
Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 7 (2014) 281–291

On the lightness of chordal 4-cycle in 1-planar
graphs with high minimum degree∗

Xin Zhang †

Department of Mathematics, Xidian University, Xi’an 710071, P. R. China

Guizhen Liu ‡

School of Mathematics, Shandong Univeristy, Jinan 250100, P. R. China

Received 12 January 2012, accepted 8 February 2013, published online 7 May 2013

Abstract

A graph G is 1-planar if it can be drawn on the plane so that each edge is crossed by at
most one other edge. The family of 1-planar graphs with minimum vertex degree at least
δ and minimum edge degree at least ε is denoted by P1

δ (ε). In this paper, it is proved that
every graph in P1

7 (14) (resp.P1
6 (13)) contains a copy of chordal 4-cycle with all vertices

of degree at most 10 (resp. 12).
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1 Introduction
All graphs considered in this paper are finite, undirected, loopless and without multiple
edges. For a graph G, we use V (G), E(G), δ(G) and ∆(G) to denote the vertex set, the
edge set, the minimum degree and the maximum degree of G, respectively. By F (G), we
denote the face set of G when G is a plane graph. If uv ∈ E(G), then u is said to be the
neighbor of v. We use NG(v) to denote the set of neighbors of a vertex v. The degree of
a vertex v ∈ V (G), denoted by dG(v), is the value of |NG(v)|, and the degree of an edge
uv ∈ E(G), denoted by dG(uv), is the value of dG(u) + dG(v). A k-, k+- and k−-vertex
is a vertex of degree k, at least k and at most k, respectively. In this paper, Ck and Pk
denotes a cycle and a path with k vertices and K−4 denotes a chordal 4-cycle, which is a
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graph obtained by removing an edge from a complete graph K4. A cycle C = [x1 · · ·xk]
of a graph G is of the type (d1, · · · , dk) if dG(xi) = di for 1 ≤ i ≤ k. Similarly we can
define cycles of the type (≥ d1, · · · ,≥ dk), etc. For other undefined concepts we refer the
readers to [2].

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at
most one other edge. The notion of 1-planarity was introduced by Ringel [16] while trying
to simultaneously color the vertices and faces of a plane graph G such that any pair of
adjacent/incident elements receive different colors. Note that we can construct, for given
plane graph, a 1-planar graph G1 whose vertex set is V (G)∪F (G) and any two vertices of
G1 are adjacent if and only if their corresponding elements in G are adjacent or incident.

Borodin proved that each 1-planar graph is 6-colorable (the bound 6 being sharp) [3, 4]
which positively answered a conjecture raised by Ringel in [16], and that each 1-planar
graph is acyclically 20-colorable [7]. The list analogue of vertex coloring of 1-planar
graphs was investigated by Albertson and Mohar [1], and by Wang and Lih [18]. Zhang
et al. showed that each 1-planar graph G with maximum degree ∆ is ∆-edge-colorable
if ∆ ≥ 10 [25], or ∆ ≥ 9 and G contains no chordal 5-cycles [19], or ∆ ≥ 8 and G
contains no chordal 4-cycles [20], or ∆ ≥ 7 and G contains no 3-cycles [21], is (∆ + 1)-
edge-choosable and (∆ + 2)-total-choosable if ∆ ≥ 16 [27], is ∆-edge-choosable and
(∆ + 1)-total-choosable if ∆ ≥ 21 [27]. Zhang et al. also showed that the (p, 1)-total la-
belling number of each 1-planar graph G is at most ∆(G) + 2p− 2 if ∆(G) ≥ 8p+ 4 [28],
and the linear arboricity of each 1-planar graph G is exactly d∆(G)/2e if ∆(G) ≥ 33 [24].

Another topic concerning 1-planar graphs is to investigate their global and local struc-
tures. In [9], it is shown that each 1-planar graph with n vertices has at most 4n− 8 edges
and this upper bound is tight, which implies that the minimum vertex degree of any 1-planar
graph is at most 7.

