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1. Introduction

All graphs considered in this paper are finite, undirected and simple. Given a positive integer k and a graph G, a k-coloring
of G is a mapping c: V(G) — [k] = {1, 2, ..., k} such that c(x) # c(y) whenever xy € E(G). The chromatic number of G,
denoted by x (G), is the smallest number k for which G has a k-coloring. An equitable k-coloring is a k-coloring for which any
two color classes differ in size by at most 1. The equitable chromatic number of G, denoted by x_(G), is the smallest number k
for which G has an equitable k-coloring. It is obvious that x_(G) > x (G). Note that x—(G) and x (G) can vary a lot. For exam-
ple, x(K1n) =2 < 14 [n/2] = x=(Ky,n) for n > 3. One can refer to a survey by Lih [3] for the progresses on the equitable
coloring of graphs since it was first introduced by Meyer [5] in 1973.

For graphs G and H, the Cartesian product of G and H is the graph GOH with vertex set V(GOH) = V(G) x V(H) = {(x, y):
x € V(G),y € V(H)}, and edge set E(GOH) = {(x, u)(y, v):x = y with uv € E(H), or xy € E(G) with u = v}. The following
result on the usual chromatic number of the Cartesian product is due to Sabidussi [6].

Theorem 1. For any two graphs G and H, x (GOH) = max{x (G), x (H)}.

The equitable colorability of Cartesian products of graphs was first investigated by Chen et al. [1] and Furmarizyk [2].
Chen et al. [1] proved the following general result.
Theorem 2. If G and H are equitably k-colorable, then so is GOH.

Since the empty graph E,, with n vertices is equitably k-colorable for any k > 1, the following corollary is immediate.
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Corollary 3. If G is equitably k-colorable, then so is E,00G for any n > 1.

Recently, Lin and Chang [4] proved that if G and H are (nontrivial) bipartite graphs then GOH is equitably 4-colorable
and hence x—(GOH) < 4. Furthermore, Yan, Lin and Wang [7] proved that GOH is equitably k-colorable for any k > 4,
which settled a conjecture of Lin and Chang [4]. Instead of bounding x_ (GOH) by equitable colorability of its factors as in
Theorem 2, Lin and Chang believed that it is possible to bound x_ (GOH) by usual colorability of its factors. At the end of [4],
they raised the following conjecture.

Conjecture 4. x_(GOH) < x(G)x (H) for connected graphs G and H.

Remark. Since K; is a unit for Cartesian product (that is, K;OG = GOK; = G), the conjecture may not hold when one factor
is K;. Hence we assume that neither G nor H is the trivial graph K;.

By K, we denote the balanced complete r-partite graph whose each partite set contains n vertices. In this paper we
settle Conjecture 4 for the case when one factor, say G, is K., withr > 2 and n > 1. Actually, we prove a better result.

Theorem 5. Let r > 2, n > 1. For any graph H with x (H) > 2, x (Ky(nOH) < r( x(H)— l-‘.

LetVy, ..., V@) with x (H) > 2be a partition of V (H) into independent sets. Since adding edges between different parts
V; and V; does not increase x (H) or decrease x— (K;)OH), it suffices to prove Theorem 5 for the case when H is a complete
multipartite graph. We may restate Theorem 5 as the following.

Theorem 6. Forr > 2,s > 2andn, my, ..., ms > 1, x=(K;(yOKipy, ,...im;) < r[

,,,,,

2. Proof of Theorem 6

We shall prove Theorem 6 by showing that the graph K;OKp, ... m, is equitably rﬁj -colorable. For a complete
multipartite graph Kp, . m,, it is custom to assume that each m; is positive. However, for technical reasons, we allow some
m;’s to take the value of zero.

Lemma 7. Let r and s be integers with s > r > 2. For any nonnegative integers my, my, . .., ms, there exist an (r — 1)-subset I
and an r-subset J of [s] with I C ] such that

;mifﬁ::gmdfzmi' (1)

i€]

