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Abstract Agraph is 1-planar if it can bedrawnon the plane so that each edge is crossed
by at most one other edge. In this paper, we confirm the total-coloring conjecture for
1-planar graphs with maximum degree at least 13.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. We use V (G),
E(G), δ(G) and �(G) to denote the vertex set, the edge set, the minimum degree
and the maximum degree of a graph G, respectively. For a vertex v ∈ V (G), NG(v)

denotes the set of vertices that are adjacent to v in G. By dG(v) := |NG(v)|, we
denote the degree of v in G. For a plane graph G, F(G) denotes its face set and dG( f )
denotes the degree of a face f in G. Throughout this paper, a k-, k+- and k−-vertex
(resp. face) is a vertex (resp. face) of degree k, at least k and at most k. Any undefined
notation follows that of Bondy and Murty (1976).
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Given a graph G and a positive integer k, a total k-coloring of G is a mapping
f from V (G) ∪ E(G) to {1, 2, . . . , k} such that f (x) �= f (y) for every pair of
adjacent or incident elements x, y ∈ V (G) ∪ E(G). The total chromatic number
χ ′′(G) of a graph G is the least number of colors needed in any total coloring of G.
It is clear that χ ′′(G) ≥ �(G) + 1. The next step is to look for any Brooks-typed
or Vizing-typed upper bound on the total chromatic number in terms of maximum
degree. However, to obtain such bounds turns out to be a difficult problem and has
eluded mathematicians for nearly fifty years. The most well-known speculation is the
total-coloring conjecture, independently raised by Behzad (1965) and Vizing (1968),
which asserts that every graph of maximum degree � admits a total (�+2)-coloring.
The validity of this conjecture is known to be true for graphs in several wide families.
Rosenfeld (1971) and Vijayaditya (1971) confirmed it for � ≤ 3, Kostochka solved
it for � = 4 Kostochka (1977) and � = 5 Kostochka (1996). For � ≥ 6 it remains
open even for planar graphs, but more is known. Borodin (1989) confirmed the total-
coloring conjecture for planar graphs with � ≥ 9. Yap (1989) proved it for planar
graphs with � ≥ 8. The � = 7 case was solved for planar graphs by Sanders and
Zhao (1999).

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by
at most one other edge. The notion of 1-planarity was introduced by Ringel (1965)
while trying to simultaneously color the vertices and faces of a plane graph G such
that any pair of adjacent/incident elements receive different colors. Various coloring
problems including vertex coloring Ringel (1965), Borodin (1984), Borodin (1995)
list vertex coloring Albertson andMohar (2006); Wang and Lih (2008), Wang and Lih
(2008), acyclic vertex coloring Borodin et al. (2001), edge coloring Zhang and Liu
(2012a), Zhang and Liu (2012b), Zhang et al. (2010), Zhang and Wu (2011), acyclic
edge coloring Zhang et al. (2012), list edge and list total coloring Zhang et al. (2012),
(p, 1)-total labelling Zhang et al. (2011) and the linear arboricity Zhang et al. (2011)
of 1-planar graphs have been extensively studied in the literature. In particular, Zhang
et al. (2012) proved that every 1-planar graph with maximum degree� ≥ 16 is totally
(�+2)-choosable, which implies that the total-coloring conjecture holds for 1-planar
graphs with maximum degree at least 16. In this paper, we improve the lower bound
for the maximum degree in the above corollary to 13 by the following theorem.

Theorem 1 Let G be a 1-planar graphwithmaximumdegree� and let r be an integer.
If � ≤ r and r ≥ 13, then χ ′′(G) ≤ r + 2.

During the proof Theorem 1, we use the discharging method, and in particular, we
involve an unusual approach to estimate the final charges of big vertices. This can be
seen in Sect. 3.

2 Structural properties of a minimal 1-planar graph

Let r-minimal graph be a connected graph G on the fewest edges that has no total
(r + 2)-colorings. In the following lemmas, we always assume that r ≥ 13.

Lemma 2 Let G be a r-minimal graph and let uv be an edge in G. If dG(u) ≤ � r+1
2 	,

then dG(u) + dG(v) ≥ r + 3.
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Proof Suppose, to the contrary, that dG(u) + dG(v) ≤ r + 2. Since G is r -minimal,
the graph G ′ = G − uv has a total (r + 2)-coloring ϕ. First of all, erase the color of
u from ϕ. Since dG ′(u) + dG ′(v) ≤ r + 2 − 2 = r , the uncolored edge uv is incident
with at most r colored edges and one colored vertex, thus we can properly color uv

with a color involved in ϕ. At last, the vertex u can be easily colored since it is incident
with at most 2dG(u) ≤ r + 1 colors. 
�
Lemma 3 Let G be a r-minimal graph and let v be a vertex of G. If dG(v) = 3, then
v cannot be contained in a triangle.

Proof Let NG(v) = {v1, v2, v3}. Suppose, to the contrary, that v is contained in a
triangle vv2v3. By the choice of G, the graph G ′ = G − vv3 has a total (r + 2)-
coloring ϕ with ϕ(vvi ) = i for i = 1, 2. Now erase the color of v from ϕ. For any
color i ≥ 3, i must appear on v3 or on some edge incident with v3, since otherwise,
we can color vv3 with i , a contradiction. Thus, the colors 1 and 2 cannot appear on
v3 or the edges incident with v3. Now uncolor vv2 and color vv3 with 2. By the same
argument, any color i ≥ 3 must appear on v2 or the edges incident with v2 and the
colors 1 and 2 cannot appear on there. Now recolor v2v3 with 1, color vv3 with ϕ(v2v3)

and color vv2 with 2. At last, the vertex v can be easily colored since it is incident
with at most 6 colors. 
�
Lemma 4 Let G be a r-minimal graph and let v be a 4-vertex of G with NG(v) =
{v1, v2, v3, v4}. For any 1 ≤ i ≤ 4, the edge vvi cannot be contained in two triangles.

