Note

Equitable colorings of Cartesian products with balanced complete multipartite graphs ${ }^{\text {* }}$

Zhidan Yan ${ }^{\text {a }}$, Wei Wang ${ }^{\text {a }}$, Xin Zhang ${ }^{\text {b,* }}$
a College of Information Engineering, Tarim University, Alar 843300, PR China
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China

ARTICLE INFO

Article history:

Received 25 May 2014
Received in revised form 18 August 2014
Accepted 19 August 2014
Available online 11 September 2014

Keywords:

Equitable coloring
Equitable chromatic number
Cartesian product
Balanced complete multipartite graph

Abstract

A proper vertex coloring of a graph is equitable if the sizes of any two color classes differ by at most one. The equitable chromatic number of a graph G, denoted by $\chi=(G)$, is the minimum k such that G is equitably k-colorable. Lin and Chang conjectured that for any (nontrivial) connected graphs G and $H, \chi=(G \square H) \leq \chi(G) \chi(H)$, where \square denotes the Cartesian product. In this paper, we prove the conjecture when G or H is a balanced complete multipartite graph. More precisely, we show a stronger result that for any graph H with $\chi(H) \geq 2, \chi=\left(K_{r(n)} \square H\right) \leq r\left\lceil\frac{\chi(H)-1}{r-1}\right\rceil$, where $r \geq 2, n \geq 1$ and $K_{r(n)}$ denotes the balanced complete r-partite graph with part size n.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, undirected and simple. Given a positive integer k and a graph G, a k-coloring of G is a mapping $c: V(G) \rightarrow[k]=\{1,2, \ldots, k\}$ such that $c(x) \neq c(y)$ whenever $x y \in E(G)$. The chromatic number of G, denoted by $\chi(G)$, is the smallest number k for which G has a k-coloring. An equitable k-coloring is a k-coloring for which any two color classes differ in size by at most 1 . The equitable chromatic number of G, denoted by $\chi=(G)$, is the smallest number k for which G has an equitable k-coloring. It is obvious that $\chi=(G) \geq \chi(G)$. Note that $\chi=(G)$ and $\chi(G)$ can vary a lot. For example, $\chi\left(K_{1, n}\right)=2<1+\lceil n / 2\rceil=\chi=\left(K_{1, n}\right)$ for $n \geq 3$. One can refer to a survey by Lih [3] for the progresses on the equitable coloring of graphs since it was first introduced by Meyer [5] in 1973.

For graphs G and H, the Cartesian product of G and H is the graph $G \square H$ with vertex set $V(G \square H)=V(G) \times V(H)=\{(x, y)$: $x \in V(G), y \in V(H)\}$, and edge set $E(G \square H)=\{(x, u)(y, v): x=y$ with $u v \in E(H)$, or $x y \in E(G)$ with $u=v\}$. The following result on the usual chromatic number of the Cartesian product is due to Sabidussi [6].

Theorem 1. For any two graphs G and $H, \chi(G \square H)=\max \{\chi(G), \chi(H)\}$.
The equitable colorability of Cartesian products of graphs was first investigated by Chen et al. [1] and Furmańzyk [2]. Chen et al. [1] proved the following general result.

Theorem 2. If G and H are equitably k-colorable, then so is $G \square H$.
Since the empty graph E_{n} with n vertices is equitably k-colorable for any $k \geq 1$, the following corollary is immediate.

[^0]Corollary 3. If G is equitably k-colorable, then so is $E_{n} \square G$ for any $n \geq 1$.
Recently, Lin and Chang [4] proved that if G and H are (nontrivial) bipartite graphs then $G \square H$ is equitably 4-colorable and hence $\chi=(G \square H) \leq 4$. Furthermore, Yan, Lin and Wang [7] proved that $G \square H$ is equitably k-colorable for any $k \geq 4$, which settled a conjecture of Lin and Chang [4]. Instead of bounding $\chi=(G \square H)$ by equitable colorability of its factors as in Theorem 2, Lin and Chang believed that it is possible to bound $\chi=(G \square H)$ by usual colorability of its factors. At the end of [4], they raised the following conjecture.