Let H be a connected graph and G be a family of graphs. If for any graph G ∈ G, G
contains a subgraph K ' H such that

max
x∈V (K)

{dG(x)} ≤ th < +∞ and
∑

x∈V (K)

dG(x) ≤ tw < +∞, (1.1)

then we say that H is light in G, and otherwise say that H is heavy in G. The smallest
integers th and tw satisfying (1.1) are called the height and the weight of H in the family
G, denoted by h(H,G) and w(H,G), respectively. By L(G), we denote the set of light
graphs in the family G. Throughout this paper, P1

δ (ε) (resp.Pδ(ε)) denotes the family of
1-planar graphs (resp. planar graphs) with minimum vertex degree at least δ and minimum
edge degree at least ε. If ε = 2δ, we use the natation P1

δ (resp.Pδ) for short to represent
P1
δ (ε) (resp.Pδ(ε)). Note that for the parameter P1

δ (ε), we need to assume that δ ≤ 7 and
ε ≥ 2δ.

The first complete description of the set of light graphs in the family of 1-planar
graphs with high minimum degree was given in [9, 22]; there was proved that L(P1

4 ) =
{P1, P2, P3}. Fabrici and Madaras [9], Zhang, Liu and Wu [22], and Dong [8] together
proved that L(P1

5 ) = {P1, P2, P3, P4, S3}, where S3 is a 3-star. For the lightness of some
graphs in the family P1

δ where 6 ≤ δ ≤ 7, the readers can refer to [6, 9, 11, 10, 12, 13, 17,
22, 26, 23].

In this paper, we investigate the lightness of some graphs in P1
δ (ε) with not only ε = 2δ

but also ε > 2δ, the later case of which has not been considered for the family of 1-planar
graphs even before. Our motivation comes from the analogical results for planar graphs
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with minimum degree δ and minimum edge degree 2δ + 1 where δ ∈ {3, 4}. For example,
Borodin proved in [5] that L(P3(7)) = {P1, P2, P3} (also proved in [14] by Madaras and
Škrekovski), and Mohar et al. [15] presented some light subgraphs in the class P4(9).

In what follows, we show in Section 2.3 that K−4 is light in the family P1
7 as well as in

its superfamily P1
6 (13), and its height is at most 10 and at most 12, respectively.

2 The lightness of chordal 4-cycle
2.1 Basic terms

In the following, we always assume that G is a 1-planar graph that has been drawn on a
plane so that every edge is crossed by at most one another edge and the number of crossings
is as small as possible. The associated plane graph G× of G is the plane graph that is
obtained fromG by turning all crossings ofG into new 4-vertices. A vertex inG× is false
if it is not a vertex of G; otherwise, it is true. Similarly, by false (resp. true) face, we mean
a face in G× that is incident with at least one false (resp. no false) vertices. Let v and f
be a vertex and a face in G×. The function ζ(v) (resp. ζ(f)) denotes the number of false
vertices that are adjacent to v (resp. incident with f ) in G×.

For convenience, we introduce some specialized notations. Let v be a false vertex in
G× and let v1, v2, v3, v4 be its neighbors in a clockwise order. Define fi to be the face
incident with vvi and vvi+1, where subscripts are taken modulo 4. Note that if d(fi) = 3,
then vivi+1 ∈ E(G). In this case, let f ′i be the other face incident with the edge vivi+1.
If d(f ′i) = 3, then its third vertex will be denoted by v′i. Thus v′i is a false vertex if and
only if f ′i is false, in which case we denote a neighbor of vi (resp. vi+1) in G to be v′′i
(resp. v′′i+1), so that viv′′i and vi+1v

′′
i+1 are two edges in G that crossed by each other at the

point v′i. Denote the face that is incident with the path viv′iv
′′
i+1 (resp. vi+1v

′
iv
′′
i ) in G× by

fLi (resp. fRi ).
While proving the lightness of a graph in a given family of graphs, usually, the dis-

charging method is used. In the proof of this paper, based on this method we consider a
hypothetical counterexample G (a 1-planar graph) and then construct its associated plane
graph G×. We first assign an initial charge c to each element x ∈ V (G×)

⋃
F (G×) as

follows:

c(x) =

{
αdG×(x)− 2(α+ β), if x ∈ V (G×);
βdG×(x)− 2(α+ β), if x ∈ F (G×), (2.1)

where α and β are some prescribed positive numbers. By combining the Euler formula
|V (G×)| − |E(G×)| + |F (G×)| = 2 on G× and the relation

∑
v∈V (G×) dG×(v) =∑

f∈F (G×) dG×(f) = 2|E(G×)|, we have
∑
x∈V (G×)

⋃
F (G×) c(x) = −4(α + β) < 0.

