v j , V ′

1) = 0 for each 2 ≤ j ≤ μ and e(v, V ′
k) ≥ 1 for any v ∈ ⋃δ

i=μ+1 Vi and
1 ≤ k ≤ μ, then

e

⎛

⎝
m⋃

i=μ+1

Vi ∪ {u},
μ⋃

j=1

V ′
j

⎞

⎠ ≥ μ(m − μ)t + 1, (5)

where V ′
k = Vk\{vk} for each 1 ≤ k ≤ μ and u = v1.

(f) If e(w, V ′
1) ≥ 1 for any w ∈ ⋃δ

i=2 Vi , then

e

(
m⋃

i=2

Vi ∪ {u}, V ′
1

)

≥ (m − 1)t + 1. (6)

Proof (a) Here, we only need to prove that e(v, V ′
1) ≥ 1 for any v ∈ ⋃m

i=δ+1 Vi .
Suppose, to the contrary, that w is a vertex in Vδ+1 with no neighbors in V ′

1.
Redefine V1 := (V1\{u}) ∪ {v} and Vδ+1 := (Vδ+1\{v}) ∪ {u}. We then get an
equitably m-coloring of G with color classes V1, . . . , Vm .

(b) We only need to prove that e(v, V ′
j ) ≥ 1 for any v ∈ ⋃m

i=δ+1 Vi . Suppose, to the
contrary, that v is a vertex in Vδ+1 with no neighbors in V ′

j .We can get an equitably
m-coloring of G by redefining V1 := (V1\{u}) ∪ {w}, Vj := (V1\{w}) ∪ {v} and
Vδ+1 := (Vδ+1\{v}) ∪ {u}.

(c) Similarly, we just need to prove that e(v, V ′
k) ≥ 1 for any v ∈ ⋃m

i=δ+1 Vi .
Suppose, to the contrary, that v is a vertex in Vδ+1 with no neighbors in V ′

k . We
can again get an equitably m-coloring of G by redefining V1 := (V1\{u}) ∪ {w},
Vj := (V1\{w}) ∪ {x}, Vk := (Vk\{x}) ∪ {v} and Vδ+1 := (Vδ+1\{v}) ∪ {u}.

(d) The inequalities (4) directly follow from (a).
(e) The inequalities (5) directly follow (b).
(f) This is trivial since |⋃m

i=2 Vi | = (m − 1)t . 
�
Lemma 15 LetG be a class of graphs with δ(G) := δ and let G ∈ G be an m-colorable,
Kδ-free graph with order mt. Suppose that uv is an edge in G with d(u) = δ(G) ≤ δ.
If G has no equitable m-colorings but G − uv admits an equitable m-coloring having
color classes V1, . . . , Vm, where |Vi | = t for all 1 ≤ i ≤ m, such that u, v ∈ V1 and
N (u) ⊆ ⋃δ

i=1 Vi , then the following results hold.

(a) If there exists v j ∈ Vj such that e(v j , V ′
1) = 0 for each 2 ≤ j ≤ δ, then (4) holds

and
e(G) ≥ δ(m − δ)t + 1, (7)

where V ′
j = Vj\{v j } for each 1 ≤ j ≤ δ and v1 = u.

(b) Let ρ be a fixed integer between 2 and δ − 1. Suppose that m ≥ �(G) and there
exists v j ∈ Vj such that e(v j , V ′

1) = 0 for each 2 ≤ j ≤ ρ and e(v, V ′
1) ≥ 1 for

any v ∈ ⋃δ
i=ρ+1 Vi . If there exists v j ∈ Vj , for some ρ + 1 ≤ j ≤ δ, such that

e(v j , V ′
k) = 0 for some 2 ≤ k ≤ ρ, where V ′

j = Vj\{v j } for each 1 ≤ j ≤ ρ and
v1 = u, then (4) holds while ρ = δ−1, and at least one of the inequalities among
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(4) and the δ−ρ −1 ones represented by (5) via fixing μ from ρ +1 to δ−1 holds
while 2 ≤ ρ ≤ δ −2. If e(w, V ′

k) ≥ 1 for any w ∈ ⋃δ
i=ρ+1 Vi and all 2 ≤ k ≤ ρ,

then (5) holds while μ = ρ. Set ξ = δ − ρ + 1 and Sξ = ⋃m
i=ρ+1 Vi ∪ {u} (note

that 2 ≤ ξ ≤ δ − 1). We have

e(G) ≥ ρ(m − ρ)t + 1, (8)

t ≥ mρ + 1

ρ2 (9)

and

|Sξ | >
(t − 1)(m + δ − 2)

