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a b s t r a c t

A proper vertex coloring of a graph is equitable if the sizes of any two color classes dif-
fer by at most one. The equitable chromatic number of a graph G, denoted by χ=(G), is
theminimum k such that G is equitably k-colorable. Lin and Chang conjectured that for any
(nontrivial) connected graphsG andH ,χ=(G�H) ≤ χ(G)χ(H), where� denotes the Carte-
sian product. In this paper, we prove the conjecture when G or H is a balanced complete
multipartite graph. More precisely, we show a stronger result that for any graph H with
χ(H) ≥ 2, χ=(Kr(n)�H) ≤ r


χ(H)−1
r−1


, where r ≥ 2, n ≥ 1 and Kr(n) denotes the balanced

complete r-partite graph with part size n.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, undirected and simple. Given a positive integer k and a graph G, a k-coloring
of G is a mapping c: V (G) → [k] = {1, 2, . . . , k} such that c(x) ≠ c(y) whenever xy ∈ E(G). The chromatic number of G,
denoted by χ(G), is the smallest number k for which G has a k-coloring. An equitable k-coloring is a k-coloring for which any
two color classes differ in size by at most 1. The equitable chromatic number of G, denoted by χ=(G), is the smallest number k
for which G has an equitable k-coloring. It is obvious that χ=(G) ≥ χ(G). Note that χ=(G) and χ(G) can vary a lot. For exam-
ple, χ(K1,n) = 2 < 1 + ⌈n/2⌉ = χ=(K1,n) for n ≥ 3. One can refer to a survey by Lih [3] for the progresses on the equitable
coloring of graphs since it was first introduced by Meyer [5] in 1973.

For graphs G andH , the Cartesian product of G andH is the graph G�H with vertex set V (G�H) = V (G)×V (H) = {(x, y):
x ∈ V (G), y ∈ V (H)}, and edge set E(G�H) = {(x, u)(y, v): x = y with uv ∈ E(H), or xy ∈ E(G) with u = v}. The following
result on the usual chromatic number of the Cartesian product is due to Sabidussi [6].

Theorem 1. For any two graphs G and H, χ(G�H) = max{χ(G), χ(H)}.

The equitable colorability of Cartesian products of graphs was first investigated by Chen et al. [1] and Furmańzyk [2].
Chen et al. [1] proved the following general result.

Theorem 2. If G and H are equitably k-colorable, then so is G�H.

Since the empty graph En with n vertices is equitably k-colorable for any k ≥ 1, the following corollary is immediate.
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Corollary 3. If G is equitably k-colorable, then so is En�G for any n ≥ 1.

Recently, Lin and Chang [4] proved that if G and H are (nontrivial) bipartite graphs then G�H is equitably 4-colorable
and hence χ=(G�H) ≤ 4. Furthermore, Yan, Lin and Wang [7] proved that G�H is equitably k-colorable for any k ≥ 4,
which settled a conjecture of Lin and Chang [4]. Instead of bounding χ=(G�H) by equitable colorability of its factors as in
Theorem 2, Lin and Chang believed that it is possible to bound χ=(G�H) by usual colorability of its factors. At the end of [4],
they raised the following conjecture.

Conjecture 4. χ=(G�H) ≤ χ(G)χ(H) for connected graphs G and H.

Remark. Since K1 is a unit for Cartesian product (that is, K1�G = G�K1 = G), the conjecture may not hold when one factor
is K1. Hence we assume that neither G nor H is the trivial graph K1.

By Kr(n) we denote the balanced complete r-partite graph whose each partite set contains n vertices. In this paper we
settle Conjecture 4 for the case when one factor, say G, is Kr(n) with r ≥ 2 and n ≥ 1. Actually, we prove a better result.

Theorem 5. Let r ≥ 2, n ≥ 1. For any graph H with χ(H) ≥ 2, χ=(Kr(n)�H) ≤ r


χ(H)−1
r−1


.

Let V1, . . . , Vχ(H) withχ(H) ≥ 2 be a partition of V (H) into independent sets. Since adding edges between different parts
Vi and Vj does not increase χ(H) or decrease χ=(Kr(n)�H), it suffices to prove Theorem 5 for the case when H is a complete
multipartite graph. We may restate Theorem 5 as the following.