We then redistribute the charge of the vertices and the faces of G× according to some dis-
charging rules, which only move charge around but do not affect the total charges so that,
after discharging, the final charge c′ of each element in V (G×)

⋃
F (G×) is nonnegative.

This leads to a contradiction that
∑
x∈V (G×)

⋃
F (G×) c(x) =

∑
x∈V (G×)

⋃
F (G×) c

′(x) ≥
0 and completes the proof.

2.2 A key discharging lemma

Let G be a 1-planar graph and let v be a true vertex in its associated plane graph G×.
Denote F (v) to be the subgraph induced by the faces that are incident with v. Note that
F (v) can be decomposed into many parts, each of which is one of the five clusters in Figure
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Figure 1: F (v) can be decomposed into the combination of the above five clusters

1, and any two parts of which are adjacent only if they have a common edge vw such that
w is a true vertex. The hollow vertices in Figure 1 are false and the solid ones are true, and
all the faces marked by fi are 4+-faces.

Lemma 2.1. Let v be a 6+-vertex in the associated plane graph G× of a 1-planar graph
G. Assign v an initial charge c(v) = αdG×(v) − 2(α + β), where α and β are some
prescribed positive numbers satisfying 2α ≥ β. Suppose that v sends out charges only by
the following three discharging rules:

Rule A v transfers a charge of 2α−β
3 to each incident 3-face in G×;

Rule B If v is incident with two adjacent 3-faces f1 = [xvz] and f2 = [yvz] so that z is a
false vertex in G×, then v sends the charge λ to z;

Rule C If v is incident with a 3-face f1 = [xvz] sharing a common edge vz with a 4+-face
f2 so that z is a false vertex in G×, then v sends the charge µ to z.

Denote c′(v) to be the final charge of v after applying the above rules. If dG×(v) is even
with

λ ≤
(

2

3
− 4

dG×(v)

)
(α+ β), (2.2)

µ =
3

4
λ, (2.3)

or dG×(v) ≥ 9 is odd with

λ ≤
(

2dG×(v)− 12

3dG×(v)− 3

)
(α+ β), (2.4)

µ =
1

2
λ, (2.5)

or dG×(v) = 7 with

λ = µ =
α+ β

12
, (2.6)

then c′(v) ≥ 0.



X. Zhang and G. Liu: On the lightness of chordal 4-cycle in 1-planar graphs with. . . 285

Proof. Denote ni to be the number of i-clusters contained in F (v) andmi to be the charges
sent out from v through an i-cluster. By their definitions, one can easily observe that

2n1 + 2n2 + n3 + 3n4 + n5 ≤ dG×(v). (2.7)

For the case when dG×(v) is even, by (2.7) and the choices of λ, µ as in (2.2) and (2.3), we
have

c′(v) = c(v)− 2α− β
3

dG×(v)−
5∑
i=1

nimi

=
α+ β

3
dG×(v)− 2(α+ β)− λn1 − µn2 − 2µn4

≥ α+ β

3
dG×(v)− 2(α+ β)− λ

2
(2n1 + 2n2 + n3 + 3n4 + n5)

≥ α+ β

3
dG×(v)− 2(α+ β)− λ

2
dG×(v)

≥ α+ β

3
dG×(v)− 2(α+ β)−

(
1

3
− 2

dG×(v)

)
(α+ β)dG×(v)

= 0.

Now, we consider the case when dG×(v) is odd. Here, note that

n2 + n3 + n4 + n5 ≥ 1 (2.8)

since any copy of a 1-cluster consists even number of faces incident with v. By (2.7), (2.8)
and the choices of λ, µ as in (2.4) and (2.5), we have

c′(v) = c(v)− 2α− β
3

dG×(v)−
5∑
i=1

nimi

=
α+ β

3
dG×(v)− 2(α+ β)− λn1 − µn2 − 2µn4

=
α+ β

3
dG×(v)− 2(α+ β)− λ

2
(2n1 + 2n2 + n3 + 3n4 + n5) +

λ

2
(n2 + n3 + n4 + n5)

≥ α+ β

3
dG×(v)− 2(α+ β)− λ

2
dG×(v) +

λ

2

≥ α+ β

3
dG×(v)− 2(α+ β)−

(
dG×(v)− 6

3dG×(v)− 3

)
(α+ β)(dG×(v)− 1)

= 0.