Proof Suppose, to the contrary, that the edge vv4 is contained in two triangles vv1v4
and vv3v4. By the choice of G, the graph G ′ = G − vv4 has a total (r + 2)-coloring
ϕ with ϕ(vvi ) = i for i = 1, 2, 3. Now erase the color of v from ϕ. For any vertex v

in G ′, let Sϕ(v) denote the set of colors not appearing on v or the edges incident with
v. First of all, we have i �∈ Sϕ(v4) for any color i ≥ 4, since otherwise, we can color
vv4 with i and then the vertex v can be easily colored (in the following we would not
mention the coloring of v for the last step). This implies that Sϕ(v4) ⊆ {1, 2, 3}. Note
that |Sϕ(v4)| ≥ 2.

Claim 1 Sϕ(v4) ⊇ {1, 3}
Proof Otherwise, assume that 1 /∈ Sϕ(v4). This implies that Sϕ(v4) = {2, 3}. Since
ϕ is a proper total coloring of G ′, we may assume that ϕ(v1v4) = 4. If i ∈ Sϕ(v1)

for some i ∈ {2, 3}, then recolor v1v4 with i and color vv4 with 4. Otherwise, there
is a color i0 ≥ 5 such that i0 ∈ Sϕ(v1). Note that 1 must appear on v2 (resp.v3) or
edges incident with v2 (resp.v3), since otherwise, we can recolor vv2 (resp.vv3) with
1, recolor vv1 with i0, and color vv4 with 2 (resp. 3). Moreover, for any i ≥ 4, the
color i must appear on v2 (resp.v3), since otherwise, we can color vv2 (resp.vv3) with
i and color vv4 with 2 (resp. 3). This implies that 3 ∈ Sϕ(v2) and 2 ∈ Sϕ(v3). Now
we consider the color on v3v4. If ϕ(v3v4) �= 1, then recolor v3v4 with 2 and color vv4
with ϕ(v3v4). Otherwise, ϕ(v3v4) = 1. In this case, recolor vv3, v1v4 with 1, v3v4
with 3, vv1 with i0 and color vv4 with 4. 
�

By the above claim, one can see that one of the edges v1v4 and v3v4 shall be
colored with a color i ≥ 4. Without loss of generality, assume that ϕ(v1v4) = 4. Note
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that 3 /∈ Sϕ(v1), since otherwise, we can recolor v1v4 with 3 and color vv4 with 4.
Moreover, 1 /∈ Sϕ(v3), since otherwise, we can exchange the colors on v1v4 and v1v,
then recolor vv3 with 1 and color vv4 with 3. For any i ≥ 4, the color i /∈ Sϕ(v j )

for any j = 1, 3, since otherwise, we can recolor vv j with i and color vv4 with j .
Thus Sϕ(v1) = Sϕ(v3) = {2}. If there is a color i ≥ 4 such that i ∈ Sϕ(v2), then
we can recolor vv2 with i , vv1 with 2, and color vv4 with 1. Otherwise, we have
Sϕ(v2) ⊆ {1, 3}. Without loss of generality, let 1 ∈ Sϕ(v2). We then recolor vv2 and
v1v4 with 1, vv1 with 2, and color vv4 with 4. 
�
Lemma 5 Let G be a r-minimal graph and let Vi be the set of i-vertices in G. We
have |V�| > 2|V3|.
Proof If |V3| = 0, then it is trivial. If |V3| �= 0, then by Lemma 2, r = �. Let
E be the set of edges in G having one end-vertex in V3 and let H be the bipartite
subgraph with vertex set V3 ∪ V� and edge set E . First of all, we prove that H is
a forest. Suppose, to the contrary, that H contains a cycle C . Then this cycle is of
even length in which alternate vertices have degree 3 in G. Since G is �-minimal, the
graph G ′ = G − E(C) has a total (� + 2)-coloring ϕ. Now erase the colors of the
3-vertices on C from ϕ. Let e be an arbitrary edge of C . One can see that e is now
incident with at most � − 1 colored edges and one colored vertex, hence there are
at least (� + 2) − (� − 1 + 1) = 2 available colors for e. Therefore, the edges in
E(C) can be properly colored since every even cycle is edge 2-choosable. At last, the
3-vertices on C can be colored since each of them is now incident with at most six
colored elements and no two of them are adjacent inG by Lemma 2. This contradiction
implies that H is a forest and thus |V (H)| = |V3| + |V�| > |E(H)|. Moreover, the
neighbors of every vertex in V3 belong to the vertex set V� by Lemma 2. This implies
that |E(H)| = 3|V3|. Hence we conclude that |V�| > 2|V3|. 
�

In the following, we restrict the minimal graphG to be a 1-planar graph and assume
that G has already been embedded on a plane so that every edge is crossed by at most
one other edge and the number of crossings is as small as possible. The associated
plane graph G× ofG is the plane graph that is obtained fromG by turning all crossings
of G into new 4-vertices. A vertex in G× is false if it is not a vertex of G and true
otherwise. By a false face, we mean a face f in G× that is incident with at least one
false vertex; otherwise, we call f true.

