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Abstract A vertex coloring of a graph G is r-acyclic if it is a proper vertex coloring
such that every cycle C receives at least min{|C |, r} colors. The r -acyclic chromatic
number ar (G) of G is the least number of colors in an r -acyclic coloring of G. Let G be
a planar graph. By Four Color Theorem, we know that a1(G) = a2(G) = χ(G) ≤ 4,
where χ(G) is the chromatic number of G. Borodin proved that a3(G) ≤ 5. However
when r ≥ 4, the r -acyclic chromatic number of a class of graphs may not be bounded
by a constant number. For example, a4(K2,n) = n + 2 = �(K2,n) + 2 for n ≥ 2,
where K2,n is a complete bipartite (planar) graph. In this paper, we give a sufficient
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condition for ar (G) ≤ r when G is a planar graph. In precise, we show that if r ≥ 4
and G is a planar graph with g(G) ≥ 10r−4

3 , then ar (G) ≤ r . In addition, we discuss
the 4-acyclic colorings of some special planar graphs.

Keywords Acyclic coloring · Planar graph · Girth

1 Introduction and notation

We use Bondy and Murty (1976) for terminology and notations not defined here and
consider undirected graphs only. Let G = (V, E) be a graph. A vertex coloring of a
graph G is r -acyclic if it is a proper vertex coloring such that every cycle C receives
at least min{|C |, r} colors. The r -acyclic chromatic number of G, ar (G), is the least
number of colors in an r -acyclic coloring of G.

For r ≤ 2, the r -acyclic coloring is actually the proper vertex coloring, so for any
graph G with maximum degree �, its r -acyclic chromatic number is at most � + 1.
The 3-acyclic coloring, which is also known as acyclic coloring in the literature, has
been studied extensively. It was proved by Skulrattanakulchai (2004) that a3(G) ≤ 4
for any graph of maximum degree 3. Burnstein (1979) showed that a3(G) ≤ 5 for any
graph of maximum degree 4. Kostochka and Stocker (2011) proved that a3(G) ≤ 7
for any graph of maximum degree 5. Hocquard (2011) confirmed that a3(G) ≤ 11 for
any graph of maximum degree 6. Dieng et al. (2010) showed for each graph G with
maximum degree � ≥ 7 that a3(G) ≤ f (�), where

f (�) =
{

17 if � = 7.
�2−5�

2 + 2 × [
�−1

2

] + 3 if � ≥ 8.
(1.1)

Yadav et al (2009) showed for any graph G with maximum degree � that a3(G) ≤
3�2+4�+8

8 . Alon et al. (1991) gave upper and lower bounds for a3(G) by using the
probabilistic method; they proved that for some constants c1, c2 > 0,

c1�
4
3

(log�)
1
3

≤ a3(G) ≤ c2�
4
3 .

For r ≥ 4, it was shown in Greenhill and Pikhurko (2005) that there exist positive
constants c, c

′
such that c�� r

2 � ≤ ar (G) ≤ c
′
�� r

2 �. Cai et al. (2013) proved that for
a graph G with maximum degree � and girth g ≥ 2(r − 1)�, ar (G) ≤ 6(r − 1)�,
where r ≥ 4 is a positive integer. For more references, we refer to (Albertson and
Berman 1976; Fertin and Raspaud 2005, 2008; Zhang et al. 2012).

Now we focus on planar graphs. First of all, the Four Color Theorem implies
a1(G) ≤ 4 and a2(G) ≤ 4. (Grünbaum 1973) conjectured that 5 colors are sufficient
to acyclically color any planar graph; this conjecture was confirmed by Borodin (1979).
However, for r ≥ 4 and a class of graphs G, ar (G) := max{ar (G) | G ∈ G} may not
be bounded by a constant number, the class of planar complete bipartite graphs is such
an example, since ar (K2,n) = n + 2 is dependent of the maximum degree, where
r ≥ 4 and n ≥ 2.
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In this paper, we consider r -acyclic colorings of planar graphs. First, we discuss
the 4-acyclic colorings of some special planar graphs. Whereafter, we give a sufficient
condition for ar (G) ≤ r for planar graphs.

