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Abstract

It is proved that every plane graph with near-independent crossings and
with minimum degree at least five contains a light triangle.

1 Introduction
All graphs considered in the paper are finite, simple and undirected. By V(G),
E(G), F(G), δ(G) and ∆(G), we denote the set of vertices, the set of edges, the set
of faces, the minimum degree and the maximum degree of a graph G, respectively.
A k-, k+- and k−-vertex (resp. f ace) is a vertex (resp. face) of degree k, at least k
and at most k, respectively. For other undefined concepts we refer the reader to
[1].

A graph is 1-planar if it can be drawn on a plane so that each edge is crossed
by at most one other edge. The concept of the 1-planarity was introduced by
Ringel [7] in 1965 when he considered the vertex-face coloring of plane graphs
(corresponding to the vertex coloring of 1-planar graphs). Although nearly fifty
years past, the class of 1-planar graphs is still litter explored compared to the
well-established planar graphs.
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We now turn the attention to the drawing of 1-planar graphs. A 1-planar draw-
ing (of a 1-planar graph) is good if it contains the minimum number of crossings,
and normally, we assume that every 1-planar drawing considered in this paper is
good. Note that every crossing in a 1-planar drawing is generalized by two mu-
tually crossed edges, thus for every crossing c there exists a vertex set N(c) of
size four consisting of the end-vertices of the two edges that generalize c. It is
easy to see that |N(c1) ∩ N(c2)| ≤ 2 for any two distinct crossings c1 and c2 in a
good 1-planar drawing. In view of this, we can define two subclasses of 1-planar
graphs. Let G be a 1-planar graph. If |N(c1) ∩ N(c2)| = 0 for any two distinct
crossings c1 and c2, then G is a plane graph with independent crossings (see [6])
or IC-planar graph for short (see [8]). If |N(c1) ∩ N(c2)| ≤ 1 for any two dis-
tinct crossings c1 and c2, then G is a plane graph with near-independent crossings
or NIC-planar graph for short. The notion of NIC-planarity was introduced by
Zhang [9] very recently, and also by Czap and Šugerek [3]. Let G,G0,G1 and G2
be the classes of planar graphs, IC-planar graphs, NIC-planar graphs and 1-planar
graphs, respectively. It is easy to see that G ⊂ G0 ⊂ G1 ⊂ G2.

Let H be a connect graph and let G be a family of graphs. If for any graph
G ∈ G, G contains a subgraph K ' H such that maxx∈V(K){dG(x)} is bounded by a
constant independent of G, then we say that H is light in G, and otherwise heavy
in G. Seeking light small graphs in a giving graph class is a classic problem in the
structural graph theory. A famous result by Borodin [2] states that every planar
graph with minimum degree 5 contains a triangle uvw with d(u)+d(v)+d(w) ≤ 17
and the bound 17 is sharp, thus triangle is light in the class of planar graphs with
minimum degree 5. For the class of 1-planar graphs with the same minimum
degree, the result is surprisedly opposite. Actually, for any positive integer m there
is a 1-planar graph with minimum degree at least 5 that contains isomorphic copies
of triangles and every triangle contains an m-vertex (see [5]). Hence triangle is
heavy in the class of 1-planar graphs with minimum degree at least 5.

In view of this, an interesting problem is to find subclasses of 1-planar graph-
s with minimum degree at least 5 in which triangle is light. A recent result by
Zhang [10] states that triangle is light in the class of 1-planar graphs with mini-
mum degree at least 5 and with minimum edge degree at least 12. In this paper,
we consider the lightness of triangle in the class of NIC-planar graphs with high
minimum degree. The following is the main result, which implies that triangle is
light in the class of NIC-planar graphs with minimum degree at least 5, and thus
in the class of IC-planar graphs with minimum degree at least 5.

Theorem 1.1. Every plane graph with near-independent crossings and with min-
imum degree at least 5 contains a triangle uvw with max{d(u), d(v), d(w)} ≤ 26.

