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EQUITABLE VERTEX ARBORICITY OF PLANAR GRAPHS

Xin Zhang

Abstract. Let G1 be a planar graph such that all cycles of length at most 4 are
independent and let G2 be a planar graph without 3-cycles and adjacent 4-cycles.
It is proved that the set of vertices of G1 and G2 can be equitably partitioned
into t subsets for every t ≥ 3 so that each subset induces a forest. These results
partially confirm a conjecture of Wu, Zhang and Li [5].

1. INTRODUCTION

All graphs considered in this paper are finite, simple and undirected. By V (G),
E(G), δ(G) and Δ(G), we denote the set of vertices, the set of edges, the minimum
degree and the maximum degree of a graph G, respectively. For a plane graph G,
F (G) denotes its set of faces. A k-, k+- and k−-vertex (resp. face) in G is a vertex
(resp. face) of degree k, at least k and at most k, respectively. By N (v), we denote the
set of neighbors of v. We call u the k-neighbor or k+-neighbor of v if uv ∈ E(G) and
u is a k-vertex or a k+-vertex, respectively. Two cycles are independent in G if they
share no common vertices in G. For other undefined notations, we refer the readers to
[1].
The vertex arboricity, or point arboricity a(G) of a graph G is the minimum

number of subsets into which the set of vertices can be partitioned so that each subset
induces a forest. This chromatic parameter of graphs was extensively studied since it
was first introduced by Chartrand and Kronk in [3], where is proved that a(G) ≤ 3
for every planar graph.
As we know, there are many variations of vertex arboricity of graphs, such as

linear vertex arboricity [4], fractional vertex arboricity [6], fractional linear vertex
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arboricity [8] and tree arboricity [2]. Naturally, we can also consider the equitable
version of vertex arboricity when we restrict the partition in its original definition to be
an equitable one, that is, a partition so that the size of each subset is either �|G|/k� or
�|G|/k�. If the set of vertices of a graph G can be equitably partitioned into k subsets
such that each subset of vertices induce a forest of G, then we call that G admits an
equitable k-tree-coloring. The minimum integer k such that G has an equitable k-tree-
coloring is the equitable vertex arboricity aeq(G) of G. The notion of equitable vertex
arboricity was first introduced by Wu, Zhang and Li [5]. In their paper, the authors
proved that the complete bipartite graph Kn,n has an equitable k-tree-coloring for every
k ≥ 2�(√8n + 9−1)/4� and showed that the bound is sharp when 2n = t(t+3) and t
is odd. Note thatKn,n admits an equitable 2-tree-coloring. Hence a graph admitting an
equitable k-tree-coloring may has no equitable (k + 1)-tree-colorings. This motivates
us to introduce another chromatic parameter. The strong equitable vertex arboricity of
G, denoted by a∗eq(G), is the smallest t such that G has an equitable t′-tree-coloring
for every t′ ≥ t. It is easy to see that a∗eq(G) ≥ aeq(G). Concerning a∗eq(G), there are
two interesting conjectures.

Conjecture 1. a∗eq(G) ≤ �Δ(G)+1
2 � for every graph G.

Conjecture 2. There is a constant ζ such that a∗eq(G) ≤ ζ for every planar graph
G.

Until now, Conjecture 1 was confirmed for complete bipartite graphs, planar graphs
with girth at least 6, planar graphs with maximum degree at least 4 and girth 5,
outerplanar graphs [5] and graphs G with Δ(G) ≥ |G|/2 [7], and Conjecture 2 was
settled for planar graphs with girth at least 5 and outerplanar graphs [5]. In particular,
Wu, Zhang and Li [5] proved that a∗eq(G) ≤ 3 for every planar graph with girth at
least 5. In this paper, we will confirm Conjecture 2 for planar graphs with all cycles
of length at most 4 being independent and planar graphs without 3-cycles and adjacent
4-cycles.