Lemma 6 (Zhang and Wu 2011) Let v be a 3-vertex in G. If v is incident with two
false 3-faces vv1v2 and vv1v3 in G×, then v2 and v3 are both false and v is incident
with a 5+-face in G×.

Lemma 7 Every 4-vertex in G is incident with at most three 3-faces in G×.

Proof Let v be a 4-vertex in G and let v1, v2, v3, v4 be the neighbors in G× of v that
occurs clockwise around v. Suppose that v is incident with four 3-faces in G×, that
is, v1v2, v2v3, v3v4, v4v1 ∈ E(G×). Since no two false vertices are adjacent in G×,
there are at most two false vertices among v1, v2, v3 and v4. If two of them, say v1
and v3, are false, then we would find two edges in G that connect v2 to v4: one goes
through the point v1 and the other goes through the point v3, contradicting the fact
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that G is simple. Thus we shall assume that there are at least three true vertices, say
v1, v2 and v3, among the four neighbors of v. However, this is impossible by Lemma
4 since vv1v2 and vv2v3 are two adjacent triangles in G with dG(v) = 4. 
�
Lemma 8 Every 5-vertex in G is either incident with at least two 4+-faces in G×,
or adjacent to at least three true vertices in G×, or incident with exactly one 4+-face
and adjacent to two true vertices in G×.

Proof Let v be a 5-vertex in G and let v1, v2, v3, v4, v5 be the neighbors in G× of v

that occurs clockwise around v. Suppose that v is incident with at most one 4+-face
and adjacent to at most two true vertices in G×. Without loss of generality, assume
that v1v2, v2v3, v3v4, v4v5 ∈ E(G×). Since no two false vertices are adjacent in G×,
there are at most three false vertices among v1, v2, v3, v4 and v5. This implies that
v is adjacent to exactly two true vertices in G×. On the other hand, v is incident
with exactly one 4+-face because otherwise v1v2v3v4v5 would be a 5-cycle in G×,
which implies that at least three of those five vertices are true, a contradiction to our
assumption. 
�
Lemma 9 Every 5-face in G× is incident with at most four 4−-vertices.

Proof Suppose, to the contrary, that the 5-face f is incident only with 4−-vertices in
G×. Then f is incident with at least three false vertices, because otherwise we would
find an edge uv on f such that u and v are both true 4−-vertices, which is impossible
by Lemma 2. On the other hand, f can be incident with at most two false vertices
since no two false vertices are adjacent inG×. This contradiction completes the proof.


�

3 The proof of Theorem 1

We call a vertex v in G× small if dG×(v) ≤ 5. Note that the degree of a false vertex
in G× is four, so every false vertex is small. We call u the tri-neighbor of v if uv is
an edge of G with dG(v) = 4 and uv is incident with a 3-face uvw in G× so that w

is true. Note that in this situation u cannot be a tri-neighbor of w by Lemma 2. Now
we start to prove Theorem 1.

Suppose that G is a minimum counterexample to it. We then conclude that G is
2-connected and moreover, δ(G) ≥ 3 by Lemma 2. In the following, we apply the
discharging method to the associated plane graph G× of G and complete the proof by
contradiction. Note that G× is also 2-connected.

Wenowassign an initial charge c to each element x ∈ V (G×)∪F(G×) as follows. If
x ∈ V (G×), then let c(x) = dG×(x)−6. If x ∈ F(G×), then let c(x) = 2dG×(x)−6.
Since G× is a plane graph,

∑
x∈V (G×)∪F(G×) c(x) = −12 by the well-known Euler’s

formula. We redistribute the initial charges on V (G×) ∪ F(G×) by the discharging
rules below. Let c′(x) be the final charge of an element x ∈ V (G×) ∪ F(G×) after
the discharging process. We still have

∑
x∈V (G×)∪F(G×) c

′(x) = −12 < 0, since our
rules only move charge around and do not affect the sum.

R1. Every 4+-face redistributes its initial charge uniformly among the small vertices
that are incident with it in G×.
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R2. Every �-vertex gives 1
2 to a common pot from which each 3-vertex receives 1,

if |V3| > 0.
R3. Let u, v be true vertices of G× and let uv ∈ E(G×). If v is small, then u sends

1
3 to v; moreover, if u is a tri-neighbor of v, then u sends an addition of 1

12 to
v. Note that in R2, the common pot can also be seen as a pseudo-point that has
initial charge zero. In the next six rules, we assume that uv crosses xy at a false
vertex w in G×.

R4. If dG×(u) ≥ 9, ux, uy �∈ E(G×) and v is a small vertex, then u sends 1
3 to v

through w.
R5. If dG×(u) ≥ 9, ux �∈ E(G×) and uy ∈ E(G×), then u sends 1

4 tow. Furthermore,
if dG×(v) ≤ 4, then u sends 1

3 to v through w.
R6. If dG×(u) ≥ 9, ux, uy, vx ∈ E(G×) and y is a small vertex, then u sends 3

4 to
w. Furthermore, if dG×(v) ≤ 4, then u sends 1

24 to v through w.
R7. If dG×(u) ≥ 9, ux, uy ∈ E(G×) and either vx �∈ E(G×) or y is not a small

vertex, then u sends 2
3 to w. Furthermore, if dG×(v) ≤ 4, then u sends 1

8 to v

through w.
R8. If dG×(u) = 8 and ux, uy ∈ E(G×), then u sends 1

2 to w.
R9. If dG×(u) = 8, ux ∈ E(G×) and uy �∈ E(G×), then u sends 1

12 to w.