Let G be an NIC-planar drawing of a graph. The associated plane graph of
G, denoted by G×, is the graph obtained from G by turning all crossings of G into
new 4-vertices, and those new 4-vertices are called false vertices. The face that
is incident with no false vertex in G× is called true face, and otherwise, we call it
false face. Let v be a k-vertex in G× and let v1, . . . , vk be the neighbors of v that
lies clockwise. By fi with 1 ≤ i ≤ k, we denote the face that is incident with vvi
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and vvi+1 in G×. Here the addition on the subscripts are taken modulo k. Note that
for an NIC-planar graph with minimum degree at least 5, dG(v) = dG× (v) for any
vertex v ∈ V(G) and dG× (v) = 4 if and only if v is false in G×. Hence we do not
distinguish dG(v) and dG× (v) in the following arguments.

2 Discharging: the proof of Theorem 1.1
Suppose that G is a counterexample to Theorem 1.1 and that G× is the associated
plane graph of G. Assign an initial charge c to each element x ∈ V(G×)

⋃
F(G×)

as follows:

c(x) =

{
d(x) − 6, if x ∈ V(G×);
2d(x) − 6, if x ∈ F(G×),

By Euler’s formula on G×,
∑

x∈V(G×)
⋃

F(G×) c(x) = −12. We now redistribute the
charges among V(G×)

⋃
F(G×) according to the rules defined below.

Rule 1 Every 27+-vertex sends 7
9 to each of its incident faces;

Rule 2 Let f = xyz be a 3-face with a 27+-vertex x.
Rule 2.1 If y and z are 5−-vertices, then f sends 7

18 to each of y and z;
Rule 2.2 If y is a 27+-vertex and z is a 4- or 5-vertex, then f sends 14

9 to z;
Rule 2.3 If y is a 4-vertex and z is a 5-vertex, then f sends 1

2 to y and 5
18 to z;

Rule 2.4 If y is a 4- or 5-vertex and z is a vertex of degree between 6 and 26,
then f sends 7

9 to y.
Rule 3 Every 4+-face sends 1 to each of its incident 4-vertices and 1

n5
with

n5 ≥ 1 to each of its incident 5-vertices, where n5 is the number of 5-vertices that
are incident with f .

Let c′(x) be the final charge of x ∈ V(G×)
⋃

F(G×) after applications of the
above rules. We now prove that c′(x) ≥ 0 for each x ∈ V(G×)

⋃
F(G×), therefore,

−12 =
∑

x∈V(G×)
⋃

F(G×)

c(x) =
∑

x∈V(G×)
⋃

F(G×)

c′(x) ≥ 0,

which is a contradiction.
Let f be a face in G×. If d( f ) = 3, then Rules 1 and 2 guarantee that c′( f ) ≥ 0.

If d( f ) = 4, then the number of 4-vertices that are incident with f is at most 1
by the drawing of G, thus by Rule 3, c′( f ) ≥ 2 × 4 − 6 − 1 × 1 − 3 × 1

3 = 0.
If d( f ) = 5, then f is incident with at most two 4-vertices by the drawing of G
and c′( f ) ≥ 2 × 5 − 6 − 2 × 1 − 3 × 1

3 = 1 > 0 by Rule 3. If d( f ) ≥ 6, then
c′( f ) ≥ 2d( f ) − 6 − d( f ) = d( f ) − 6 ≥ 0 by Rule 3. Let v be a vertex in G×. If
d(v) ≥ 27, then c′(v) ≥ 27 − 6 − 27 × 7

9 = 0 by Rule 1. If 6 ≤ d(v) ≤ 26, then
c′(v) = c(v) ≥ 0 since v is not involved in the rules. Until now, we are left only
two cases.