2. MAIN RESULTS AND THEIR PROOFS

Lemma 3. (Wu, Zhang and Li [5]) Let S = {x1, · · · , xt}, where x1, · · · , xt are
distinct vertices inG. If G−S has an equitable t-tree-coloring and |N (xi)\S| ≤ 2i−1
for every 1 ≤ i ≤ t, then G has an equitable t-tree-coloring.

Lemma 4. If G is a planar graph such that all cycles of length at most 4 are
independent, then δ(G) ≤ 3.

Proof. Suppose, to the contrary, that δ(G) ≥ 4. By Euler’s formula, we have∑
x∈V (G)∪F (G)

(
d(x)− 4

)
= −8. Assign every element x ∈ V (G) ∪ F (G) an initial

charge c(x) = d(x)− 4 and define a discharging rule as follows.
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Rule. Every 5+-face transfer 1
3 to each of its adjacent 3-faces.

Let c′ be the final charge function after discharging according to the rule. Since
every 3-face is adjacent only to 5+-faces by the definition of G, c′(f) = 3 − 4 +
3 × 1

3 = 0 for d(f) = 3. On the other hand, every 5+-face f is adjacent to at
most �d(f)

2 � 3-faces, which implies that c′(f) ≥ d(f)− 4− 1
3�d(f)

2 � > 0 for d(f) ≥ 5.
Therefore,

∑
x∈V (G)∪F (G) c′(x) ≥ 0, contradicting the fact that

∑
x∈V (G)∪F (G) c′(x) =∑

x∈V (G)∪F (G) c(x) = −8.

Theorem 5. If G is a planar graph such that all cycles of length at most 4 are
independent, then a∗eq(G) ≤ 3.

Proof. Let G be the minimal counterexample to this result and let t ≥ 3 be an
integer. To begin with, we introduce some useful structural properties of G.

Proposition 1. Every 2-vertex in G is adjacent only to 7+-vertices.

Proof. If there is a 2-vertex u that is adjacent to a 6−-vertex v, then label u and v
by x1 and xt, respectively. We now construct the set S = {x1, . . . , xt} as in Lemma
3 by filling the remaining unspecified positions in S from highest to lowest indices
properly. Actually one can easily complete it by choosing at each step a vertex of
degree at most 3 in the graph obtained from G by deleting the vertices already chosen
for S. Lemma 4 guarantees that such vertices always exist. By the minimality of G,
G − S has an equitable t-tree-coloring for every t ≥ 3. Therefore, G also has such a
desired coloring by Lemma 3.

Proposition 2. Every 3-vertex in G is either adjacent to three 5+-vertices or
adjacent to one 4−-vertex and two 7+-vertices.

Proof. If there is a 3-vertex u that is adjacent to a 4−-vertex v and a 6−-vertex w,
then label u, v and w by x1, xt−1 and xt, respectively. By similar argument as in the
proof of Proposition 1, we can construct the set S = {x1, . . . , xt} as in Lemma 3 and
then deduce that G has an equitable t-tree-coloring for every t ≥ 3, a contradiction.

Similarly, we have the following:

Proposition 3. If there is a 3-face f that is incident with a 3-vertex, then f is
either incident with two 6+-vertices or incident with another one 5−-vertex and a
8+-vertex.

Proposition 4. If there is a 4-face f that is incident with a 3-vertex, then f is
either incident with three 4+-vertices, or incident with two 5+-vertices, or incident
with a 4-vertex and a 7+-vertex.

Proof. Let f = u1u2u3u4 and d(u1) = 3. If f is not incident with three 4+-
vertices, then there is at least one 3−-vertex among u2, u3 and u4. If min{d(u2),
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d(u3), d(u4)} = 2, then by Proposition 1, d(u3) = 2 and min{d(u2), d(u4)} ≥ 7.
If d(u2) = 3 or d(u4) = 3, then by Proposition 2, min{d(u3), d(u4)} ≥ 7 or
min{d(u2), d(u3)} ≥ 7, respectively. If d(u3) = 3, then by Proposition 2, either
min{d(u2), d(u4)} ≥ 5 or min{d(u2), d(u4)} = 4 and min{d(u2), d(u4)} ≥ 7.