2
(10)

if and only if ξ ≥ 3δ−m
2 . Moreover, if (10) holds, then Sξ contains two nonadjacent

vertices α and β that are adjacent to exactly one and the same vertex γ ∈ V ′
1. Set

Gξ
1 = G

[

((V ′
1\{γ } ∪ {α, β})) ∪

ρ⋃

i=2

Vi

]

and

Gξ = G[(Sξ\{α, β} ∪ {γ })].

We have

e(Gξ ) ≤ e(G) − (δ − ξ + 1)mt + (δ − ξ + 1)2t + m − 3. (11)

(c) Let Sδ = ⋃m
i=2 Vi ∪ {u}. If m ≥ �(G) and e(w, V ′

1) ≥ 1 for any w ∈ ⋃δ
i=2 Vi ,

then
t ≥ m + 1 (12)

and

|Sδ| >
(t − 1)(m + δ − 2)

2
(13)

if and only if δ ≤ m. Moreover, if (13) holds, then Sδ contains two nonadjacent
vertices α and β that are adjacent to exactly one and the same vertex γ ∈ V ′

1. Set

Gδ
1 = G[(V ′

1\{γ } ∪ {α, β})]

and

Gδ = G[(Sδ\{α, β} ∪ {γ })].

We have
e(Gδ) ≤ e(G) − mt + t + m − 3. (14)
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Proof (a) This is trivial since e(G) ≥ e(
⋃m

i=δ+1 Vi ∪ {u},⋃δ
j=1 V ′

j ).
(b) Since there exists v j ∈ Vj such that e(v j , V ′

1) = 0 for each 2 ≤ j ≤ ρ, by
Lemma 14(a) and Lemma 14(b) we have e(

⋃m
i=δ+1 Vi ,

⋃ρ
j=1 V ′

j ) ≥ ρ(m − δ)t .
If ρ = δ − 1 and there exists vδ ∈ Vδ such that e(vδ, V ′

k) = 0 for some 2 ≤
k ≤ ρ, then by Lemma 14(c) we also have e(

⋃m
i=δ+1 Vi , V ′

δ ) ≥ (m − δ)t . Hence,

e(
⋃m

i=δ+1 Vi ,
⋃δ

j=1 V ′
j ) ≥ (ρ + 1)(m − δ)t = δ(m − δ)t and (4) holds.

If 2 ≤ ρ ≤ δ − 2 and there exists v j ∈ Vj , for some ρ + 1 ≤ j ≤ δ, such that
e(v j , V ′

k) = 0 for some2 ≤ k ≤ ρ, then byLemma14(c)we have e(
⋃m

i=δ+1 Vi , V ′
j ) ≥

(m − δ)t . If this inequality holds for all ρ + 1 ≤ j ≤ δ, then by a similar argument as
abovewe can deduce that e(

⋃m
i=δ+1 Vi ,

⋃δ
j=1 V ′

j ) ≥ (ρ+δ−ρ)(m−δ)t = δ(m−δ)t ,
and then, (4) holds. On the other hand, suppose, without loss of generality, that this
inequality holds for all ρ+1 ≤ j ≤ μ ≤ δ−1 but does not hold for anyμ+1 ≤ j ≤ δ.
By Lemma 14(c), e(