In the following, we check that the final charge c′ on each vertex and face is
nonnegative, and we also show that the final charge of the common pot is nonnegative.
This implies that

∑
x∈V (G×)∪F(G×) c

′(x) ≥ 0, a contradiction.
First of all, since |V�| > 2|V3| by Lemma 5, the final charge of the common pot

is at least 1
2 |V�| − |V3| > 0 by R2. One can also check that the final charge of every

face in F(G×) is nonnegative by R1. Thus in the following we consider the vertices
in G×.

Let v be a d-vertex in G× and let v1, v2, . . . , vd be its neighbors in G× that occur
around v in a clockwise order. By fi denote the face incident with vvi and vvi+1 in
G×, where the addition on subscripts are taken modulo d.

Case 1 d = 3.
Case 1.1 If v is adjacent to at most one false vertex in G×, then without loss of

generality assume that v2 and v3 are true. By Lemmas 2 and 3, neither v2 nor v3 is
small and f2 is a 4+-face. Thus by R1 and R3, v receives at least 2 × 1

3 + 2
4−2 = 5

3
from v2, v3 and f2. By Lemmas 3 and 6, at least one of f1 and f3, say f1, shall be a
4+-face. By R1, f1 sends at least 2

4−1 = 2
3 to v. Furthermore, v would receive 1 from

the common pot by R2. Therefore, c′(v) ≥ −3 + 5
3 + 2

3 + 1 > 0.
Case 1.2 If v is adjacent to two false vertices in G×, say v1 and v2, then f1 is a

4+-face since v1v2 �∈ E(G×). By R1 and R3, v receives a total of 1+ 1
3 = 4

3 from the
common pot and v3. Now we consider three subcases.

First, assume that f2 and f3 are both 4+-faces. By R1, f1, f2 and f3 sends at least
2
4 = 1

2 ,
2

4−1 = 2
3 and 2

4−1 = 2
3 to v, respectively. Therefore, c′(v) ≥ −3 + 4

3 + 1
2 +

2
3 + 2

3 > 0.
Second, assume that f2 is a 4+-face and f3 is a 3-face. Let v′

1 be a vertex such that
vv′

1 is an edge in G that goes through the false vertex v1 in G×. By Lemmas 2 and 3,
v′
1 is a �-vertex and v′

1v3 �∈ E(G×), because otherwise vv′
1v3 would be a triangle in
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G. Thus by R4 and R5, v receives 1
3 from v′

1. If f2 is a 5
+-face, then by R1, f2 sends at

least 4
5−1 = 1 to v (note that v3 is not a small vertex). Since f1 is a 4+-face, f1 would

send at least 24 = 1
2 to v by R1. Thus, c′(v) ≥ −3+ 4

3 + 1
3 +1+ 1

2 > 0. So we suppose
that f2 is a 4-face, fromwhich v receives at least 2

4−1 = 2
3 byR1. If f1 is a 5

+-face, then
by R1, f1 sends at least 45 to v. Thus c′(v) ≥ −3+ 4

3 + 1
3 + 2

3 + 4
5 > 0. So suppose that

f1 is a 4-face. Let v′
2 and v′

3 be the fourth (undefined) vertex on f2 and f1, respectively.
Since v2 is false and v2v

′
2, v2v

′
3 ∈ E(G×), v′

2v
′
3 is an edge in G. By Lemma 2, one of

v′
2 and v′

3 is not small. If v′
2 is not small, then by R1, f1 and f2 sends at least 2

4 = 1
2

and 2
4−2 = 1 to v, respectively. It follows that c′(v) ≥ −3 + 4

3 + 1
3 + 1

2 + 1 > 0.

If v′
3 is not small, then by R1, f1 and f2 sends at least 2

4−1 = 2
3 and 2

4−1 = 2
3 to v,

respectively. It follows that c′(v) ≥ −3 + 4
3 + 1

3 + 2
3 + 2

3 = 0.
Third, assume that f2 and f3 are both 3-faces. By Lemma 6, f1 is a 5+-face.

Let v′
i (i = 1, 2) be a vertex such that vv′

i is an edge in G that goes through the
false vertex vi in G×. By a similar argument as the beginning of the second sub-
case above, one can prove that v receives 1

3 from each of v′
1 and v′

2. If f1 is a
6+-face, then by R1, f1 sends at least 6

6 = 1 to v. If f1 is a 5-face, then assume
that v3x1 crosses vv′

1 and v3x2 crosses vv′
2 in G. It follows that x1x2 ∈ E(G).

By Lemma 2, at least one of x1 and x2 is not small. Thus by R1, f1 sends at
least 4

5−1 = 1 to v. In each case we have c′(v) ≥ −3 + 4
3 + 2 × 1

3 + 1 =
0.

Case 1.3 If v is adjacent to three false vertices in G×, then f1, f2 and f3 are 4+-
faces. By R2, v receives 1 from the common pot. If two of f1, f2 and f3 are of degree
at least 5, then by R1 it is easy to calculate that v receives at least 4

5 + 4
5 + 2

4 > 2
from its incident faces and therefore c′(v) ≥ −3+ 1+ 2 = 0. If exactly one of f1, f2
and f3, say f3, is a 5+-face, then let x1 and x2 be the fourth (undefined) vertices of
the 4-faces f1 and f2, respectively. One can easily see that x1x2 ∈ E(G) and thus
by Lemma 2, at least one of x1 and x2 is not small. Therefore, v receives at least
4
5 + 2