Proposition 5. Every 7-vertex is adjacent to at most one 2-vertex.

Proof. If there is a 7-vertex u that is adjacent to two 2-vertices v and w, then label
v, w and u by x1, xt−1 and xt, respectively. By the similar arguments asin the proof of
Proposition 1, we can construct the set S = {x1, . . . , xt} as in Lemma 3. Therefore,
G − S has an equitable t-tree-coloring by the minimality of G, which implies that G

also has such a desired coloring for every t ≥ 3 by Lemma 3.

Proposition 6. Every 8-vertex and every 9-vertex is adjacent to at most four 2-
vertices.

Proof. Let u be a k-vertex with 8 ≤ k ≤ 9 and let v1, . . . , vk be its neighbors in
G. Without loss of generality, assume that v1, v2, v3, v4 and v5 are 2-vertices. Let wi

be the other neighbor of vi for every 1 ≤ i ≤ 5.
If t ≥ 4, then label v1, v2, v3 and u with x1, xt−2, xt−1 and xt, respectively, and

construct the set S = {x1, . . . , xt} as in Lemma 3 by the similar arguments as in
the proof of Proposition 1. Therefore, G − S has an equitable t-tree-coloring by the
minimality of G, which implies that G also has such a desired coloring for every t ≥ 4
by Lemma 3.
We now prove that G has an equitable 3-tree-coloring. By the minimality of G,

the graph H = G−{u, v1, v2, v3, v4, v5} has an equitable 3-tree-coloring ϕ. If there is
one color, say 3, that does not appear on N (u) \ {v1, v2, v3, v4, v5}, then color u and
v1 with 3, v2 and v3 with 1, and v4 and v5 with 2. One can check that the resulted
coloring of G is just an equitable 3-tree-coloring.
We now assume that all of the three colors appear on N (u) \ {v1, v2, v3, v4, v5}.

If d(u) = 8, then we assume that ϕ(v6) = 1, ϕ(v7) = 2 and ϕ(v8) = 3. If d(u) = 9,
then we assume, without loss of generality, that ϕ(v6) = 1, ϕ(v7) = 2 and ϕ(v8) =
ϕ(v9) = 3. The following argument is independent of the degree of u. First, we color
u with 1. If the color on one of the vertices among w1, w2, w3, w4 and w5, say w1, is
not 1, then color v1 with 1, v2 and v3 with 2, and v4 and v5 with 3. If ϕ(wi) = 1 for
every 1 ≤ i ≤ 5, then recolor u with 2, and color v1 with 2, v2 and v3 with 1, and
v4 and v5 with 3. In each case, one can easily check that the resulted coloring is an
equitable 3-tree-coloring of G.

Proposition 7. Every 10-vertex is adjacent to at most seven 2-vertices.

Proof. Let u be a 10-vertex and let v1, . . . , v10 be its neighbors in G. Without loss
of generality, assume that v1, . . . , v7 and v8 are 2-vertices. Let wi be the other neighbor
of vi for every 1 ≤ i ≤ 8. By the same argument as in the proof of Proposition 6, one
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can confirm that G has an equitable t-tree-coloring for every t ≥ 4. Thus we just need
prove that G admits an equitable 3-tree-coloring.
Let H = G − {u, v1, . . . , v8}. By the minimality of G, H has an equitable 3-

tree-coloring ϕ. Suppose that the color 3 does not appear on v9 or v10. If there is a
vertex among w1, . . . , w8, say w1, that is not colored by 3, then we can extend ϕ to
an equitable 3-tree-coloring of G by coloring u, v1, v2 with 3, v3, v4, v5 with 1, and
v6, v7, v8 with 2. If ϕ(wi) = 3 for every 1 ≤ i ≤ 8, then color u with a color, say
1, that appears on v9 and v10 at most once, color v1 and v2 with 1, v3, v4, v5 with 2,
and v6, v7, v8 with 3. One can easily check that the resulted coloring is an equitable
3-tree-coloring of G.