⋃m
i=δ+1 Vi ,

⋃μ
j=ρ+1 V ′

j ) ≥ (μ − ρ)(m − δ)t and e(vk, V ′
j ) ≥ 1

for all μ + 1 ≤ k ≤ δ and 2 ≤ j ≤ μ (otherwise there exists μ + 1 ≤ k ≤ δ

such that e(
⋃m

i=δ+1 Vi , V ′
k) ≥ (m − δ)t , a contradiction to our assumption). Hence,

e(
⋃δ

k=μ+1 Vk,
⋃μ

j=2 V ′
j ) ≥ (δ − μ)(μ − 1)t . Finally, note that e(

⋃δ
k=μ+1 Vk, V ′

1) ≥
(δ−μ)t by the assumption of (b). Combine all these arguments, one can easily deduce
that e(

⋃m
i=μ+1 Vi ,

⋃μ
j=1 V ′

j ) ≥ (δ − μ)(μ − 1)t + (δ − μ)t + ρ(m − δ)t + (μ −
ρ)(m − δ)t = μ(m −μ)t . Hence, at least one of the δ −ρ −1 inequalities represented
by (5) via fixing μ from ρ + 1 to δ − 1 holds.

If e(w, V ′
k) ≥ 1 for any w ∈ ⋃δ

i=ρ+1 Vi and all 2 ≤ k ≤ ρ, then the inequality (5)
holds while μ = ρ by Lemma 14(e), so we have ρ(m − ρ)t + 1 ≤ e(Sξ ,

⋃ρ
j=1 V ′

j ) ≤
ρ(t − 1)�(G) ≤ mρ(t − 1). This implies (8) and (9). Since |Sξ | = (m − ρ)t + 1, the
following four properties are equivalent:

1. |Sξ | >
(t−1)(m+δ−2)

2 ;
2. mt − (δ + 2ρ − 2)t + m + δ > 0 for all t ;
3. m ≥ δ + 2ρ − 2;
4. ξ ≥ 3δ−m

2 .

Hence, (10) holds if and only if ξ ≥ (3δ −m)/2. Therefore, by Lemma 12, Sξ with
ξ ≥ (3δ−m)/2 contains two nonadjacent vertices α and β that are adjacent to exactly
one and the same vertex γ ∈ V ′

1. Recall the definitions of Gξ
1 and Gξ in this lemma.

One can deduce that e(Gξ ) ≤ e(G[Sξ ])+m −2 ≤ e(G)−e(Sξ ,
⋃ρ

j=1 V ′
j )+m −2 ≤

e(G) − [ρ(m − ρ)t + 1] + m − 2 = e(G) − ρmt + ρ2t + m − 3. Hence, (11) holds.
(c) This proof is just similar to the one in (b), thus we leave it to the readers. 
�

3 The Proof of Theorem 4

This section is devoted to proving the following general theorem in this paper. Where-
after, Theorem 4 would be a direct corollary of Lemmas 8–10 and Theorem 16(4).

Theorem 16 Let G be a class of graphs with δ(G) = 7 and let G ∈ G be a K7-free
and 7-degenerate graph with order mt and maximum degree �. If

1. e(G) ≤ max{mt + m + 12t − 8, mt + 2m + 10t − 10, mt + 3m + 9t − 11} and
� ≥ 14, or
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2. e(G) ≤ max{2mt + m + 8t − 9, 2mt + 2m + 7t − 11} and � ≥ 15, or
3. e(G) ≤ 3mt + m + 4t − 10 and � ≥ 16, or
4. e(G) ≤ 4mt − 8 and � ≥ 17,

then G is equitably m-colorable for every m ≥ �.

Before proving Theorem 16, it is better to make everyone clear with the strategy we
used in this proof. Indeed, we want to prove the equitable chromatic threshold of every
K7-free and 7-degenerate graph G with order mt and maximum degree � is at most
� if we are given a function f (m, t) and a constant C such that e(G) ≤ f (m, t) and
� ≥ C . We proceed by induction on the size of G. Since G is 7-degenerate, G has an
edge uv with d(u) = δ(G) ≤ 7. By induction hypothesis, G −uv admits an equitable
m-coloring having color classes V1, . . . , Vm , where |Vi | = t for all 1 ≤ i ≤ m, such
that u, v ∈ V1 and N (u) ⊆ ⋃δ

i=1 Vi . Now we aim to extend the coloring of G − uv

to G. In the following, we assume that this extension is impossible. Since every 7-
degenerate graph can be 8-colorable, Lemma 15 is valid during our proof of Theorem
16. Notations such as ξ and Gξ are followed from Lemma 15.