For the particular case when dG×(v) = 7, we can deduce from (2.7) that

n1 + n2 + 2n4 =

⌊
2n1 + 2n2 + 3n4

2

⌋
+

⌈
1

2
n4

⌉
≤
⌊

7

2

⌋
+

⌈
1

2

⌊
7

3

⌋⌉
= 4. (2.9)
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Thus by (2.9) along with the choices of λ and µ as in the equation (2.6), we have

c′(v) = c(v)− 2α− β
3

dG×(v)−
5∑
i=1

nimi

=
α+ β

3
− λn1 − µn2 − 2µn4

=
α+ β

3
− λ(n1 + n2 + 2n4)

≥ α+ β

3
− 4λ

= 0.

Consequently, we complete the proof of this lemma.

2.3 The height of chordal 4-cycle in P1
6 (13) and P1

7

Theorem 2.2. Each 1-planar graph with minimum degree at least 6 contains at least one
of the following configurations:

(a) a pair of adjacent vertices of degree 6;

(b) a 4-cycle C = [x1x2x3x4] of the type (6,≤ 12,≤ 8,≤ 12) with a chord x1x3;

(c) a 4-cycle C = [x1x2x3x4] of the type (7,≤ 10,≤ 8,≤ 10) with a chord x1x3.

Proof. The proof of the theorem is carried out by the discharging method as described in
Section 2.1. Suppose G is a counterexample to the theorem. Consider the associated plane
graph G× of G. Assign the charges to each element x ∈ V (G×) ∪ F (G×) as mentioned
in the inequation (2.1) of Section 2.1 by choosing α = 2 and β = 3. If v is a true vertex in
G, then dG×(v) = dG(v), so in the following we use d(v) for short to represent both of the
two notions. A big vertex, semi-big vertex, intermediate vertex and semi-intermediate
vertex refer to a vertex v ∈ V (G×) with d(v) ≥ 13, d(v) ≥ 11, 6 ≤ d(v) ≤ 12 and
6 ≤ d(v) ≤ 10, respectively. Therefore, a true vertex in G× is either big or intermediate,
and an intermediate vertex in G× is either semi-big or semi-intermediate. By big face, we
denote a face f ∈ F (G×) with degree at least 4. Now, we define the discharging rules as
follows.

Rule 1 Each 6+-vertex sends 1
3 to each incident face;

Rule 2 Each 4-vertex sends 1
3 to each incident false 3-face;

Rule 3 Each big face sends 11
12 to each incident 4-vertex;

Rule 4 Let f be a big face having a common edge xy with a false 3-face g = [xyz]. If z is
a 4-vertex, then f sends 5

12 to z through xy;

Rule 5 Let f be a big face having a common edge xy with a false 3-face g = [xyz]. If x
is a 4-vertex and yz is incident with another false 3-face h = [yzu], then f sends 5

24
to u through xy and yz;

Rule 6 Let f = [xyz] be a true 3-face having a common edge yz with a false 3-face
g = [uyz]. If d(x) ≥ 11, then x sends 5

12 to u through yz;
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Rule 7 Let f = [xyz] and g = [uyz] be two adjacent false 3-faces, and let z be a 4-vertex.
Suppose yu is incident with another false 3-face h = [yuw] so that yy′ crosses uu′

in G at w. If at least one of the following four occasions appears in G×

• d(x) ≥ 13, min{d(u), d(y)} = 6, max{d(u), d(y)} ≤ 8 and y, u, u′ are all
intermediate vertices with yu′ ∈ E(G×);

• d(x) ≥ 13, min{d(u), d(y)} = 6, max{d(u), d(y)} ≤ 8 and y, u, y′ are all
intermediate vertices with uy′ ∈ E(G×);

• d(x) ≥ 11, min{d(u), d(y)} = 7, max{d(u), d(y)} ≤ 8 and y, u, u′ are all
semi-intermediate vertices with yu′ ∈ E(G×);