4 + 2
4−1 = 59

30 from its incident faces by R1. Assume that vv′
2 crosses x1x2 in

G, then by Lemma 2, v′
2 is a �-vertex. Thus, v′

2 sends at least
1
8 to v by R4–R7. This

implies that c′(v) ≥ −3 + 1 + 59
30 + 1

8 > 0. If f1, f2 and f3 are all 4-faces, then let
xi (i = 1, 2, 3) be the fourth (undefined) vertices of the 4-faces fi . It is easy to check
that x1x2, x2x3, x3x1 ∈ E(G) by the drawing of G. Thus, at most one of x1, x2 and x3
is small by Lemma 2. This implies that v receives at least 2

4 + 2
4−1 + 2

4−1 = 11
6 form

its incident faces by R1. Assume that vv′
i (i = 1, 2, 3) crosses xi−1xi in G, where

the subscripts are taken modulo 3, then by Lemma 2, v′
i is a �-vertex, from which v

receives at least 1
8 by R4–R7. Therefore, c′(v) ≥ −3 + 1 + 11

6 + 3 × 1
8 > 0.

Case 2 d = 4 and v is a true vertex.
By Lemma 7, v is incident with at least one 4+-face in G×. Thus we consider four

subcases.
Case 2.1 If v is incident with four 4+-faces in G×, then v receives at least 2

4 = 1
2

from each of its incident faces by R1. This implies that c′(v) ≥ −2 + 4 × 1
2 = 0.

Case 2.2 If v is incident with exactly three 4+-faces in G×, say f2, f3 and f4, then
v1v2 ∈ E(G×). Since no two false vertices are adjacent in G×, at least one of v1
and v2, say v1, is true, and moreover, is a 12+-vertex by Lemma 2. By R3 and R1, v
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receives 1
3 from v1, at least 2

4−1 = 2
3 from f4 and at least 2

4 = 1
2 from each of f2 and

f3. Therefore, c′(v) ≥ −2 + 1
3 + 2

3 + 2 × 1
2 = 0.

Case 2.3 If v is incident with exactly two 4+-faces in G×, then we consider two
subcases.

Assume first that f1 and f3 are both 4+-faces. By a same argument as in Case 2.2, at
least one of v2 and v3 and at least one of v1 and v4 are 12+-vertices. If v1 and v2 are both
12+-vertices, then by R3 and R1, v receives 1

3 from each of v1 and v2, at least 2
4−2 = 1

from f1 and at least 2
4 = 1

2 from f3. Thus, c′(v) ≥ −2+ 2× 1
3 + 1+ 1

2 > 0. If v1 and
v3 are both 12+-vertices, then by R3 and R1, v receives 1

3 from each of v1 and v3 and at
least 2

4−1 = 2
3 fromeach of f1 and f3. This implies that c′(v) ≥ −2+2× 1

3+2× 2
3 = 0.

Second, assume that f1 and f2 are 4+-faces. If v1 and v3 are both true, then by
Lemma 2 they are 12+-vertices. So by R3 and R1, v receives 1

3 from each of v1

and v3 and at least 2
4−1 = 2

3 from each of f1 and f2. This implies that c′(v) ≥
−2 + 2 × 1

3 + 2 × 2
3 = 0. So we assume that at least one of v1 and v3 is false, which

implies that v4 is true since no two false vertices are adjacent in G×.
If v1 is false and v3 is true, then let v′

1 be the vertex of G so that vv′
1 is a crossed

edge in G with a crossing v1. By Lemma 4, v′
1v4 �∈ E(G), because otherwise vv4v

′
1

and vv3v4 would be two adjacent triangles in G with a common 4-vertex. Note that
v′
1 and v3 are 12+-vertices by Lemma 2. So v receives 1

3 from v′
1 by R4 and R5, 1

3
from each of v3 and v4 by R3 and at least 2

4 = 1
2 from each of f1 and f2 by R1. This

implies that c′(v) ≥ −2 + 1
3 + 2 × 1

3 + 2 × 1
2 = 0.

If v1 and v3 are both false, then let v′
i and xi (i = 1, 3) be the vertices of G so that

vv′
i crosses v4xi in G at the crossing vi . Note that v′

1 and v′
3 are both 12+-vertices

by Lemma 2. By Lemma 4, v′
1v4 and v′

3v4 cannot simultaneously be the edges of
G, because otherwise vv4v

′
1 and vv4v

′
3 would be two adjacent triangles in G with a

common 4-vertex. Without loss of generality, assume that v′
1v4 �∈ E(G). By R3, R4

and R5, each of v′
1 and v4 sends 1

3 to v (recall that v4 is true). If v2 is true, then v

receives 1
3 from v2 by R3. Moreover, each of f1 and f2 sends at least 2

4 = 1
2 to v by

R1. Thus, c′(v) ≥ −2 + 1
3 + 2 × 1

3 + 2 × 1
2 = 0. If v2 is false, then let v′

2 be the
vertex of G so that vv′

2 is a crossed edge in G with a crossing v2. By Lemma 2, v′
2 is

a 12+-vertex. If at least one of f1 and f2, say f1, is a 5+-face, then f1 sends at least
min{ 66 , 4

4 } = 1 to v by R1 and Lemma 9 and f2 sends at least 2
4 = 1

2 to v by R1. Thus,
c′(v) ≥ −2+ 2× 1

3 + 1+ 1
2 > 0. So we assume that f1 and f2 are both 4-faces. This

implies that x1x3 is a crossed edge in G with the crossing v2. By Lemma 2, at most
one of x1 and x3 is small. So f1 and f2 totally sends at least 2

4−1 + 2
4 = 7

6 to v by R1.