Conjecture 4. $\chi=(G \square H) \leq \chi(G) \chi(H)$ for connected graphs G and H.
Remark. Since K_{1} is a unit for Cartesian product (that is, $K_{1} \square G=G \square K_{1}=G$), the conjecture may not hold when one factor is K_{1}. Hence we assume that neither G nor H is the trivial graph K_{1}.

By $K_{r(n)}$ we denote the balanced complete r-partite graph whose each partite set contains n vertices. In this paper we settle Conjecture 4 for the case when one factor, say G, is $K_{r(n)}$ with $r \geq 2$ and $n \geq 1$. Actually, we prove a better result.
Theorem 5. Let $r \geq 2, n \geq 1$. For any graph H with $\chi(H) \geq 2, \chi_{=}\left(K_{r(n)} \square H\right) \leq r\left\lceil\frac{\chi(H)-1}{r-1}\right\rceil$.
Let $V_{1}, \ldots, V_{\chi(H)}$ with $\chi(H) \geq 2$ be a partition of $V(H)$ into independent sets. Since adding edges between different parts V_{i} and V_{j} does not increase $\chi(H)$ or decrease $\chi=\left(K_{r(n)} \square H\right)$, it suffices to prove Theorem 5 for the case when H is a complete multipartite graph. We may restate Theorem 5 as the following.

Theorem 6. For $r \geq 2, s \geq 2$ and $n, m_{1}, \ldots, m_{s} \geq 1, \chi_{=}\left(K_{r(n)} \square K_{m_{1}, \ldots, m_{s}}\right) \leq r\left\lceil\frac{s-1}{r-1}\right\rceil$.

2. Proof of Theorem 6

We shall prove Theorem 6 by showing that the graph $K_{r(n)} \square K_{m_{1}, \ldots, m_{s}}$ is equitably $r\left\lceil\frac{s-1}{r-1}\right\rceil$-colorable. For a complete multipartite graph $K_{m_{1}, \ldots, m_{s}}$, it is custom to assume that each m_{i} is positive. However, for technical reasons, we allow some m_{i} 's to take the value of zero.
Lemma 7. Let r and s be integers with $s \geq r \geq 2$. For any nonnegative integers $m_{1}, m_{2}, \ldots, m_{s}$, there exist an $(r-1)$-subset I and an r-subset J of $[s]$ with $I \subset J$ such that

$$
\begin{equation*}
\sum_{i \in I} m_{i} \leq\left\lfloor\frac{r-1}{s-1} \sum_{i=1}^{s} m_{i}\right\rfloor \leq \sum_{i \in J} m_{i} \tag{1}
\end{equation*}
$$

Proof. We may assume that $m_{1} \leq m_{2} \leq \cdots \leq m_{s}$. If we can show that there exists an integer $p \in[s-r+1]$ such that

$$
\begin{equation*}
\sum_{i=p}^{p+r-2} m_{i} \leq\left\lfloor\frac{r-1}{s-1} \sum_{i=1}^{s} m_{i}\right\rfloor \leq \sum_{i=p}^{p+r-1} m_{i} \tag{2}
\end{equation*}
$$

then the lemma holds by taking $I=\{p, \ldots, p+r-2\}$ and $J=\{p, \ldots, p+r-1\}$.
From the assumption that $m_{1} \leq m_{2} \leq \cdots \leq m_{s}$,

$$
\begin{equation*}
\frac{1}{r-1} \sum_{i=1}^{r-1} m_{i} \leq \frac{1}{s} \sum_{i=1}^{s} m_{i} \leq \frac{1}{r} \sum_{i=s-r+1}^{s} m_{i} \tag{3}
\end{equation*}
$$

Since $s \geq r$, we see that $\frac{r-1}{s-1} \leq \frac{r}{s}$. Note $\sum_{i=1}^{s} m_{i} \geq 0$. These facts along with (3) lead to

$$
\begin{equation*}
\sum_{i=1}^{r-1} m_{i} \leq \frac{r-1}{s} \sum_{i=1}^{s} m_{i} \leq \frac{r-1}{s-1} \sum_{i=1}^{s} m_{i} \leq \frac{r}{s} \sum_{i=1}^{s} m_{i} \leq \sum_{i=s-r+1}^{s} m_{i} \tag{4}
\end{equation*}
$$