We now prove the theorem by discharging. First, assign each vertex v of G an initial
charge c(v) = 3d(v)− 10 and each face f of G an initial charge c(v) = 2d(f) − 10.
By Euler’s formula,

∑
x∈V (G)∪F (G) c(x) = −20. It is easy to see that there is no

1-vertices in G. The discharging rules we are applying are defined as follows.

R1. Every 2-vertex receives 2 from each of its neighbors.
R2. If u be a 3-vertex and uv ∈ E(G), then v sends to u a charge of 1

3 if 5 ≤ d(v) ≤ 6
and 1

2 if d(v) ≥ 7.
R3. Let f be a 3-face that is incident with no 2-vertices and let v be a vertex that is

incident with f . If 4 ≤ d(v) ≤ 7, then v sends 2 to f , and if d(v) ≥ 8, then v
sends 4 to f .

R4. If f is a 3-face that is incident with a 2-vertex, then f receives 2 from each of
its incident 7+-vertices.

R5. Every 4-face receives 1 from each of its incident 4+-vertices.

Let c′ be the final charge after discharging. We now prove that c′(x) ≥ 0 for
every x ∈ V (G) ∪ F (G), which contradicts the fact that

∑
x∈V (G)∪F (G) c′(x) =∑

x∈V (G)∪F (G) c(x) = −20.
If f is a 3-face that is incident with a 2-vertex, then by Proposition 1, f is incident

with two 7+-vertices, which implies that c′(v) = −4 + 2 × 2 = 0 by R4. Suppose
that f is a 3-face that is incident with no 2-vertices. If f is incident with at least a
8+-vertex, then c′(f) ≥ −4 + 4 = 0 by R3. If f is incident only with 7−-vertices,
then by Propositions 3, f is incident with at least two 4+-vertices, which implies that
c′(f) ≥ −4 + 2 × 2 = 0 by R3. If f is a 4-face, then by Propositions 1 and 2, f is
incident with at least two 4+-vertices, thus by R5 we have c′(f) ≥ −2 + 2 × 1 = 0.
If f is a 5+-face, then it is easy to see that c′(f) = c(f) ≥ 0.
If v is a 2-vertex, then by Proposition 1, v is adjacent to two 7+-vertices form

which v receives 2 × 2 = 4 by R1, therefore c′(v) = −4 + 4 = 0. If v is a 3-
vertex, then by Proposition 2, v is either adjacent to three 5+-vertices which implies
c′(v) ≥ −1+3× 1

3 = 0 or adjacent to two 7+-vertices implying c′(v) ≥ −1+2× 1
2 = 0
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by R2. Note that every vertex in G is incident with at most one 4−-face by the definition
of G. If v is a 4-vertex, then c′(v) ≥ 2 − 2 = 0 by R3 and R5. If v is a 5-vertex
or a 6-vertex, then by R2, R3 and R5, c′(v) ≥ 3d(v) − 10 − 1

3d(v) − 2 > 0. If v is
a 7-vertex, then v is adjacent to at most one 2-vertex by Proposition 5, thus c′(v) ≥
11−2−6× 1

2 −2 > 0 by R1–R5. If v is a 8-vertex or a 9-vertex, then by Proposition
6 and R1–R5, c′(v) ≥ 3d(v)−10−4×2−(d(v)−4)× 1

2 −4 = 1
2

(
5d(v)−40

) ≥ 0. If
v is a 10-vertex, then by Proposition 7 and R1–R5, c′(v) ≥ 20−7×2−3× 1

2 −4 > 0.
At last, we consider the vertex v with d(v) ≥ 11. If v is adjacent only to 2-

vertices, then v is incident with no 3-faces because otherwise there would be two
adjacent 2-vertices in G, a contradiction. Therefore, by R1 and R5, we have c′(v) ≥
3d(v)− 10− 2d(v)− 1 ≥ 0. If v is adjacent to at most d(v)− 2 vertices of degree 2,
then by R1–R5, c′(v) ≥ 3d(v)−10−2