Case 1. d(v) = 4.
Subcase 1.1. v is incident with at least two 4+-faces.
It is easy to see that c′(v) ≥ 4 − 6 + 2 × 1 = 0 by Rule 3.
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Subcase 1.2. v is incident with exactly one 4+-face.
Without loss of generality, assume that d( f4) ≥ 4 and d( f1) = d( f2) = d( f3) =

3. If d(v2) ≥ 27, then by Rules 2.2, 2.3 and 2.4, each of f1 and f2 sends at least
min{ 14

9 ,
1
2 ,

7
9 } = 1

2 to v. By Rule 3, f4 sends 1 to v. Hence c′(v) ≥ 4−6+2× 1
2 +1 = 0.

If d(v3) ≥ 27, then we still have c′(v) ≥ 0 similarly. If d(v2) ≤ 26 and d(v3) ≤ 26,
then d(v1) ≥ 27 and d(v4) ≥ 27, otherwise a light triangle with all 26−-vertices
occurs in G, a contradiction. In this case, each of f1 and f3 sends at least 1

2 to
v by Rules 2.2, 2.3 and 2.4 and f4 sends 1 to v by Rule 3. This implies that
c′(v) ≥ 4 − 6 + 1 + 2 × 1

2 = 0.
Subcase 1.3. v is incident with only 3+-faces.
Since G is a counterexample, v is incident with at least two 27+-vertices. If

v is incident with four faces that are incident with a 27+-vertices, then c′(v) ≥
4 − 6 + 2 × 1

2 = 0 by Rules 2.2, 2.3 and 2.4. Hence, we assume, without loss of
generality, that v1 and v4 are 27+-vertices. By Rules 2.2, 2.3 and 2.4, each of f1 and
f3 sends at least 1

2 to v, and f4 sends 14
9 to v. Therefore, c′(v) ≥ 4−6+2× 1

2 + 14
9 > 0.

Case 2. d(v) = 5.
Subcase 2.1. v is incident with at least three 4+-faces.
By Rule 3, each 4+-face sends 1

3 to v. This implies that c′(v) ≥ 5−6+3× 1
3 = 0.

Subcase 2.2. v is incident with exactly two 4+-faces.
If v is incident with two adjacent 4+-faces, say f1 and f2, then f3, f4 and f5

are 3-faces, and moreover, at least one of them, say f3, is true and incident with a
27+-vertex by the choice of G. This implies by Rules 2.1, 2.2 and 2.4 that f3 sends
at least min{ 7

18 ,
14
9 ,

7
9 } = 7

18 to v. By Rule 3, each of f1 and f2 sends 1
3 to v. Hence,

c′(v) ≥ 5 − 6 + 2 × 1
3 + 7

18 > 0.
If v is incident with two nonadjacent 4+-faces, say f1 and f3, then f2, f4 and

f5 are 3-faces. If one of them is true, then by same arguments as in Subcase 2.2
we have c′(v) > 0. Hence we assume that f2, f4 and f5 are all false. By the
definition of G, v5 must be false. Since vv1v4 is a triangle in G, one of v1 and
v4, say v1, is a 27+-vertex. By Rule 2.3, f5 sends 5

18 to v. If v2 is false, then f1
is incident with at most d( f1) − 2 vertices of degree 5, which implies by Rule 3
that f1 sends to v at least 2d( f1)−6−bd( f1)/2c

d( f1)−2 ≥ 1
2 for d( f1) ≥ 4, since f1 is incident

with at most b d( f1)
2 c false vertices. By Rule 3, f3 sends at least 1

3 to v. Therefore,
c′(v) ≥ 5 − 6 + 5

18 + 1
2 + 1

3 > 0. We now assume that v2 is true and v3 is false. If
f1 is a 5+-face, then f1 sends to v at least 2d( f1)−6−bd( f1)/2c

d( f1)−1 ≥ 1
2 for d( f1) ≥ 5, since

f1 is incident with at most d( f1) − 1 vertices of degree 5. If f1 is a 4-face, then v
is incident with at most one false vertex, in which case v is incident with at most
two 5-vertices. Hence by Rule 3, f1 sends to v at least min{ 2×4−6−1

2 , 2×4−6
3 } ≥ 1

2 . In
any case, f1 sends at least 1

2 to v and f3 sends at least 1
3 to v by Rule 3. Therefore,

c′(v) ≥ 5 − 6 + 5
18 + 1

2 + 1
3 > 0.