Since each m_{i} is an integer, from (4),

$$
\begin{equation*}
\sum_{i=1}^{r-1} m_{i} \leq\left\lfloor\frac{r-1}{s-1} \sum_{i=1}^{s} m_{i}\right\rfloor \leq \sum_{i=s-r+1}^{s} m_{i} \tag{5}
\end{equation*}
$$

We define

$$
S=\left\{j: 1 \leq j \leq s-r+1 \text { and } \sum_{i=j}^{j+r-2} m_{i} \leq\left\lfloor\frac{r-1}{s-1} \sum_{i=1}^{s} m_{i}\right\rfloor\right\} .
$$

By the left inequality in (5), $1 \in S$ and hence S is nonempty. Let p be the maximum integer in S. We show that p satisfies the desired relation (2).

Since $p \in S$, the definition of S implies the left inequality in (2). If $p=s-r+1$ then the right inequality in (2) follows from the right inequality in (5). Now assume $p \leq s-r$. Since p is the maximum integer in $S, p+1 \notin S$. Since $1 \leq p+1 \leq s-r+1$ and $m_{p} \geq 0$, the definition of S implies

$$
\left\lfloor\frac{r-1}{s-1} \sum_{i=1}^{s} m_{i}\right\rfloor<\sum_{i=p+1}^{p+r-1} m_{i} \leq \sum_{i=p}^{p+r-1} m_{i}
$$

as desired.
For $X \subset V(G)$, let $\langle X\rangle$ denote the subgraph of G induced by X. For n graphs G_{1}, \ldots, G_{n} with pairwise disjoint vertex sets, the disjoint union of G_{1}, \ldots, G_{n}, denoted by $G_{1} \cup \cdots \cup G_{n}$, is the graph with vertex set $V\left(G_{1}\right) \cup \cdots \cup V\left(G_{n}\right)$ and edge set $E\left(G_{1}\right) \cup \cdots \cup E\left(G_{n}\right)$.

Lemma 8. Let $H=K_{m_{1}, \ldots, m_{s}}, s \geq 2$ and $m_{i} \geq 0$ for each $i \in[s]$. Denote partite sets of H by V_{1}, \ldots, V_{s} with $\left|V_{i}\right|=m_{i}$ for each $i \in[s]$. For any $r \geq 2$, there exists a partition $\Pi=\left(\pi_{1}, \ldots, \pi_{r}\right)$ of $[s]$ such that the disjoint union

$$
\begin{equation*}
U=\left\langle\cup \cup_{i \in \pi_{1}} V_{i}\right\rangle \cup\left\langle\cup \cup_{i \in \pi_{2}}^{\cup} V_{i}\right\rangle \cup \cdots \cup\left\langle\cup \cup_{i \in \pi_{r}}^{\cup} V_{i}\right\rangle \tag{6}
\end{equation*}
$$

is equitably $\left\lceil\frac{s-1}{r-1}\right\rceil$-colorable.
Proof. As $K_{m_{1}, \ldots, m_{s}}=K_{m_{1}, \ldots, m_{s}, 0}=K_{m_{1}, \ldots, m_{s}, 0,0}=\cdots$, we may always assume that $s-1$ is divisible by $r-1$. Set $k=$ $\left\lceil\frac{s-1}{r-1}\right\rceil=\frac{s-1}{r-1}$. We fix r and prove the lemma by induction on k. If $k=1$ then $s=r$. Let

$$
\Pi=\left(\pi_{1}, \ldots, \pi_{r}\right)=(\{1\},\{2\}, \ldots,\{s\}) .
$$

Since all graphs $\left\langle\cup_{j \in \pi_{i}} V_{j}\right\rangle$ are empty and so is their disjoint union, the lemma holds for $k=1$. Assume now that $k \geq 2$ and the lemma holds for $k-1$. By Lemma 7, there exist an $(r-1)$-subset I and an r-subset J of [s] with $I \subset J$ such that

$$
\begin{equation*}
\sum_{i \in I} m_{i} \leq\left\lfloor\frac{r-1}{s-1} \sum_{i=1}^{s} m_{i}\right\rfloor \leq \sum_{i \in J} m_{i} \tag{7}
\end{equation*}
$$