2 4-acyclic colorings of outerplanar graphs

A graph is outerplanar if it can be drawn in the plane so that all vertices are lying on
the outside face. It is known that any outerplanar graphs contains no K2,3-minors and
K4-minors. In this and the next section, multiple edges are allowed. The following
structural lemma for outerplanar graphs proved by Borodin and Woodall (1995) is a
useful start.

Lemma 2.1 Borodin and Woodall (1995) Every outerplanar graph with minimum
degree at least two contains one of the following configurations:

(a) two adjacent 2-vertices u and v;
(b) a 3-cycle uvw with d(u) = 2 and d(v) = 3;
(c) two intersecting 3-cycles uvw and xvy with d(u) = d(x) = 2 and d(v) = 4.

Theorem 2.1 For each outerplanar graph G, a4(G) ≤ 4 and the bound 4 is sharp.

Proof Suppose that G is a minimal counterexample with the smallest number of
|V (G)| + |E(G)|. Clearly, δ(G) ≥ 2. By Lemma 2.1, we need consider two cases.

First, suppose that G contains two adjacent 2-vertices u and v. Denote the other
neighbor of u and v by w and z, respectively. If zw ∈ E(G), then let H := G −{u, v};
otherwise, let H := G − {u, v} + zw. In each case one can check that H is still
outerplanar and thus by the minimality of G, H admits a 4-acyclic coloring ϕ with
ϕ(z) �= ϕ(w). Extend ϕ to a coloring of G by coloring u and v with two distinct
colors that are different from ϕ(z) and ϕ(w). Since every cycle of length at least 4
in G passing through u and v contains the path wuvz, the resulting coloring of G is
4-acyclic as required.

Second, suppose that G contains a 2-vertex u that is incident with a triangle uvw.
Let H := G −u. By the minimality of G, H admits a 4-acyclic coloring ϕ. Since G is
outerplanar, |N (v) ∩ N (w)| ≤ 2, because otherwise one can find a K2,3-minor in G.
This implies that u is incident with at most one 4-cycle in G. If N (v)∩ N (w) = {u, s},
then extend ϕ to a coloring of G by coloring u with a color different from ϕ(v), ϕ(w)

and ϕ(s). If C is a cycle of length at least 5 in G passing through u, then C − u + vw

is a cycle of length at least 4 in H . Since H has already been 4-acyclically colored,
the cycle C − u + vw in H is incident with at least 4 colors under ϕ. Thus, the cycle
C in G is also incident with at least 4 colors after the extension of ϕ. By the choice of
the coloring on u, the vertices in the unique 4-cycle that passes through u are colored
all distinctly. Therefore, the extended coloring of G is 4-acyclic, a contradiction. If
N (v) ∩ N (w) = {u}, then extend ϕ to a coloring of G by coloring u with a color
different from ϕ(v) and ϕ(w). If C is a cycle of length at least 4 in G passing through
u, then C − u + vw is a cycle of length at least 4 in H , which is incident with at least
4 colors under ϕ since H has already been 4-acyclically colored. Thus, the extended
coloring of G is 4-acyclic, a contradiction.

For each cycle Cn with n ≥ 4, a4(Cn) = 4, so the bound 4 is sharp. 
�
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3 4-acyclic colorings of series-parallel graphs

A graph is series-parallel if it has no K4-minors. It is known that every series-parallel
graph contains a vertex of degree at most 2 Duffin (1965). In this section, we aim
to give a sharp upper bound for the 4-acyclic chromatic number of a series-parallel
graph.

Theorem 3.1 For each series-parallel graph G, a4(G) ≤ �(G) + 2 and the bound
�(G) + 2 is sharp.

Proof Suppose that G is a minimal counterexample with the smallest number of
|V (G)| + |E(G)|. Clearly, δ(G) ≥ 2, so by the 2-degeneracy of G, G contains a
vertex of degree 2, say u.