Proof. We may assume that m; < m, < --- < ms. If we can show that there exists an integer p € [s — r + 1] such that

p+r—2 pr—1
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i=p
then the lemma holds by takingI = {p,...,p+r —2}andJ ={p,...,p+1—1}.
From the assumption thatm; <m, < --- < m;,

r_lzmz—*zml—* > m. 3)

i=s—r+1

. Note Zf:] m; > 0. These facts along with (3) lead to

r_lzm,_fzmz_ Xs: m;. 4)

i=s—r+1

Since s > r, we see that g <

r—1
E m; <
i=1

Since each m; is an integer, from (4),
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By the left inequality in (5), 1 € S and hence S is nonempty. Let p be the maximum integer in S. We show that p satisfies the
desired relation (2).
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Sincep € S, the definition of S implies the left inequality in (2). If p = s—r+1 then the right inequality in (2) follows from
the right inequality in (5). Now assume p < s—r. Since p is the maximum integerinS,p+1 & S.Since1 <p+1<s—r+1
and m, > 0, the definition of S implies

r—1 s p+r—1 p+r—1
o)< > ms =2 m
i=1 i=p+1
asdesired. O
For X C V(G), let (X) denote the subgraph of G induced by X. For n graphs Gy, ..., G, with pairwise disjoint vertex sets,
the disjoint union of Gy, ..., G,, denoted by G; U - - - U Gy, is the graph with vertex set V(Gy) U - - - U V(G,) and edge set
E(G)) U---UE(G,).
Lemma 8. Let H = Ky, .. .m;, S > 2 and m; > 0 for each i € [s]. Denote partite sets of H by V1, ..., Vs with |V;| = m; for each
i € [s]. For any r > 2, there exists a partition IT = (7y, ..., 7;) of [s] such that the disjoint union
U:<u Vi>u<u Vi>u---u<u v,~> (6)
iem iemry iemny

s—1

is equitably [ 1= ]-colorable.

Proof. As K, ... = Kmny,..m,0 = Kmy,...ms00 = -+, we may always assume that s — 1 is divisible by r — 1. Set k =
[=1] =1 We f1x r and prove the lemma by induction on k. If k = 1 thens = r. Let

= (m,....m) = ({1}, {2}, ..., {sD.

Since all graphs (Uje,; Vj) are empty and so is their disjoint union, the lemma holds for k = 1. Assume now that k > 2 and
the lemma holds for k — 1. By Lemma 7, there exist an (r — 1)-subset I and an r-subset J of [s] with I C J such that

Zmift Zm,J<Zm, (7)

iel ief
By rearranging my, ..., mg, wemay assumel ={s—r+2,...,s}andJ =1U{s—r+ 1}.Ask = % (7) becomes
N
> ms|y Z J= 3 m (8)
i=s—r+2 i= i=s—r+1

Sets' =s—r+ 1and

o-[15m)- £ m

i=s—r+2

By(8),0 < q < my.LetV/ = Vifor 1 <i < s’ and letV/, be any subset of Vy with my —q vertices. Since ﬁ/_;ﬂ =[=]-1=
k — 1, by the induction assumption, there exists a partition IT' = (71, ..., 7}) of [s'] such that the disjoint union

U/—<UV> <UV> (uv)
IETI lEJT2 1emy
is equitably (k — 1)-colorable. Without loss of generality, we may assume s’ € ;. Let

=@, .. m) = (L, Ul + 1), o 7l Ufs + 1 — 1)). (10)

It is clear that IT is a partition of [s]. We claim that the graph U defined by (6) is equitably k-colorable. First, use k — 1 colors
to color the subgraph U’ equitably. Now, by (9), the number of uncolored vertices is exactly

, N 1 N
Vo AVl Vol o Vet =+ > mi=[ > mi].

i=s—r+2 k i=1

Finally, by (10), the subgraph of U induced by these uncolored vertices is a disjoint union of r empty graphs and hence is
empty. Assigning a new color to these uncolored vertices, we obtain an equitable k-coloring of U. This proves the claim and
hence the lemma holds. O

Proof of Theorem 6. LetU;, Uy, ..., Ur;and Vy, Vs, ..., Vi be the partite sets of K ;) and Ky,
there exists a partition IT = (7, ..., ;) of [s] such that the disjoint union

U:(_u v,->u<lu v,)u---u(,u vi>
iem iemy icmy

.m» Tespectively. By Lemma 8,

,,,,,
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s—1

= |-colorable. For each k € [r]and i € [r] we define

is equitably |
Wii=Uk x UV, and Wy = U'W,,
Jjem; i=1

where the additions on the indices are taken modulo r. If i # 7, (x,y) € W;; and (X',y") € Wy, thenx # x' andy # ¥/,
implying that (x, y) and (', y') are not adjacent in K ;) 0K, ...m,. Hence,

(Wy) = <igler,i>

= U"(Wi;)
i=1

- ey )
i=1 jer;

E,0U ’( U v,»>

i=1 \jem;

= E,0U.

Since U is equitably [ :=] ]-colorable, Corollary 3 implies that (W) = E,0OU is also equitably [ *=} ]-colorable. Note that
Wy, ..., W,) is a partition of V(K ;) 0OKp,
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