• d(x) ≥ 11, min{d(u), d(y)} = 7, max{d(u), d(y)} ≤ 8 and y, u, y′ are all
semi-intermediate vertices with uy′ ∈ E(G×),

then x sends 5
24 to w through yz and yu;

Rule 8 Let f = [xyz] and g = [uyz] be two adjacent false 3-faces. If z is a 4-vertex, then
y sends to z a charge of

5
12 , if d(y) = 7;
5
6 , if d(y) = 8;
5
4 , if 9 ≤ d(y) ≤ 12;
5
3 , if d(y) ≥ 13;

Rule 9 Let f = [xyz] be a false 3-face having a common edge yz with a big face β. If z
is a 4-vertex, then y sends to z a charge of

5
12 , if d(y) = 7;
5
8 , if 8 ≤ d(y) ≤ 12;
5
6 , if d(y) ≥ 13.

In the following, we estimate the final charge c′ of vertices and faces after the charge
redistribution and prove c′(x) ≥ 0 for each x ∈ V (G×)

⋃
F (G×). By Rules 1 and 2, any

3-face f inG× receive 1
3 from each of its incident vertices, which implies the final charge of

f is exactly zero. For a big face f in G× (recall that ζ(f) denotes the number of 4-vertices
incident with f ), it would send 11

12ζ(f) to its incident 4-vertices by Rule 3. Besides, if f
is incident with a 4-vertex v, then f send out 2 × 5

24 = 5
12 through uv and vw by Rule 5,

where u and w denote the neighbors of v on the boundary of f . Since f is incident with
d(f)−2ζ(f) true edges (namely, an edge of G× containing no 4-vertex), by Rule 4, a total
charge of 5

12 (d(f)−2ζ(f)) would be sent out from f through the true edges incident with f .
On the other hand, f receive 1

3 from each of d(f)−ζ(f) true vertices incident with it. Since
ζ(f) ≤ d(f)

2 , c′(f) ≥ 3d(f)−10− 11
12ζ(f)− 5

12ζ(f)− 5
12 (d(f)−2ζ(f))+ 1

3 (d(f)−ζ(f)) =
35
12d(f)− 5

6ζ(f)− 10 ≥ 5
2d(f)− 10 ≥ 0 for d(f) ≥ 4.

By Lemma 2.1 along with Rules 1,8 and 9, one can check that c′(v) ≥ 0 for all vertices
of degree between 6 and 10. For a big vertex v in G×, denote F (v) to be the subgraph
induced by the faces that are incident with v. As we state at the beginning of Section 2.2,
F (v) can be decomposed into a combination of the five clusters in Figure 1. By ni and
mi, we denote the number of i-clusters contained in F (v) and the charges sent out from v
through an i-cluster. If there is a 2-cluster in F (v), then v send 5

6 to y (see Figure 1) by Rule
9 and at most 5

24 through xy by Rule 7, so m2 ≤ 5
6 + 5

24 = 25
24 . Similarly, we can prove
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that m3 ≤ 5
12 by Rule 6, m4 ≤ 2× 5

6 + 2× 5
24 = 25

12 by Rules 7, 9 and m5 = 0. We now
estimate the value of m1 much more carefully. First, we show the following observation.

Observation. If v is incident with a 1-cluster as in Figure 1 and has sent out some charge
through xy by Rule 7, then it would not send out any charge through the edge yz.

Proof. Denote u to be the neighbor of v in G such that uv crosses xz in G at the point
y. Suppose, on the contrary, that v send out some charge through yz. By the definitions
of the rules, uyz is a 3-face in G× and z is an intermediate vertex in G×. Since v has
sent out charge through xy by Rule 7, by the definition of Rule 7, we have xu ∈ E(G×),
min{d(x), d(u)} = 6 and max{d(x), d(u)} ≤ 8. Furthermore, xu is also incident with
a 3-cycle, say xuw, in G such that w is an intermediate vertex in G× different from z.
Now, the four distinct vertices x, z, u, w form a 4-cycle [uwxz] in G with a chord ux, and
therefore, the configuration (b) occurs in G. This contradiction verifies this observation. ‖

By Rules 7, 8 and the above observation, we immediately have m1 ≤ 5
3 + 5

24 = 15
8 .