Recall that v′
2 and v′

3 are 12
+-vertices. By R4–R7, v′

2 sends at least
1
8 and v′

3 sends at
least 1

24 to v. Therefore, c′(v) ≥ −2 + 2 × 1
3 + 7

6 + 1
8 + 1

24 = 0.
Case 2.4 If v is incident with exactly one 4+-faces in G×, say f1, then

v2v3, v3v4, v4v1 ∈ E(G×). Now we claim that at least one of v1 and v2 is false.
Suppose, to the contrary, that v1 and v2 are true vertices. If v3 is true, then either vv3v4
(when v4 is true) or vv1v3 (when v4 is false) is a triangle in G that is adjacent to
another triangle vv2v3, which is impossible by Lemma 4. Thus we shall assume that
v3 is false. By symmetry, v4 is also false, but it contradicts the fact that v3v4 ∈ E(G×).
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Without loss of generality, assume that v1 is false. It follows that v4 is a true vertex. By
Lemma 4, exactly one of v2 and v3 shall be false, because otherwise vv2v3 and vv3v4
would be two adjacent triangles in G with a common 4-vertex. Thus we consider two
subcases.

Assume first that v2 is false and v3 is true. One can check that v3 and v4 are both
tri-neighbors of v, which follows that each of v3 and v4 sends 1

3 + 1
12 = 5

12 to v by
R3. Let v′

i (i = 1, 2) be the vertex of G so that vv′
i is a crossed edge in G with the

crossing vi . It is easy to see that v′
1 and v′

2 are 12
+-vertices by Lemma 2. One can also

prove that v′
1v4, v

′
2v3 �∈ E(G) by a similar argument as in Case 2.3. Thus by R4 and

R5, each of v′
1 and v′

2 sends
1
3 to v. Since f1 is a 4+-face, f1 sends at least 2

4 = 1
2 to

v by R1. Therefore, c′(v) ≥ −2 + 2 × 5
12 + 2 × 1

3 + 1
2 = 0.

Now assume that v2 is true and v3 is false. It is easy to see that vv2v4 is a triangle
in G by the drawing of G. Let v′

i (i = 1, 3) be the vertex of G so that vv′
i is a crossed

edge in G with the crossing vi . One can see that v′
1 and v′

3 are 12
+-vertices by Lemma

2 and can prove that v′
1v4, v

′
3v4 �∈ E(G) by a similar argument as in Case 2.3. So each

of v′
1 and v′

3 sends
1
3 to v by R3 and R4. Meanwhile, each of v2 and v4 sends 1

3 to v

by R3 and f1 sends at least 2
4−1 = 2

3 to v by R1 (note that v2 is not small). Therefore,

c′(v) ≥ −2 + 2 × 1
3 + 2 × 1

3 + 2
3 = 0.

Case 3 d = 4 and v is a false vertex.
Case 3.1 If v is incident with no 3-faces in G×, then by R1, each of f1, f2, f3 and

f4 sends at least 2
4 = 1

2 to v. So c′(v) ≥ −2 + 4 × 1
2 = 0.

Case 3.2 If v is incident with exactly one 3-face, say f1, then v1v2 ∈ E(G). This
implies that at most one of v1 and v2 can be a 7−-vertex by Lemma 2. Assume first
that min{dG×(v1), dG×(v2)} ≥ 8. By R1,each of f2 and f4 sends at least 2

4−1 = 2
3

to v and f3 sends at least 2
4 = 1

2 to v. Moreover, each of v1 and v2 sends at least 1
12

to v by R5 and R9. Thus c′(v) ≥ −2 + 2 × 2
3 + 1

2 + 2 × 1
12 = 0. Now assume that

dG×(v1) ≤ 7. It follows that min{dG×(v2), dG×(v3)} ≥ 9 by Lemma 2. Thus f2, f3
and f4 sends at least 2

4−2 = 1, 2
4−1 = 2

3 and
2
4 = 1

2 to v by R1, respectively. Therefore,

c′(v) ≥ −2 + 1 + 2
3 + 1

2 > 0.
Case 3.3 If v is incident with exactly two 3-faces, then we consider two subcases.
Assumefirst that f1 and f2 are both 3-faces. Then v1v2, v2v3 ∈ E(G). If dG×(v2) ≤

8, then by Lemma 2, min{dG×(v1), dG×(v3), dG×(v4)} ≥ 7. This implies that each of
f3 and f4 sends at least 2

4−2 = 1 to v and thus c′(v) ≥ −2+2×1 = 0. So we assume

that dG×(v2) ≥ 9. It follows that v2 sends 2
3 to v by R7. If one of v1 and v3, say v1,

is small, then by R1, f3 and f4 sends at least 2
4−1 = 2

3 and 2
4 = 1

2 to v, respectively,

since in this case we also have dG×(v3) ≥ 11 by Lemma 2. Moreover, v3 sends 1
4 to

v by R5. Therefore, c′(v) ≥ −2 + 2
3 + 2

3 + 1
2 + 1

4 > 0. On the other hand, if neither
v1 nor v3 is small, then by R1, each of f3 and f4 sends at least 2

4−1 = 2
3 to v. Thus

c′(v) ≥ −2 + 2
3 + 2 × 2

3 = 0.
Now assume that f1 and f3 are both 3-faces. If none of v1, v2, v3 and v4 is small,

then by R1, each of f2 and f4 sends at least 2
4−2 = 1 to v, which implies that

c′(v) ≥ −2 + 2 × 1 = 0. If at least one of v1, v2, v3 and v4, say v1, is small, then
by Lemma 2, min{dG×(v2), dG×(v3)} ≥ 11. So f2 and f4 sends at least 2

4−2 = 1 and
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2
4 = 1

2 to v by R1, respectively. Moreover, each of v2 and v3 sends 1
4 to v by R5.