Subcase 2.3. v is incident with only one 4+-face, say f1.
By Rule 3, f1 sends at least 1

3 to v. If v is incident with at least two true 3-faces,
then each of them is incident with a 27+-vertex by the choice of G, from which v
receives at least 7

18 by Rules 2.1, 2.2 and 2.4. Hence c′(v) ≥ 5− 6 + 1
3 + 2× 7

18 > 0
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and we assume that v is incident with at most one true 3-face.
If v3 is false, then v2, v4 and v5 are true by the choice of G and thus v1 is false.

Since vv2v4 is a triangle in G, one of v2 and v4 is a 27+-vertices, which implies that
either f2 or f3 sends 5

18 by Rule 2.3. Note that f4 is a true 3-face, from which v
receives at least 7

18 by Rules 2.1, 2.2 and 2.4. Hence c′(v) ≥ 5−6+ 5
18 + 7

18 + 1
3 = 0.

We now assume that v3 is true, and moreover, that v5 is true by symmetry.
Since v is incident with at most one true 3-face, v4 is false. However, in this case
v1 and v2 cannot be false by the choice of G. This implies that f2 and f5 are true
3-faces, a contradiction.

Subcase 2.4. v is incident only with 3-faces.
By the choice of G, at most one of v1, v2, v3, v4 and v5 is false, which implies

that v is incident with at least three true 3-faces. Since every true 3-face incident
with v contains a 27+-vertex, from which v received at least 7

18 by Rules 2.1, 2.2
and 2.4. Therefore, c′(v) ≥ 5 − 6 + 3 × 7

18 > 0.

3 Remarks on Theorem 1.1
Fabrici, Hexel, Jendrol’ and Walter [4] showed for every integer m ≥ 4 that there
is a 3-connected planar graph G with δ(G) ≥ 4 such that each subgraph of G
isomorphic to a triangle has a vertex x with d(x) ≥ m. Hence triangle is heavy
in the class of planar graphs with minimum degree at least 4. Since the class of
planar graphs is a subclass of NIC-planar graphs, triangle is also heavy in the class
of NIC-planar graphs with minimum degree at least 4. Therefore, the condition on
the minimum degree in Theorem 1.1 cannot be weakened, but whether the upper
bound on the maximum degree of the triangle in the theorem is sharp is unknown.
Actually, if we replace the condition on the minimum degree with δ(G) = 6 (note
that every NIC-planar graph contains a vertex of degree at most 6, see [9]), we
have the following result with smaller upper bound on the maximum degree of the
light triangle. Note that Theorem 3.1 is originally proved for 1-planar graphs, a
larger class than NIC-planar graphs.

Theorem 3.1. ([5]) Every plane graph with near-independent crossings and with
minimum degree 6 contains a triangle uvw with max{d(u), d(v), d(w)} ≤ 10.

4 An improvement of Theorem 3.1
In the section, we give the following theorem, which improves Theorem 3.1.

Theorem 4.1. Every plane graph with near-independent crossings and with min-
imum degree 6 contains a triangle uvw so that max{d(u), d(v), d(w)} ≤ 7.

Proof. The strategy of the proof of this result is same to the one of Theorem 1.1.
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First, assign each element x ∈ V(G×) ∪ F(G×) an initial charge

c(x) =

{
d(x) − 6, if x ∈ V(G×);
2d(x) − 6, if x ∈ F(G×),

where G× is the associated plane graph of the counterexample G to the result.
Second, define proper discharging rules. Before stating them, we need some

more notions. A false fan that is incident with a true vertex v is a subgraph of G×

that consists of four vertices u, v, w and x so that (1) u, x and w are three neighbors
of v in G× that lies clockwise; (2) x is a false vertex; (3) ux, wx ∈ E(G×), i.e.,
uw ∈ E(G). It is easy to see that v is incident with two false 3-faces if v is incident
with a false fan. We call those false 3-faces derived from false fans false 3F-faces.