For convenience, let � = �(G). Denote the neighbors of u in G by v and w. If
vw ∈ E(G), then let H := G − {u}; otherwise, let H := G − {u} + vw. In any case
one can check that H is still a series-parallel graph with �(H) ≤ � and thus by the
minimality of G, H admits a 4-acyclic (� + 2)-coloring ϕ with ϕ(v) �= ϕ(w). Let
S be the set of colors on the vertices of N (v) ∩ N (w) under ϕ. Since u is uncolored
under ϕ and |(N (v) ∩ N (w)) \ {u}| ≤ � − 1, |S| ≤ � − 1. Extend ϕ to a coloring of
G by coloring u with a color different from any color in F := S ∪{ϕ(v), ϕ(w)}. Since
|F | ≤ � + 1, there is one available color for u, so the above extension is exercisable.
Note that ϕ(v) �= ϕ(w). By the choice of the color on u, one can see that the vertices
of every 4-cycle in G that passes through u are colored all distinctly. Let C be a cycle
of length at least 5 in G that passes through u. By the definition of H, C − u + vw is
a cycle of length at least 4 in H , and thus this cycle is incident with at least 4 colors
under ϕ. This implies that the cycle C in G is also incident with at least 4 colors after
the extension of ϕ. Therefore, the extended coloring of G is 4-acyclic, a contradiction.

Since a4(G) = �(G) + 2 when G is a complete bipartite graph K2,n with n ≥ 2,
the bound �(G) + 2 in the theorem is sharp. 
�

4 r-acyclic colorings of planar graphs

In this section, we give an upper bound for the r -acyclic chromatic number of a planar
graph when r ≥ 4. First, we give some definitions and notations which will be used
in our proof. The kthpower Gk of a graph G is defined on the same set of vertices as
G and has an edge between any pair of vertices of distance at most k in G. Agnarsson
and Halldórsson (2003) showed the following theorem.

Theorem 4.1 Let G be a planar graph with maximum degree �. For any fixed k ≥
1, Gk is O(�� k

2 �)-colorable. Also, there is a family of graphs that attains this bound.

Clearly, ar (G) ≤ χ(Gr−1). So by Theorem 4.1, we have the following corollary.

Corollary 4.1 Let G be a planar graph with maximum degree �. For any fixed r ≥
4, ar (G) ≤ C(�� r−1

2 �), where C is a constant number.

For sparse planar graphs, we will get an improvement for the bound.
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Theorem 4.2 Let r ≥ 4 and G be a graph with g(G) ≥ 3r − 2. If every subgraph of
G has average degree less than 2 + 6

5r−5 , then ar (G) ≤ r .

Theorem 4.2 gives the following immediate corollary.

Corollary 4.2 If r ≥ 4 and G is a planar graph with girth at least 10r−4
3 , or a graph

embeddable on the torus or Klein bottle with girth greater than 10r−4
3 , then ar (G) ≤ r .

Proof Note that 10r−4
3 ≥ 3r − 2. Clearly every subgraph of G has girth at least as

large as the girth of G, thus if our conclusion fails, then by Theorem 4.2, the average
degree of G is at least 2 + 6

5r−5 . It follows that |E(G)| ≥ 5r−2
5r−5 |V (G)|. We use ν, e

to denote the number of vertices and edges of G, respectively. Let f be the number
of faces in an embedding of G on a surface of Euler characteristic N and g(G) be the
girth of G. By Euler’s Formula, we have

2 − N = ν − e + f ≤ e

(
5r − 5

5r − 2
− 1 + 2

g(G)

)
= e

(
2

g(G)
− 3

5r − 2

)
.

Since N ≤ 2 for the surface mentioned in the corollary, we deduce that 2
g(G)

≥ 3
5r−2 ,

that is, g(G) ≤ 10r−4
3 , and equality holds only when N = 2. This contradiction

completes the proof. 
�

5 Proof of Theorem 4.2

Suppose that Theorem 4.2 does not hold. We choose a minimal counterexample G to
Theorem 4.2 in terms of |V (G)| + |E(G)|. Clearly, G has minimum degree at least
two.