(
d(v)−2

)−2× 1
2−4 = d(v)−11 ≥ 0. Suppose

that v is adjacent to d(v)−1 vertices of degree 2. If v is incident with no 4−-faces, then
c′(v) ≥ 3d(v)−10−2

(
d(v)−1

)− 1
2 = d(v)− 17

2 > 0 by R1 and R2. If v is incident
with a 4−-face f , then either f is a 4-face or a 3-face that is incident with a 2-vertex. In
the former case we have c′(v) ≥ 3d(v)−10−2

(
d(v)−1

)− 1
2 −1 = d(v)− 19

2 > 0 by
R1, R2 and R5, and in the latter case we have c′(v) ≥ 3d(v)−10−2

(
d(v)−1

)− 1
2−2 =

d(v)− 21
2 > 0 by R1, R2 and R4.

Theorem 6. If G is a planar graph with girth at least 4 such that no two 4-cycles
are adjacent, then a∗eq(G) ≤ 3.

Proof. Let G be the minimal counterexample to this result and let t ≥ 3 be an
integer. Since every planar graph with girth at least 4 contains a 3−-vertex, Propositions
1,2,4–7 still hold here. Therefore, the order of the following propositions we are to
prove are naturally labeled from 8.

Proposition 8. Every 11-vertex is adjacent to at most seven 2-vertices.

Proof. Let u be a 11-vertex and let v1, . . . , v11 be its neighbors in G. Without
loss of generality, assume that v1, . . . , v7 and v8 are 2-vertices. Let wi be the other
neighbor of vi for every 1 ≤ i ≤ 8.

If t ≥ 5, then label v1, v2, v3, v4 and u with x1, xt−3, xt−2, xt−1 and xt, respec-
tively, and construct the set S = {x1, . . . , xt} as in Lemma 3 by the similar arguments
as in the proof of Proposition 1. Therefore, G − S has an equitable t-tree-coloring by
the minimality of G, which implies that G also has such a desired coloring for every
t ≥ 5 by Lemma 3.
We now prove thatG has an equitable 4-tree-coloring. LetH1 = G−{u, v1, . . . , v7}.

By the minimality of G, H1 has an equitable 4-tree-coloring ϕ1. It is easy to see that
there are at least two colors, say 1 and 2, that are used at most once on v8, v9, v10

and v11. Color u with 1. If there is one vertex among w1, . . . , w7, say w1, that is not
colored with 1 under ϕ1, then color v1 with 1, v2, v3 with 2, v4, v5 with 3, and v6, v7
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with 4. If ϕ1(wi) = 1 for every 1 ≤ i ≤ 7, then recolor u with 2, color v1 with 2,
v2, v3 with 1, v4, v5 with 3, and v6, v7 with 4. In each case we obtain an equitable
4-tree-coloring of G.
At last, we show that G also admits an equitable 3-tree-coloring. By the minimality

of G, H2 = G − {u, v1, . . . , v8} has an equitable 3-tree-coloring ϕ2. Without loss of
generality, let 1 and 2 be the colors used at most once on v9, v10 and v11. Color u with
1. If there are two vertices among w1, . . . , w8, say w1 and w2, that are not colored
with 1 under ϕ2, then color v1, v2 with 1, v3, v4, v5 with 2, and v6, v7, v8 with 3. On
the other hand, we can assume, without loss of generality, that ϕ2(wi) = 1 for every
1 ≤ i ≤ 7. We now recolor u with 2, color v1, v2 with 2, v3, v4, v5 with 1, and
v6, v7, v8 with 3. In each case, one can check that the resulted coloring is an equitable
3-tree-coloring of G.