Therefore, by Rule 1 and the inequality (2.7) in Section 2.1, we have c′(v) ≥ 2d(v) −
10 − 1

3d(v) − 15
8 n1 −

25
24n2 −

5
12n3 −

25
12n4 ≥

5
3d(v) − 10 − 15

16 (2n1 + 2n2 + n3 +
3n4 + n5) + 25

48 (n2 + n3 + n4 + n5) ≥ 35
48d(v) − 10 + 25

48 (n2 + n3 + n4 + n5) > 0
for d(v) ≥ 14. If d(v) = 13, then by the inequality (2.8) in Section 2.1, we also have
c′(v) ≥ 35

48d(v)− 10 + 25
48 = 0 in final. For vertices of degree 11 or 12 (they are semi-big

but not big), we can also check the nonnegativity of their final charges. Proof of them are
left to the readers, since they use the same argument as in the previous analysis on the big
vertices.

Now, the only missed case is when v is a 4-vertex in G× (namely, v is a false vertex).
As we know, the initial charge of a 4-vertex v is−2, so if v is incident with at least three big
faces, then by Rules 2 and 3, the final charge c′(v) of v is at least−2− 1

3 +3× 11
12 = 5

12 > 0.
In the following, we discuss three other cases.
Case 1. v is incident with exactly two 3-faces.

First, suppose that f1 and f2 are 3-faces. Since no two 6-vertices are adjacent in G,
at least two of v1, v2 and v3 are 7+-vertices. Thus by Rules 8 and 9, each of the two 7+-
vertices among v1, v2 and v3 would send at least 5

12 to v. Therefore, c′(v) ≥ −2− 2× 1
3 +

2× 11
12 + 2× 5

12 = 0 by Rules 2, 3, 8 and 9.
Second, suppose that f1 and f3 are 3-faces. In this case, one can also show that there

are at least two 7+-vertices among v1, v2, v3 and v4. Thus by Rules 2, 3, 8 and 9, we still
have c′(v) ≥ −2− 2× 1

3 + 2× 11
12 + 2× 5

12 = 0.
Case 2. v is incident with exactly three 3-faces.

Without loss of generality, we assume that f1, f2, f3 are 3-faces and f4 is a 4+-face
(recall the definitions of fi in Section 2.1). By Rule 3, f4 shall send 11

12 to v.
First, suppose that at least two of v1, v2, v3 and v4, say v1 and v4 (other cases can be

dealt with similarly), are big vertices. Thus at least one of v2 and v3 must be 7+-vertex since
they are adjacent inG. Therefore, by Rules 2, 3 and 9, c′(v) ≥ −2−3× 1

3+2× 5
6+ 5

12+ 11
12 =

0.
Next, suppose that only one of v1, v2, v3 and v4 is big vertex. If v2 or v3, say v2, is

big, then at least one of v1, v3 and v4 should be a 7+-vertex since they three form a 3-path
in G. By Rules 2, 3, 8 and 9, c′(v) ≥ −2 − 3 × 1

3 + 5
3 + 5

12 + 11
12 = 0. If v1 or v4,

say v1, is big, then all of v2, v3 and v4 are intermediate. If they are all 7+-vertices, then
c′(v) ≥ −2− 3× 1

3 + 5
6 + 3× 5

12 + 11
12 = 0 by Rules 2, 8 and 9. Thus we assume that at
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least one of v2, v3 and v4 is a 6-vertex. Here, we only consider the case when d(v3) = 6
and leave the discussions on the rest two cases to the readers, since they are quite similar.
First, suppose d(v2) ≥ 9. By Rules 3 and 8, v1, v2 and f4 shall send 5

6 , 5
4 and 11

12 to v,
respectively, thus, c′(v) ≥ −2− 3× 1

3 + 5
6 + 5

4 + 11
12 = 0. Second, suppose d(v2) ≤ 8. We

now consider the face f ′2 (recall its definition in Section 2.1). If f ′2 is a big face in G×, then
by Rule 4, f ′2 sends 5