A thread in a graph G is a path whose internal vertices have degree 2 in G.
Two vertices are weak neighbors or weakly adjacent if they are the endpoints of a
thread (this includes adjacent vertices, since threads may have no internal vertices).
For simplicity, let [r ] = {1, 2, . . . , r}. We give the following claims.

Claim 1 Every thread in G has length at most r − 1.

Proof of Claim 1 Otherwise, we assume that G has a thread v0v1 · · · vr of length r .
Consider H = G −{v1, · · · , vr−1}. By our assumption, ar (H) ≤ r . Suppose that π is
an r -acyclic coloring of H by using the colors in [r ]. Without loss of generality, assume
that π(v0) = 1. Let π(v1) = 2, π(v2) = 3, . . . , π(vr−1) = r . If π(vr−1) = π(vr ),
we recolor vr−1 with a color different from π(vr ) and π(vr+2), and then we get an
r -acyclic coloring of G, which is a contradiction. 
�
Claim 2 No three vertices of G with degree at least 3 are pairwise weakly adjacent,
and no two threads have the same set of endpoints.

Proof of Claim 2 Otherwise, by Claim 1, G has a cycle of length at most 3r −3, which
contradicts g(G) ≥ 3r − 2. 
�
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When u and v are weakly adjacent, let luv denote the number of the internal vertices
of a shortest u, v-thread. (Note that if u, v are adjacent, then luv = 0). Let Y = {v ∈
V (G) : d(v) ≥ 3}. A weak neighbor u of v is a weak Y-neighbor of v if u ∈ Y ;
Otherwise it is a weak2- neighbor of v.

For v ∈ V (G), let NY (v) denote the set of weak Y -neighbors of v in G. For v ∈ Y ,
let

f (v) = −r +
∑

u∈NY (v)

(r − lvu − 1).

By Claim 1, luv ≤ r − 2, so r − lvu − 1 ≥ 1 for each u ∈ NY (G). Let Puv denote a
u, v-thread and Luv denote a sub-thread of Puv by deleting the vertices u, v. For any
subgraph A of G, if π is a coloring of A, then let C(A) = {π(v) | v ∈ A}. A vertex
coloring of A such that any two vertices of A have distinct colors is called a rainbow
coloring of A.

Claim 3 If v ∈ Y , then f (v) ≥ 1.

Proof of Claim 3 Clearly, if for some u ∈ NY (v), luv = 0, then f (v) ≥ 1, so we
assume that luv ≥ 1 for u ∈ NY (v). Let H be the graph obtained from G by deleting
v and all its weak 2-neighbors. By our assumption, ar (H) ≤ r . Let π be an r -
acyclic coloring of H by using the colors in [r ]. Assume d(v) = m and NY (v) =
{u1, u2, · · · , um}.

Now let π(v) ∈ [r ]\π(u1). If
∑

u∈NY (v) (r − luv − 1) − 1 ≤ r − 1, then there
exist S1, S2, · · · , Sm such that π(u1) /∈ S1 and S1 ∪ S2 ∪ · · · Sm ⊆ [r ]\π(v), where
|S1| = r − lu1v −2, |Si | = r − lui v −1 for 2 ≤ i ≤ m and Si ∩ S j = φ, for i �= j . Now
we give each thread Luiv a rainbow coloring using the colors in [r ]\(π(v) ∪ Si ) for
i = 2, . . . , m. We then give Lu1v a rainbow matching using the colors in [r ]\(π(v) ∪
π(u1) ∪ S1). For each thread P(uiv), if π(ui ) = π(x), where x is the neighbor of ui

in thread Puiv , then we recolor x to obtain a proper coloring of Pui . It follows that
C(Puiv ) ∪ C(Pu jv ) = [r ], for i �= j . Thus we get an r -acyclic coloring of G, which
is a contradiction, so

∑
u∈NY (v) (r − luv − 1) − 1 ≥ r and thus f (v) ≥ 1. 
�

Claim 4 If v ∈ Y , then
∑

u∈NY (v) f (u) ≥ r + 2.