By rearranging m_{1}, \ldots, m_{s}, we may assume $I=\{s-r+2, \ldots, s\}$ and $J=I \cup\{s-r+1\}$. As $k=\frac{s-1}{r-1}$, (7) becomes

$$
\begin{equation*}
\sum_{i=s-r+2}^{s} m_{i} \leq\left\lfloor\frac{1}{k} \sum_{i=1}^{s} m_{i}\right\rfloor \leq \sum_{i=s-r+1}^{s} m_{i} \tag{8}
\end{equation*}
$$

Set $s^{\prime}=s-r+1$ and

$$
\begin{equation*}
q=\left\lfloor\frac{1}{k} \sum_{i=1}^{s} m_{i}\right\rfloor-\sum_{i=s-r+2}^{s} m_{i} \tag{9}
\end{equation*}
$$

$\operatorname{By}(8), 0 \leq q \leq m_{s^{\prime}}$. Let $V_{i}^{\prime}=V_{i}$ for $1 \leq i<s^{\prime}$ and let $V_{s^{\prime}}^{\prime}$ be any subset of $V_{s^{\prime}}$ with $m_{s^{\prime}}-q$ vertices. Since $\left\lceil\frac{s^{\prime}-1}{r-1}\right\rceil=\left\lceil\frac{s-1}{r-1}\right\rceil-1=$ $k-1$, by the induction assumption, there exists a partition $\Pi^{\prime}=\left(\pi_{1}^{\prime}, \ldots, \pi_{r}^{\prime}\right)$ of [$\left.s^{\prime}\right]$ such that the disjoint union

$$
U^{\prime}=\left\langle\cup_{i \in \pi_{1}^{\prime}} V_{i}^{\prime}\right\rangle \cup\left\langle\cup_{i \in \pi_{2}^{\prime}} V_{i}^{\prime}\right\rangle \cup \cdots \cup\left\langle\cup_{i \in \pi_{r}^{\prime}} V_{i}^{\prime}\right\rangle
$$

is equitably $(k-1)$-colorable. Without loss of generality, we may assume $s^{\prime} \in \pi_{1}^{\prime}$. Let

$$
\begin{equation*}
\Pi=\left(\pi_{1}, \ldots, \pi_{r}\right)=\left(\pi_{1}^{\prime}, \pi_{2}^{\prime} \cup\left\{s^{\prime}+1\right\}, \ldots, \pi_{r}^{\prime} \cup\left\{s^{\prime}+r-1\right\}\right) \tag{10}
\end{equation*}
$$

It is clear that Π is a partition of [s]. We claim that the graph U defined by (6) is equitably k-colorable. First, use $k-1$ colors to color the subgraph U^{\prime} equitably. Now, by (9), the number of uncolored vertices is exactly

$$
\left|V_{s^{\prime}} \backslash V_{s^{\prime}}^{\prime}\right|+\left|V_{s^{\prime}+1}\right|+\cdots+\left|V_{s^{\prime}+r-1}\right|=q+\sum_{i=s-r+2}^{s} m_{i}=\left\lfloor\frac{1}{k} \sum_{i=1}^{s} m_{i}\right\rfloor .
$$