Therefore, c′(v) ≥ −2 + 1 + 1
2 + 2 × 1

4 = 0.
Case 3.4 If v is incident with exactly three 3-faces, say f1, f2 and f3, then

v1v2, v2v3, v3v4 ∈ E(G). If dG×(v2) ≤ 7, then by Lemma 2, min{dG×(v1), dG×(v3),

dG×(v4)} ≥ 9. So f4 sends at least 2
4−2 = 1 to v by R1, each of v1 and v4 sends 1

4 to v

by R5 and v3 sends at least 23 to v by R6 and R7. Thus c′(v) ≥ −2+1+2× 1
4 + 2

3 > 0.
So we shall assume that dG×(v2) ≥ 8. Similarly, we shall assume that dG×(v3) ≥ 8. If
both v1 and v4 are small, then by Lemma 2, min{dG×(v2), dG×(v3)} ≥ 11. It follows
that each of v2 and v3 sends 3

4 to v by R6. Moveover, f4 sends at least 2
4 = 1

2 to v.
Thus c′(v) ≥ −2 + 2 × 3

4 + 1
2 = 0. So we assume that at least one of v1 and v4 is

not small. It follows that f4 sends at least 2
4−1 = 2

3 to v by R1. If dG×(v1) ≤ 7 or
dG×(v4) ≤ 7, then by Lemma 2, min{dG×(v2), dG×(v3)} ≥ 9. So by R6 and R7, each
of v2 and v3 sends at least 2

3 to v. Thus c′(v) ≥ −2 + 2
3 + 2 × 2

3 = 0. So we shall
assume that min{dG×(v1), dG×(v4)} ≥ 8. It follows that f4 sends at least 2

4−2 = 1 to v

by R1. Moreover, each of v2 and v3 sends at least 1
2 to v by R6, R7 and R8. Therefore,

c′(v) ≥ −2 + 1 + 2 × 1
2 = 0.

Case 3.5 If v is incident with four 3-faces, then v1v2, v2v3, v3v4, v4v1 ∈ E(G) and
thus at most one of v1, v2, v3 and v4 is a 7−-vertex by Lemma 2. Assume first that
dG×(v1) ≤ 7. Then all of v2, v3 and v4 are 9+-vertices by Lemma 2. So by R6 and R7,
each of v2, v3 and v4 sends at least 23 to v, which implies that c′(v) ≥ −2+3× 2

3 = 0.
Now assume that all of v1, v2, v3 and v4 are 8+-vertices. By R6, R7 and R8, each of
those four vertices sends at least 1

2 to v. This implies that c′(v) ≥ −2 + 4 × 1
2 = 0.

Case 4 d = 5.
By R1 and R3, v receives at least 2

4 = 1
2 from each of its incident 4+-faces

and 1
3 from each of its adjacent true vertices in G×. We consider three sub-

cases according to Lemma 8. If v is incident with at least two 4+-faces, then
c′(v) ≥ −1 + 2 × 1

2 = 0. If v is adjacent to at least three trues vertices
in G×, then c′(v) ≥ −1 + 3 × 1

3 = 0. If v is incident with one 4+-face
and adjacent to two true vertices in G×, then c′(v) ≥ −1 + 1

2 + 2 × 1
3 >

0.
Case 5 d ≥ 6.
If d ≤ 7, then it is trivial that c′(v) = c(v) ≥ 0, so we assume that d ≥ 8.
Let S f (v) denote the subgraph induced by the faces that are incident with v in

G×. Then S f (v) can be decomposed into many parts, each of which is one of the
five clusters in Figure 1, and any two parts of which are adjacent only if they have a
coJPGmmon edge vw such that w is a true vertex. The hollow vertices in Figure 1 are
false vertices and the solid ones are true vertices; all the marked faces are 4+-faces
and there is at least one 4+-face contained in the clusters of type 2, 4 and 5.

Let ai denote the largest possible value of the charges sent by v to or through its
adjacent false vertices in a cluster of type i .

If d = 8, then by R8 and R9 we have a1 = 1
2 , a2 = 1

12 , a3 = 0, a4 = 2 × 1
12 = 1

6
and a5 = 0.

If 9 ≤ d ≤ 11, then by Lemma 2, v is adjacent to no 4−-vertices in G. Thus by R4,
R5, R6 and R7 we have a1 = 3

4 , a2 = 1
4 , a3 = 0, a4 = 2 × 1

4 = 1
2 and a5 = 0.
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Fig. 1 Five types of cluster

If d ≥ 12, then v may be adjacent to 4−-vertices in G, to which v can send
charges through the false vertices that are adjacent to v in G×. First of all, a1 =
max{ 34 + 1

24 ,
2
3 + 1

8 } = 19
24 by R6 and R7 and a3 = 0. Let Hi (i = 2, 4, 5) be a cluster

of type i . Suppose that there are si false vertices that are adjacent to v in Hi . By R4
and R5, we have a2 = 1

4 + 1
3 s2, a4 = 2 × 1

4 + 1
3 s4 = 1

2 + 1
3 s4 and a5 = 1

3 s5.
Denote by ni the number of clusters of type i contained in S f (v). Letm be the total

number of false vertices that are adjacent to v in the clusters of type 2, 4 and 5. One
can easy to see that the following facts hold.