Theorem 6. For r ≥ 2, s ≥ 2 and n,m1, . . . ,ms ≥ 1, χ=(Kr(n)�Km1,...,ms) ≤ r
 s−1

r−1


.

2. Proof of Theorem 6

We shall prove Theorem 6 by showing that the graph Kr(n)�Km1,...,ms is equitably r
 s−1

r−1


-colorable. For a complete

multipartite graph Km1,...,ms , it is custom to assume that each mi is positive. However, for technical reasons, we allow some
mi’s to take the value of zero.

Lemma 7. Let r and s be integers with s ≥ r ≥ 2. For any nonnegative integers m1,m2, . . . ,ms, there exist an (r − 1)-subset I
and an r-subset J of [s] with I ⊂ J such that

i∈I

mi ≤

 r − 1
s − 1

s
i=1

mi


≤


i∈J

mi. (1)

Proof. Wemay assume thatm1 ≤ m2 ≤ · · · ≤ ms. If we can show that there exists an integer p ∈ [s − r + 1] such that

p+r−2
i=p

mi ≤

 r − 1
s − 1

s
i=1

mi


≤

p+r−1
i=p

mi, (2)

then the lemma holds by taking I = {p, . . . , p + r − 2} and J = {p, . . . , p + r − 1}.
From the assumption thatm1 ≤ m2 ≤ · · · ≤ ms,

1
r − 1

r−1
i=1

mi ≤
1
s

s
i=1

mi ≤
1
r

s
i=s−r+1

mi. (3)

Since s ≥ r , we see that r−1
s−1 ≤

r
s . Note

s
i=1 mi ≥ 0. These facts along with (3) lead to

r−1
i=1

mi ≤
r − 1

s

s
i=1

mi ≤
r − 1
s − 1

s
i=1

mi ≤
r
s

s
i=1

mi ≤

s
i=s−r+1

mi. (4)

Since eachmi is an integer, from (4),

r−1
i=1

mi ≤

 r − 1
s − 1

s
i=1

mi


≤

s
i=s−r+1

mi. (5)

We define

S =


j: 1 ≤ j ≤ s − r + 1 and

j+r−2
i=j

mi ≤

 r − 1
s − 1

s
i=1

mi


.

By the left inequality in (5), 1 ∈ S and hence S is nonempty. Let p be the maximum integer in S. We show that p satisfies the
desired relation (2).
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Since p ∈ S, the definition of S implies the left inequality in (2). If p = s−r+1 then the right inequality in (2) follows from
the right inequality in (5). Now assume p ≤ s− r . Since p is themaximum integer in S, p+1 ∉ S. Since 1 ≤ p+1 ≤ s− r +1
andmp ≥ 0, the definition of S implies r − 1

s − 1

s
i=1

mi


<

p+r−1
i=p+1

mi ≤

p+r−1
i=p

mi,

as desired. �

For X ⊂ V (G), let ⟨X⟩ denote the subgraph of G induced by X . For n graphs G1, . . . ,Gn with pairwise disjoint vertex sets,
the disjoint union of G1, . . . ,Gn, denoted by G1 ∪ · · · ∪ Gn, is the graph with vertex set V (G1) ∪ · · · ∪ V (Gn) and edge set
E(G1) ∪ · · · ∪ E(Gn).

Lemma 8. Let H = Km1,...,ms , s ≥ 2 and mi ≥ 0 for each i ∈ [s]. Denote partite sets of H by V1, . . . , Vs with |Vi| = mi for each
i ∈ [s]. For any r ≥ 2, there exists a partition Π = (π1, . . . , πr) of [s] such that the disjoint union

U =


∪

i∈π1
Vi


∪


∪

i∈π2
Vi


∪ · · · ∪


∪

i∈πr
Vi


(6)

is equitably ⌈
s−1
r−1⌉-colorable.

Proof. As Km1,...,ms = Km1,...,ms,0 = Km1,...,ms,0,0 = · · ·, we may always assume that s − 1 is divisible by r − 1. Set k = s−1
r−1


=

s−1
r−1 . We fix r and prove the lemma by induction on k. If k = 1 then s = r . Let

Π = (π1, . . . , πr) = ({1}, {2}, . . . , {s}).