Finally, by (10), the subgraph of U induced by these uncolored vertices is a disjoint union of r empty graphs and hence is empty. Assigning a new color to these uncolored vertices, we obtain an equitable k-coloring of U. This proves the claim and hence the lemma holds.
Proof of Theorem 6. Let $U_{1}, U_{2}, \ldots, U_{r}$ and $V_{1}, V_{2}, \ldots, V_{s}$ be the partite sets of $K_{r(n)}$ and $K_{m_{1}, \ldots, m_{s}}$, respectively. By Lemma 8, there exists a partition $\Pi=\left(\pi_{1}, \ldots, \pi_{r}\right)$ of $[s]$ such that the disjoint union

$$
U=\left\langle\cup \cup V_{i \in \pi_{1}} V_{i}\right\rangle \cup\left\langle\cup \cup_{i \in \pi_{2}}^{\cup} V_{i}\right\rangle \cup \cdots \cup\left\langle\cup U_{i \in \pi_{r}}^{\cup} V_{i}\right\rangle
$$

is equitably $\left\lceil\frac{s-1}{r-1}\right\rceil$-colorable. For each $k \in[r]$ and $i \in[r]$ we define

$$
W_{k, i}=U_{i+k} \times \cup_{j \in \pi_{i}}^{\cup} V_{j} \text { and } W_{k}=\cup_{i=1}^{r} W_{k, i},
$$

where the additions on the indices are taken modulo r. If $i \neq i^{\prime},(x, y) \in W_{k, i}$ and $\left(x^{\prime}, y^{\prime}\right) \in W_{k, i^{\prime}}$, then $x \neq x^{\prime}$ and $y \neq y^{\prime}$, implying that (x, y) and (x^{\prime}, y^{\prime}) are not adjacent in $K_{r(n)} \square K_{m_{1}, \ldots, m_{s}}$. Hence,

$$
\begin{aligned}
& \left\langle W_{k}\right\rangle=\left\langle\cup_{i=1}^{r} W_{k, i}\right\rangle \\
& =\cup_{i=1}^{r}\left\langle W_{k, i}\right\rangle \\
& =\cup_{i=1}^{r}\left(E_{n} \square\left(\cup_{j \in \pi_{i}} V_{j}\right)\right) \\
& =E_{n} \square \cup_{i=1}^{r}\left\langle\cup \bigcup_{j \in \pi_{i}} V_{j}\right) \\
& =E_{n} \square U .
\end{aligned}
$$

Since U is equitably $\left\lceil\frac{s-1}{r-1}\right\rceil$-colorable, Corollary 3 implies that $\left\langle W_{k}\right\rangle=E_{n} \square U$ is also equitably $\left\lceil\frac{s-1}{r-1}\right\rceil$-colorable. Note that (W_{1}, \ldots, W_{r}) is a partition of $V\left(K_{r(n)} \square K_{m_{1}, \ldots, m_{s}}\right)$ and all classes have equal sizes. By partitioning each W_{k} equitably into $\left\lceil\frac{s-1}{r-1}\right\rceil$ independent sets, we obtain an equitable $r\left\lceil\frac{s-1}{r-1}\right\rceil$-coloring of $V\left(K_{r(n)} \square K_{m_{1}, \ldots, m_{s}}\right)$. This proves the theorem.

Acknowledgments

The authors thank the referees for their careful reading and valuable suggestions.

References

[1] B.-L. Chen, K.-W. Lih, J.-H. Yan, Equitable coloring of interval graphs and products of graphs, arXiv:0903.1396v1.
[2] H. Furmańzyk, Equitable colorings of graph products, Opuscula Math. 26 (1) (2006) 31-44.
[3] K.-W. Lih, Equitable coloring of graphs, in: P.M. Pardalos, D.-Z. Du, R. Graham (Eds.), Handbook of Combinatorial Optimization, second ed., Springer, 2013, pp. 1199-1248
[4] W.-H. Lin, G.J. Chang, Equitable colorings of Cartesian products of graphs, Discrete Appl. Math. 160 (2012) 239-247.
[5] W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973) 920-922.
[6] G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957) 512-525.
[7] Z. Yan, W.-H. Lin, W. Wang, The equitable chromatic threshold of the Cartesian product of bipartite graphs is at most 4, Taiwanese J. Math. 18 (2014) 773-780.

[^0]: Supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130203120021) and the National Natural Science Foundation of China (No. 11301410).

 * Corresponding author. Tel.: +86 18220874084; fax: +86 2988202860.

 E-mail addresses: xzhang@xidian.edu.cn, xdu.zhang@gmail.com (X. Zhang).