During each proof of the four results in Theorem 16, one can see that at least one
of the seven cases would occur.

Case 1: There exists v j ∈ Vj such that e(v j , V ′
1) = 0 for each 2 ≤ j ≤ 7.

Case ξ with 2 ≤ ξ ≤ 6: There exists v j ∈ Vj such that e(v j , V ′
1) = 0 for each

2 ≤ j ≤ 8 − ξ and e(v, V ′
1) ≥ 1 for any v ∈ ⋃7

i=9−ξ Vi .

Case 7: For any w ∈ ⋃7
i=2 Vi , e(w, V ′

1) ≥ 1.

We then split Case ξ with 2 ≤ ξ ≤ 6 into two subcases.

Subcase ξ (1): There exists v j ∈ Vj such that e(v j , V ′
1) = 0 for each 2 ≤ j ≤ 8 − ξ

and e(v, V ′
1) ≥ 1 for any v ∈ ⋃7

i=9−ξ Vi . Meanwhile, there exists v j ∈ Vj for some
9 − ξ ≤ j ≤ 7 such that e(v j , V ′

k) = 0 for some 2 ≤ k ≤ 8 − ξ .
Subcase ξ (2): There exists v j ∈ Vj such that e(v j , V ′

1) = 0 for each 2 ≤ j ≤ 8 − ξ

and e(v, V ′
k) ≥ 1 for any v ∈ ⋃7

i=9−ξ Vi and 1 ≤ k ≤ 8 − ξ .

Our effort is to show orderly that if some of the seven cases occurs, then we can extend
the coloring of G − uv to G. By Lemma 15, we have the following observation.

Observation 1 If Case 1 occurs, then the inequality (4) holds. For a fixed 2 ≤ ξ ≤ 6,
if Subcase ξ(1) occurs, then the inequality (4) holds while ξ = 2, and at least one of
the inequalities among (4) and the ξ −2 ones represented by (5) via fixing μ from 9−ξ

to 6 holds while 3 ≤ ξ ≤ 6; if Subcase ξ(2) occurs, then the inequality represented
by (5) via fixing μ = 8 − ξ holds.

Our strategy is to consider first Case 1 and show that if the inequality (4) holds then
we can obtain a contradiction. We then consider Case 2 [and thus consider Subcase
2(1) and Subcase 2(2) separately]. By Observation 1, if Subcase 2(1) occurs, then
(4) holds, which has been proved false, so we just need to consider Subcase 2(2) and
prove that if the inequality represented by (5) via fixing μ = 6 holds then we can also
obtain a contradiction. Afterward, we consider Cases 3–7 one by one similarly. Indeed,
while considering Case ξ with 2 ≤ ξ ≤ 6, we only need to investigate Subcase ξ(2)
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carefully, since if Subcase ξ(1) occurs, then any of the ξ − 1 inequalities as described
in Observation 1 that may hold has already been proved false while considering Cases
from 1 to ξ − 1.

As one can see in the following detailed proof of Theorem 16, when trying to prove
the i-th with 2 ≤ i ≤ 4 part of this theorem, we need to use the first i − 1 parts as
inductive Lemmas. However, the proof of any one part is highly similar to another,
only with minor differences in the computations. Hence, we only show the proof of
Theorem 16(4) in detail below.

Proof of Theorem 16 As we have mentioned above, we only prove (4) here. Recall
the strategy described as above, we consider Cases 1–7 orderly.

If Case 1 occurs, then by Lemma 15(a) we have 4mt − 8 ≥ e(G) ≥ 7(m − 7)t + 1,
that is false for m ≥ 17.