(1) v is adjacent to n1 + n2 + n3 + n4 + n5 true vertices in G×.
(2) v is adjacent to n1 + m false vertices in G×.
(3) 2n1 + 2n2 + n3 + 3n4 + n5 ≤ d.

By (1) and (2), it is easy to see that m = d − 2n1 − n2 − n3 − n4 − n5.
First of all, we calculate the largest possible value of the charges sent by v to or

through its adjacent false vertices in G×, that is, the value of n1a1 + n2a2 + n3a3 +
n4a4 + n5a5. Recall the values of ai we have obtained in each of the above cases. One
can deduce that

n1a1 + n2a2 + n3a3 + n4a4 + n5a5 = 1
2n1 + 1

12n2 + 1
6n4

if d = 8,

n1a1 + n2a2 + n3a3 + n4a4 + n5a5 = 3
4n1 + 1

4n2 + 1
2n4

if 9 ≤ d ≤ 11, and

n1a1 + n2a2 + n3a3 + n4a4 + n5a5 = 19

24
n1 + 1

4
n2 + 1

2
n4 + 1

3
m

= 19

24
n1 + 1

4
n2 + 1

2
n4
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+1

3
(d − 2n1 − n2 − n3 − n4 − n5)

= 1

3
d + 1

8
n1 − 1

12
n2 − 1

3
n3 + 1

6
n4 − 1

3
n5.

if d ≥ 12.
Now, we calculate the largest possible value of the charges sent by v to its adjacent

true small vertices in G×. Note that we should only consider the case d ≥ 11 by
Lemma 2. Since no two true small vertices are adjacent in G, in each cluster of type 1
or 3 v is adjacent to at most one true small vertex inG×. This implies that v is adjacent
to at most n1 + n2 + n3 + n4 + n5 − 1

2 (n1 + n3) = 1
2 (n1 + n3) + n2 + n4 + n5 true

small vertices in G×. Recall the definition of tri-neighbors at the beginning of this
section. One can see that v can be tri-neighbors of at most n3 vertices. Therefore, v

sends at most

1

6
(n1 + n3) + 1

3
(n2 + n4 + n5) + 1

12
n3

to its adjacent true small vertices in G× by R3. Note that R2 cannot be applied to v if
6 ≤ d ≤ 12, since the application of R2 implies � = r ≥ 13 by Lemma 2, and that v
may send 1

2 to a common pot by R2 if d ≥ 13.
We combine those lines of calculations. Let γd be the largest possible value of the

charges sent by v if dG(v) = d. We have

γ8 = 1

2
n1 + 1

12
n2 + 1

6
n4

γ9 = γ10 = 3

4
n1 + 1

4
n2 + 1

2
n4,

γ11 = 3

4
n1 + 1

4
n2 + 1

2
n4 + 1

6
(n1 + n3) + 1

3
(n2 + n4 + n5) + 1

12
n3

= 11

12
n1 + 7

12
n2 + 1

4
n3 + 5

6
n4 + 1

3
n5,

γ12 = 1

3
d + 1

8
n1 − 1

12
n2 − 1

3
n3 + 1

6
n4 − 1

3
n5 + 1

6
(n1 + n3)

+1

3
(n2 + n4 + n5) + 1

12
n3

= 4 + 7

24
n1 + 1

4
n2 − 1

12
n3 + 1

2
n4, and

γd = 1

3
d + 1

8
n1 − 1

12
n2 − 1

3
n3 + 1

6
n4 − 1

3
n5 + 1

6
(n1 + n3)

+1

3
(n2 + n4 + n5) + 1

12
n3 + 1

2

= 1

3
d + 7

24
n1 + 1

4
n2 − 1

12
n3 + 1

2
n4 + 1

2

if d ≥ 13.
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For each 8 ≤ d ≤ 12, we consider the following program Pd :

max γd

s.t. 2n1 + 2n2 + n3 + 3n4 + n5 ≤ d

n1, n2, n3, n4, n5, d ∈ Z
+.

Let qd be the optimal value of the program Pd .
Since γ8 ≤ 1

4 (2n1 + 2n2 + n3 + 3n4 + n5) ≤ 2, q8 ≤ 2.
Since γ9 ≤ 3

8 (2n1 + 2n2 + n3 + 3n4 + n5) − 3
8 (n3 + n4 + n5) ≤ 3, q9 ≤ 3. Note

that if 2n1 + 2n2 + n3 + 3n4 + n5 = 9, then n3 + n4 + n5 ≥ 1.
Since γ10 ≤ 3

8 (2n1 + 2n2 + n3 + 3n4 + n5) ≤ 15
4 , q10 ≤ 15

4 .
Since γ11 ≤ 11

24 (2n1+2n2+n3+3n4+n5)− 1
8 (n2+n3+n4+n5) ≤ 59

12 , q11 ≤ 59
12 .

Note that if 2n1 + 2n2 + n3 + 3n4 + n5 = 11, then n2 + n3 + n4 + n5 ≥ 1.
Since γ12 ≤ 4 + 1

6 (2n1 + 2n2 + n3 + 3n4 + n5) ≤ 6, q12 ≤ 6.
Therefore, c′(v) ≥ d − 6 − qd ≥ 0 for each 8 ≤ d ≤ 12.
If d ≥ 13, then 2n1 + 2n2 + n3 + 3n4 + n5 ≤ d implies γd − (d − 6) ≤ 1

6 (2n1 +
2n2 + n3 + 3n4 + n5) − 2

3d + 13
2 ≤ 13−d

2 ≤ 0. Therefore, c′(v) ≥ d − 6 − γd ≥ 0
for d ≥ 13.
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