Claim A. Every true vertex v in G× is incident with at most b d(v)
3 c false fans, thus

at most 2b d(v)
3 c false 3F-faces.

Proof. Otherwise, there are two adjacent false fans, that is, a subgraph of G×

that consists of six vertices v, u1, u2, w, x and y so that (1) u1, x, w, y and u2 are
neighbors of v in G× that lies clockwise and u1xwyu2 is a path in G×; (2) x and y
are false vertices. Now, one can see that x and y are two crossings in G satisfying
|N(x) ∩ N(y)| ≥ 2, a contradiction to the definition of NIC-planarity. �

The discharging rules are as follows.

Rule 1 Every 8+-vertex sends 1
2 to each of its incident false 3F-faces;

Rule 2 Every false 3F-face sends the positive charge saving after applying Rule
1 to its incident 4-vertex;
Rule 3 Every 4+-face sends 2 to each of its incident 4-vertices.

Let c′(x) be the final charge of x ∈ V(G×)
⋃

F(G×) after applications of the
above rules. Since every 4-face is incident with at most one 4-vertex and every
5+-face f is incident with at most b d( f )

2 c false vertices, c′( f ) ≥ 2 × 4 − 6 − 2 = 0
for d( f ) = 4 and c′( f ) ≥ 2d( f ) − 6 − 2b d( f )

2 c ≥ 0 for d( f ) ≥ 5 by Rule 3. If f is a
3-face, then by Rules 1 and 2, c′( f ) = c( f ) = 0.

Let v be a vertex of G×. If 6 ≤ d(v) ≤ 7, then c′(v) = c(v) ≥ 0. If d(v) ≥ 8, then
by Rule 1 and Claim A, c′(v) ≥ d(v) − 6 − b d(v)

3 c ≥ 0. If d(v) = 4 and v is incident
with at least one 4+-vertex, then by Rule 3, c′(v) ≥ 4− 6 + 2 = 0. If d(v) = 4 and v
is incident only with 3-faces, then it is easy to see that all 3-faces that are incident
with v are false 3F-faces, and v is incident with at least two 8+-vertices by the
choice of G. We now end the proof by distinguishing two nonisomorphic cases.
First, if v1 and v3 are 8+-vertices, then by Rules 1 and 2, c′(v) ≥ 4− 6 + 4× 1

2 = 0,
since each of f1, f2, f3 and f4 sends at least 1

2 to v. Second, if v1 and v2 are 8+-
vertices, then f1 sends 2 × 1

2 = 1 to v and each of f2 and f4 sends at least 1
2 to v by

Rules 2 and 3, which implies that c′(v) ≥ 4 − 6 + 1 + 2 × 1
2 = 0. �

As we know, the class of IC-planar graphs is a subclass of the one of NIC-
planar graphs, and every IC-planar graph also contains a vertex of degree at most
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6 (see [8]), where the bound 6 is sharp. We end this paper by the following result
on the lightness of triangle in the class of IC-planar graphs.

Theorem 4.2. Every plane graph with independent crossings and with minimum
degree 6 contains a triangle uvw so that d(u) = d(v) = d(w) = 6.

The proof of Theorem 4.2 is almost the same with the one of Theorem 4.1.
One difference is that Claim A can be improved to the following Claim B for
IC-planar graphs, the proof of which is trivial.
Claim B. Every true vertex v in G× is incident with at most one false fan, thus at
most two false 3F-faces. �

Another difference is the estimation of the final charges of large vertices,
which are 7+-vertices here. Actually, after replacing 8+-vertices with 7+-vertices
in Rule 1, we have c′(v) ≥ 7 − 6 − 2 × 1

2 = 0 for d(v) ≥ 7 by Claim B.
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