Proposition 9. Every 12-vertex and every 13-vertex is adjacent to at most ten
2-vertices.

Proof. Let u be a k-vertex with 12 ≤ k ≤ 13 and let v1, . . . , vk be its neighbors
in G. Without loss of generality, assume that v1, . . . , v10 and v11 are 2-vertices. Let
wi be the other neighbor of vi for every 1 ≤ i ≤ 11.
By the same argument as in the proof of the above proposition, one can show that

G has an equitable t-tree-coloring for every t ≥ 5. Let H = G − {u, v1, . . . , v11}.
By the minimality of G, H has an equitable 4-tree-coloring ϕ1 and an equitable 3-
tree-coloring ϕ2. It is easy to see that there is a color, say 1, that has not used on
{w1} ∪ N (u) \ {v1, . . . , v11} under ϕ1. Hence we can extend ϕ1 to an equitable
4-tree-coloring of G by coloring u, v1, v2 with 1, v3, v4, v5 with 2, v6, v7, v8 with 3,
and v9, v10, v11 with 4. On the other hand, there exists a color, say 1, that is used on
N (u) \ {v1, . . . , v11} at most once, and with which three vertices among w1, . . . , w11,
say w1, w2 and w3, are not colored under ϕ2. Therefore, ϕ2 can be extended to an
equitable 3-tree-coloring of G by coloring u, v1, v2, v3 with 1, v4, v5, v6, v7 with 2, and
v8, v9, v10, v11 with 3. Hence, G admits an equitable t-tree-coloring for every t ≥ 3, a
contradiction.

Proposition 10. Every 14-vertex and every 15-vertex is adjacent to at most thirteen
2-vertices.

Proof. Let u be a k-vertex with 14 ≤ k ≤ 15 and let v1, . . . , vk be its neighbors
in G. Without loss of generality, assume that v1, . . . , v13 and v14 are 2-vertices. Let
wi be the other neighbor of vi for every 1 ≤ i ≤ 14.
If t ≥ 6, then label v1, v2, v3, v4, v5 and u with x1, xt−4, xt−3, xt−2, xt−1 and xt,

respectively, and construct the set S = {x1, . . . , xt} as in Lemma 3 by the similar
arguments as in the proof of Proposition 1. Therefore, G − S has an equitable t-tree-
coloring by the minimality of G, which implies that G also has such a desired coloring
for every t ≥ 6 by Lemma 3.
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Let H = G−{u, v1, . . . , v14}. One can see that H has an equitable 5-tree coloring
ϕ1 and an equitable 3-tree coloring ϕ2 by the minimality of G. Without loss of
generality, let 1 be the color that is not used on {w1} ∪ N (u) \ {v1, . . . , v14} under
ϕ1. We extend ϕ1 to an equitable 5-tree-coloring of G by coloring u, v1, v2 with 1,
v3, v4, v5 with 2, v6, v7, v8 with 3, v9, v10, v11 with 4, and v12, v13, v14 with 5. On
the other hand, since there is a color, say 1, that is not used on N (u) \ {v1, . . . , v14},
and with which four vertices among w1, . . . , w14, say w1, w2, w3 and w4, are not
colored under ϕ2, we can extend ϕ2 to an equitable 3-tree-coloring of G by coloring
u, v1, v2, v3, v4 with 1, v5, v6, v7, v8, v9 with 2, and v10, v11, v12, v13, v14 with 3. Let
H ′ = G − {u, v1, . . . , v11}. By the minimality of G, H ′ admits an equitable 4-tree-
coloring ϕ3. Note that there is a color, say 1, that has been used on N (u)\{v1, . . . , v11}
at most once, and with which two vertices among w1, . . . , w11, say w1 and w2, are
not colored under ϕ3. Therefore, we extend ϕ3 to an equitable 4-tree-coloring of G
by coloring u, v1, v2 with 1, v3, v4, v5 with 2, v6, v7, v8 with 3, and v9, v10, v11 with 4.
Hence, G has an equitable t-tree-coloring for every t ≥ 3, a contradiction.