Since all graphs ⟨∪j∈πi Vj⟩ are empty and so is their disjoint union, the lemma holds for k = 1. Assume now that k ≥ 2 and
the lemma holds for k − 1. By Lemma 7, there exist an (r − 1)-subset I and an r-subset J of [s] with I ⊂ J such that

i∈I

mi ≤

 r − 1
s − 1

s
i=1

mi


≤


i∈J

mi. (7)

By rearrangingm1, . . . ,ms, we may assume I = {s − r + 2, . . . , s} and J = I ∪ {s − r + 1}. As k =
s−1
r−1 , (7) becomes

s
i=s−r+2

mi ≤

1
k

s
i=1

mi


≤

s
i=s−r+1

mi. (8)

Set s′ = s − r + 1 and

q =

1
k

s
i=1

mi


−

s
i=s−r+2

mi. (9)

By (8), 0 ≤ q ≤ ms′ . LetV ′

i = Vi for 1 ≤ i < s′ and letV ′

s′ be any subset ofVs′ withms′ −q vertices. Since
 s′−1

r−1


=

 s−1
r−1


−1 =

k − 1, by the induction assumption, there exists a partition Π ′
= (π ′

1, . . . , π
′
r) of [s

′
] such that the disjoint union

U ′
=


∪

i∈π ′
1

V ′

i


∪


∪

i∈π ′
2

V ′

i


∪ · · · ∪


∪

i∈π ′
r

V ′

i


is equitably (k − 1)-colorable. Without loss of generality, we may assume s′ ∈ π ′

1. Let

Π = (π1, . . . , πr) = (π ′

1, π
′

2 ∪ {s′ + 1}, . . . , π ′

r ∪ {s′ + r − 1}). (10)

It is clear that Π is a partition of [s]. We claim that the graph U defined by (6) is equitably k-colorable. First, use k− 1 colors
to color the subgraph U ′ equitably. Now, by (9), the number of uncolored vertices is exactly

|Vs′ \ V ′

s′ | + |Vs′+1| + · · · + |Vs′+r−1| = q +

s
i=s−r+2

mi =

1
k

s
i=1

mi


.

Finally, by (10), the subgraph of U induced by these uncolored vertices is a disjoint union of r empty graphs and hence is
empty. Assigning a new color to these uncolored vertices, we obtain an equitable k-coloring of U . This proves the claim and
hence the lemma holds. �

Proof of Theorem 6. LetU1,U2, . . . ,Ur andV1, V2, . . . , Vs be the partite sets ofKr(n) andKm1,...,ms , respectively. By Lemma8,
there exists a partition Π = (π1, . . . , πr) of [s] such that the disjoint union

U =


∪

i∈π1
Vi


∪


∪

i∈π2
Vi


∪ · · · ∪


∪

i∈πr
Vi


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is equitably
 s−1

r−1


-colorable. For each k ∈ [r] and i ∈ [r] we define

Wk,i = Ui+k × ∪
j∈πi

Vj and Wk = ∪
i=1

rWk,i,

where the additions on the indices are taken modulo r . If i ≠ i′, (x, y) ∈ Wk,i and (x′, y′) ∈ Wk,i′ , then x ≠ x′ and y ≠ y′,
implying that (x, y) and (x′, y′) are not adjacent in Kr(n)�Km1,...,ms . Hence,

⟨Wk⟩ =


∪
i=1

rWk,i


= ∪

i=1

r
⟨Wk,i⟩

= ∪
i=1

r

En�


∪
j∈πi

Vj


= En� ∪

i=1

r

∪
j∈πi

Vj


= En�U .

Since U is equitably
 s−1

r−1


-colorable, Corollary 3 implies that ⟨Wk⟩ = En�U is also equitably

 s−1
r−1


-colorable. Note that

(W1, . . . ,Wr) is a partition of V (Kr(n)�Km1,...,ms) and all classes have equal sizes. By partitioning each Wk equitably into s−1
r−1


independent sets, we obtain an equitable r

 s−1
r−1


-coloring of V (Kr(n)�Km1,...,ms). This proves the theorem.
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