IfCase ξ with 2 ≤ ξ ≤ 6 occurs, then by the above argumentswe only need consider
Subcase ξ(2). By Lemma 15(b), t ≥ 3 and the inequality (10) holds since ξ ≥ 2 ≥
(21−m)/2; thus, the twographsGξ

1 andGξ inLemma15(b) arewell defined and canbe

used here. Moreover, Gξ
1 is a graph with order (8−ξ)t that is equitably 8−ξ colorable

by its definition. By (11), we deduce that e(Gξ ) ≤ (ξ − 4)mt + (8− ξ)2t + m − 11.

Note that V (G) = V (Gξ
1) ∪ V (Gξ ) and |Gξ | = (m + ξ − 8)t . We just need to prove

that Gξ is equitably m + ξ − 8 colorable.
If Case 7 occurs, then by Lemma 15(c), the inequality (13) holds sincem ≥ 17 > 7.

Hence, we only need to prove that the graph G7 as defined in Lemma 15(c) is equitably
m − 1 colorable, where e(G7) ≤ 3mt + t + m − 11 by (14).

Now we shall involve Lemmas 11 and 13 as technical tools. The following many
formulas are dedicated to some computations.

e(G2) ≤ −2mt + 36t + m − 11 ≤ [(m − 6) − 1]t for m − 6 ≥ 11 and t ≥ 1

e(G3) ≤ −mt + 25t + m − 11 ≤ [(m − 5) − 1]t for m − 5 ≥ 12 and t ≥ 2

e(G4) ≤16t+m−11 ≤ [2(m − 4) − 3]t−max{� − 3, t} for m − 4 ≥ 13 and t ≥3

e(G5) ≤ mt + 9t + m − 11 = (m − 3)t + (m − 3) + 12t − 8 for m − 3 ≥ 14

e(G6) ≤ 2mt + 4t + m − 11 = 2(m − 2)t + (m − 2) + 8t − 9 for m − 2 ≥ 15

e(G7) ≤ 3mt + t + m − 11 = 3(m − 1)t + (m − 1) + 4t − 10 for m − 1 ≥ 16

By Lemma 11, G2 and G3 are, respectively, equitably m − 6 and m − 5 colorable; by
Lemma 13, G4 is equitably m −4 colorable; by Theorem 16(1), G5 is equitably m −3
colorable; by Theorem 16(2), G6 is equitably m −2 colorable; and by Theorem 16(3),
G7 is equitably m − 1 colorable. Hence, we complete the proof of Theorem 16(4). 
�

4 Open Problems

Note that all of the Lemmas in Sect. 2 are valid for any graph G ∈ Gk with k ≥ 3. We
believe that Theorems 3 and 4 can be extended to a general version for every k ≥ 3,
although this extension is still a partial case of the Equitable �-Coloring Conjecture.

123



On Equitable Colorings of Sparse Graphs S267

Conjecture 17 If G ∈ Gk with k ≥ 3 is a graph with maximum degree � ≥ (2k−1)2

k−1 ,
then G is equitably m-colorable for every m ≥ �.

On the other hand, Kostochka, Nakprasit and Pemmaraju [14] proved that if G is
a d-degenerate graph with |V (G)| ≥ 15�(G), then G is equitably m-colorable for
every m ≥ 16d. Lemma 9 tells us that every graph in Gk is (2k − 1)-degenerate, so
the above result of Kostochka et al. implies the following theorem.

Theorem 18 If G ∈ Gk with k ≥ 3 is a graph with |V (G)| ≥ 15�(G), then G is
equitably m-colorable for every m ≥ 32k − 16.

Although Theorem 18 is weaker in some sense, it gives us a new and interesting
direction for further research. After looking at Theorem 18, one can find that m is not
really relative to �(G), that is to say, for large �(G) (larger than 32k − 16) one may
equitably color each graph G in Gk by fewer colors. We end this paper by an open
problem.

Problem 19 Fix an integer �0(k, m) such that every graph G ∈ Gk with maximum
degree at least �0 is equitably m-colorable, where k is a given integer and m is a fixed
integer less than �(G).
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