We now prove the theorem by discharging. First, assign each vertex v of G an
initial charge c(v) = d(v)− 4 and each face f of G an initial charge c(v) = d(f)− 4.
By Euler’s formula,

∑
x∈V (G)∪F (G) c(x) = −8. It is easy to see that there is no

1-vertices in G. The discharging rules we are applying are defined as follows.
R1. Each 2-vertex receives 3

4 from each of its neighbors, and 1
2 from each of its

incident 5+-faces.
R2. Each 3-vertex receives 1

6 from each of its 5-neighbors or 6-neighbors, 1
4 from

each of its 7+-neighbors, and 1
4 from each of it incident 5

+-faces.

Let c′ be the final charge after discharging. If f is a 5+-face that is incident with
�d(f)

2 � vertices of degree 2, then f is incident with no 3-vertices, since 2-vertices are
not adjacent to any 3−-vertices by Proposition 1. Hence, c′(f) ≥ d(f)−4− 1

2�d(f)
2 � ≥

0 by R1 and R2. If f is a 5+-face that is incident with n < �d(f)
2 � vertices of

degree 2, then f is incident with at most d(f) − 2n − 1 vertices of degree 3. Hence,
c′(f) ≥ d(f) − 4 − 1

2n − 1
4

(
d(f) − 2n − 1

)
= 3

4

(
d(f) − 5

) ≥ 0 by R1 and R2. If
v is a 2-vertex, then v is incident with at least one 5+-face by the definition of G, so
c′(v) ≥ −2 + 2 × 3

4 + 1
2 = 0 by R1. If v is a 3-vertex, then v is incident with at

least two 5+-faces, because otherwise there would be two adjacent 4-cycles in G. If
v is adjacent to three 5+-vertices, then by R2, c′(v) ≥ −1 + 3 × 1

6 + 2 × 1
4 = 0. If

v is adjacent to a 4−-vertex, then by Proposition 2, v is adjacent to two 7+-vertices,
which implies that c′(v) ≥ −1 + 2 × 1

4 + 2 × 1
4 = 0 by R2. If v is a 5-vertex or a

6-vertex, then c′(v) ≥ d(v)− 4 − 1
6d(v) > 0 by R2, since v has no 2-neighbors. If v

is a 7-vertex, then by Proposition 5, v has at most one 2-neighbor, which implies that
c′(v) ≥ 3 − 3

4 − 6 × 1
4 > 0 by R1 and R2. If v is a 8-vertex or a 9-vertex, then by

Proposition 6, R1 and R2, c′(v) ≥ d(v)−4−4× 3
4 − 1

4

(
d(v)−4

)
= 3

4

(
d(v)−8

) ≥ 0.
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If v is a 10-vertex, then by Proposition 7, R1 and R2, c′(v) ≥ 6− 7× 3
4 − 3× 1

4 = 0.
If v is a 11-vertex, then by Proposition 8, R1 and R2, c′(v) ≥ 7−7× 3

4 −4× 1
4 > 0. If

v is a 12-vertex or a 13-vertex, then by Proposition 9, R1 and R2, c′(v) ≥ d(v)− 4−
10× 3

4 − 1
4

(
d(v)−10

)
= 3

4

(
d(v)−12

) ≥ 0. If v is a 14-vertex or a 15-vertex, then by
Proposition 10, R1 and R2, c′(v) ≥ d(v)−4−13×3

4−1
4

(
d(v)−13

)
= 3

4

(
d(v)−14

) ≥ 0.
If v is a 16+-vertex, then c′(v) ≥ d(v) − 4 − 3

4d(v) = 1
4

(
d(v) − 16

) ≥ 0 by R1 and
R2. Therefore,

∑
x∈V (G)∪F (G) c′(x) ≥ 0, a contradiction completing the proof.
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