Proof of Claim 4 Suppose on the contrary,
∑

u∈NY (v) f (u) ≤ r + 1. For a vertex
u ∈ NY (v), if it satisfies that f (u) ≤ r − luv − 1, then we call it v - good, otherwise
we call it v −bad. For convenience, let N g

Y (v) denote the set of v − good vertices and
N b

Y (v) denote the set of v − bad vertices. Note that when u is v − bad, then luv ≥ 1,
since otherwise we have that f (u) ≥ r − luv = r , hence

∑
u∈NY (v) f (u) ≥ r + 2,

which is a contradiction. Let H be the graph obtained from G by deleting the vertex
v, the v-good neighbors, and all their weak 2-neighbors. Let H1 denote the subgraph
induced by V − V (H). By assumption, H has an r -acyclic coloring π . First we color
v such that π(v) = r .

Suppose that u is v-good. Consider each thread from u except u, v-thread. Let

s(u) = r −
∑

w∈NY (u),w �=v

(r − luw − 1) + 1.
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We then have

s(u) = 1 + r −
∑

w∈NY (u)

(r − 1 − luw) + (r − 1 − luv)

= 1 − f (u) + r − 1 − luv

≤ 1.

Fact For any subset S(u) ⊆ [r − 1] of size s(u), we have a proper coloring of each
thread Puw(w ∈ NY (v) − v) such that

A. S(u) ⊆ C(Puw);
B. C(Puwi ∪ Puw j ) = [r ], for wi , w j ∈ NY (u) − v and i �= j .

Proof of Fact First suppose that there is a thread (say Luw1 , where w1 ∈ NY (u) − v)
such that luw1 = 0, then we have that s(u) = 1, d(u) = 3 and luw2 = r − 2. Let
S(u) = {c}. If π(w1) �= c, then let π(u) = c and give Luw2 a rainbow coloring by
using the colors in [r ]\(π(w1) ∪ π(u)). In thread Luw2 , if the neighbor of w2 has the
same color with w2, we change it to get a proper coloring of Puw2 . If π(w1) = c, we
choose a color from [r − 1]\(π(w1) ∪ π(w2)) for u, then give a rainbow coloring to
Luw2 by using the colors from [r ]\(π(u) ∪ π(w2)). Such coloring satisfies A and B,
so in the following we assume that luw ≥ 1 for w ∈ NY (u) − v.

If s(u) = 1 and C(NY (u) − v) = S(u), then we color u by a color in [r − 1]\S(u)

and give each thread Lwu for w ∈ NY (u) − v a rainbow coloring using the colors in
[r ]\(S(u) ∪ π(u)). Let T = [r ]\(S(u) ∪ π(u)) and let M(Luw) = T \C(Luw) denote
the colors which are in T and do not appear in thread Luw. Clearly |M(Luw)| =
r − 2 − luw. Since

∑
w∈NY (u)−v (r − luw − 2) ≤ r − 2 = r − s(u) − 1 = |T |, we

further assume that M(Luwi ) ∩ M(Luw j ) = ∅, for wi , w j ∈ NY (u) − v with i �= j .
It follows that C(Puwi ∪ Puw j ) = [r ], for wi , w j ∈ NY (u) − v and i �= j . Finally, in
each thread Puw for w ∈ NY (u) − v, we recolor the neighbor of w if necessary to get
a proper coloring of Puw. Now it is easy to see this coloring satisfies A and B.

Now we assume that s(u) ≥ 2 or C(NY (u) − v) �= S(u). We color u such that
π(u) ∈ S(u) and π(u) �= π(w) for some w ∈ NY (u) − v. Without loss of gen-
erality, we assume that π(u) �= π(w1). Let T = [r ]\S(u). We give a rainbow
coloring to each thread Luw (w /∈ {w1, v}) using the colors in [r ]\π(u) such that
(S(u)\π(u)) ⊆ C(Luw). If π(w1) ∈ S(u), we give a rainbow coloring to Luw1 using
the colors in [r ]\{π(u), π(w1)} such that the colors in S(u)\(π(w1) ∪ S(u)) appear
on Luw1 . If π(w1) /∈ S(u), we give a rainbow coloring to Luw1 using the colors in
[r ]\{π(u), π(w1)} such that (S(u)\π(u)) ⊆ C(Luw1). Next we give a rainbow color-
ing to each thread Luw (w ∈ NY (u) − {w1, v}) by using the colors in [r ]\π(u) such
that (S(u)\π(u)) ⊆ C(Luw).

Let M(Luw) = T \C(Luw). If π(w1) ∈ S(u), then |M(Luw1)| = r −s(u)−(luw1 −
s(u) + 2) = r − luw1 − 2. If π(w1) /∈ S(u), then |M(Luw1)| = r − s(u) − (luw1 −
s(u) + 1) = r − luw1 − 1. For w ∈ NY (u) − {w1, v}, it holds that |M(Luw)| =
r − s(u)− (luw − s(u)+1) = r − luw −1. Recall that

∑
w∈NY (u)−{v} (r − luw − 1) =

r−s(u)+1 = |T |+1. If π(w1) ∈ S(u), we may assume that M(Luwi )∩M(Puw j ) = ∅
for i �= j . If π(w1) /∈ S(u), we may assume that M(Luwi ) ∩ M(Puw j ) = ∅ for i �= j
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720 J Comb Optim (2015) 29:713–722

except MR(Luw1) ∩ M(Puw2) = π(w1), so C(Puwi ∪ Puw j ) = [r ], for i �= j . At last,
in each thread Puw(w ∈ NY (u) − v), we change the neighbor of w if necessary to get
a proper coloring of Puw. Hence A and B hold. This completes the proof of the fact.


�

Assume that d(v)=m ≥3 and NY (v)={u1, u2, · · · , um}. Since
∑

u∈NY (v) f (u)≤r ,

∑
u∈N g

Y (v)

(r − 1 − s(u) − luv) +
∑

u∈N b
Y (v)

(r − 1 − luv)

≤
∑

u∈N g
Y (v)

( f (u) − 1) +
∑

u∈N b
Y (v)

( f (u) − 1)

=
∑

u∈NY (v)

f (u) − d(u)

≤ r − 1.

Thus, there exist S1, S2, · · · , Sm such that S1 ∪ S2 ∪ · · · Sm ⊆ [r − 1], where |Si | =
r − s(ui ) − luiv − 1 if ui is v-good and |Si | = r − luiv − 1 if ui is v-bad. Moreover,
we assume that Si ∩ S j = φ, for i �= j .

If ui ∈ NY (v) is v-bad, then we give a rainbow coloring of Luiv using the colors in
[r−1]\Si . If ui is v-good, then we choose S(ui ) ∈ [r−1]\Si such that |S(ui )| = s(ui ).
By the above fact, we can properly color each thread of Puiw(w ∈ NY (ui ) − v) such
that S(ui ) ⊆ C(Puiw) and C(Puiw j ∪ Puiwk ) = [r ], for wk, w j ∈ NY (ui ) − v and
wk �= w j . Give a rainbow coloring of Luiv using the colors in [r − 1]\Si ∪ S(ui ).
In each thread Puiv , we adjust the color of the neighbor of ui if necessary to get a
proper coloring of Puiv . Thus, we have a proper coloring of H1, moreover for any two
vertices x, y ∈ V (H1) and any path Q(x, y) between x and y in H1, C(Q(x, y)) =
[r ]. Thus, we get an r -acyclic coloring of G, which is a contradiction. Therefore,∑

u∈NY (v) f (u) ≥ r + 2. This completes the proof of Claim 4. 
�
We complete the proof using discharging method. Let d(v) be the initial charge on

the vertex v ∈ V (G). We move charge from vertex to vertex, without changing the
total according to the following rules:

a. Every v ∈ Y gives each weak 2-neighbor the amount 3
5r−1 .

b. Every v ∈ Y gives each weak Y -neighbor the amount 3 f (v)+(r+2)(d(v)−3)
(5r−1)d(v)

.

Claim 5 Every v ∈ Y receives from its weak Y-neighbors at least r+2
5r−1 .

Proof of Claim 5 If every u ∈ NY (v) sends v at least f (u)
5r−1 , then v receives from

NY (v) at least 1
5r−1

∑
u∈NY (v) f (u) ≥ r+2

5r−1 , by Claim 4.
Otherwise, for some u ∈ NY (v), it holds that

3 f (u) + (r + 2)(d(u) − 3)

(5r − 1)d(u)
<

f (u)

5r − 1
,
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that is,

(r + 2)(d(u) − 3) < f (u)(d(u) − 3),

so we conclude that d(u) ≥ 4 and f (u) > r + 2. Thus, u gives to v at least

3 f (u) + (r + 2)(d(u) − 3)

(5r − 1)d(u)
≥ 3(r + 2) + (r + 2)(d(u) − 3)

(5r − 1)d(u)
= r + 2

5r − 1
.

Moreover, all other amounts to v are nonnegative, since if y ∈ NY (v), then d(w) ≥
3 and f (w) ≥ 1. 
�

Let d̂(v) denote the new charge of v after discharging.

Claim 6 After the discharging, it holds that d̂(v) ≥ 2 + 4d(v)−2
5r−1 , for all v ∈ V (G).

Proof of Claim 6 If d(v) = 2, then v sends out zero and receives 3
5r−1 from each of

its two weak Y -neighbors, so d̂(v) = 2 + 6
5r−1 = 2 + 4d(v)−2

5r−1 .

Now consider v ∈ Y . By the discharging rule, v sends out 3
5r−1

∑
w∈NY (v) lvw to

its weak 2-neighbors and 3 f (v)+(r+2)(d(v)−3)
5r−1 to its weak Y -neighbors. By Claim 5, v

receives at least r+2
5r−1 from its weak Y -neighbors, so

d̂(v) ≥ d(v) − 3

5r − 1

∑
w∈NY (v)

lwv − 3 f (v) + (r + 2)(d(v) − 3)

5r − 1
+ r + 2

5r − 1

= d(v) − 3

5r − 1

⎡
⎣−r +

∑
w∈NY (v)

(r − lwv + lwv − 1)

⎤
⎦ − (r + 2)(d(v) − 4)

5r − 1

= rd(v) + 7r + 8

5r − 1
.

Since d(v) ≥ 3 and r ≥ 4, we have

rd(v) + 7r + 8 = (d(v) − 3)r + 10 + 10r − 2 ≥ 4d(v) − 2 + 10r − 2.

Therefore,

(r + 2)d(v) + 7r + 4

5r − 1
≥ 2 + 4d(v) − 2

5r − 1
,

and the proof of Claim 6 completes. 
�
Now we have that d̂(v) ≥ 2 + 4d(v)−2

5r−1 , for all v ∈ V (G). It follows that

2|E(G)| =
∑

v∈V (G)

d̂(v) ≥
∑

v∈V (G)

(
2 + 4d(v) − 2

5r − 1

)

= 2

(
1 − 1

5r − 1

)
|V (G)| + 8

5r − 1
|E(G)|,
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and hence

5r − 2

5r − 1
|V (G)| ≤ 5r − 5

5r − 1
|E(G)|.

Thus, the average degree of G is at least 2 + 6
5r−5 , which gives a contradiction. This

completes the proof of Theorem 4.2.

6 Remark

Let r ≥ 4 be an integer. We propose the following problems for further research.

Problem 1 What is the best upper bound for ar (G) when G is a planar graph ?

Problem 2 What is the best upper bound for ar (G) when G is a planar graph con-
taining no copy of K2,n or even no C4?
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