12 to v through the edge v2v3. If f ′2 is a true 3-face, then v′2 (recall
the corresponding definition in Section 2.1) must be a big vertex, because otherwise the
configuration (b) would appear in G, meanwhile, v receives 5

12 from v′2 through the edge
v2v3 by Rule 6. If f ′2 is false 3-face, then we consider the faces fL2 and fR2 (recall their
definitions in Section 2.1). If fL2 is a big face, then by Rule 5, fL2 sends 5

24 to v through the
edge v2v3. If fL2 is a 3-face, then it must be false since it is incident with a false vertex v′2.
Since v2, v3, v4 and v′′3 (recall the definitions of v′′i in Section 2.1) form a chordal 4-cycle
with a chord v2v3 inG, v′′3 must be a big vertex, and then v shall receive 5

24 from v′′3 through
the edge v2v3 by Rule 7. Similarly, v would receive another 5

24 through the edge v2v3 from
either the face fR2 or the vertex v′′2 . Hence, through the edge v2v3, v shall totally receive a
charge of 2 × 5

24 = 5
12 . Since neither v2 nor v4 can be a 6-vertex (because each of them

is adjacent to the 6-vertex v3 in G), each of v2 and v4 shall send 5
12 to v by Rules 8 and 9.

Thus, by Rules 2, 3 and 9, we still have c′(v) ≥ −2− 3× 1
3 + 5

12 + 2× 5
12 + 5

6 + 11
12 = 0.

At last, suppose none of v1, v2, v3 and v4 is big. If v2 or v3, say v2, is a 6-vertex, then
v1, v3 and v4 are 7+-vertices since each of them is adjacent to v2. Furthermore, d(v3) ≥ 9,
because otherwise the configuration (b) would appear in G, so by Rules 2, 3, 8 and 9, we
have c′(v) ≥ −2−3× 1

3 +2× 5
12 + 5

4 + 11
12 = 0. We now assume min{d(v2), d(v3)} ≥ 7. If

max{d(v2), d(v3)} ≥ 9 (without loss of generality, assume d(v3) ≥ 9), then by Rules 2, 3,
8 and 9, c′(v) ≥ −2−3× 1

3 +2× 5
4 + 11

12 > 0 when d(v2) ≥ 9, c′(v) ≥ −2−3× 1
3 +2× 5

12 +
5
4 + 11

12 = 0 when d(v2) ≤ 8 and d(v1) ≥ 7, and c′(v) ≥ −2−3× 1
3 + 5

12 + 5
12 + 5

4 + 11
12 = 0

when d(v2) ≤ 8 and d(v1) = 6 (note that in this case, a charge of at least 5
12 shall be

transferred to v through the edge v1v2). Therefore, we assume max{d(v2), d(v3)} ≤ 8
in the following. First, suppose at least one of v2 and v3 is a 8-vertex. Without loss of
generality, suppose d(v2) = 7 and d(v3) = 8. By Rule 8, v2 and v3 shall send 5

12 and 5
6

to v, respectively. By a similar argument as above, v shall also receive 5
12 either from the

vertex v1 when d(v1) ≥ 7 or through the edge v1v2 when d(v(1) = 6, and another 5
12 either

from the vertex v4 when d(v4) ≥ 7 or through the edge v3v4 when d(v(4) = 6. Thus, by
Rules 2 and 3, we have c′(v) ≥ −2− 3× 1

3 + 5
12 + 5

6 + 2× 5
12 + 11

12 = 0.
Second, suppose d(v2) = d(v3) = 7. Under this hypothesis, at least one of v1 and v4

should be semi-big, because otherwise a configuration (c) would appear in G. If v1 and v4
are 8+-vertices, then by Rules 2, 3, 8 and 9, c′(v) ≥ −2−3× 1

3 +2× 5
12 +2× 5

8 + 11
12 = 0. If

one of v1 and v4, say v4, is a 7−-vertex, then by a similar argument as before, we can show
that v receives 5

12 through the edges v1v2 and another 5
12 through the edges v2v3. Therefore,

by Rules 2, 3, 8 and 9, we have c′(v) ≥ −2− 3× 1
3 + 2× 5

12 + 5
8 + 2× 5

12 + 11
12 > 0.

Case 3. v is incident with four 3-faces.
If at least two of v1, v2, v3 and v4 are big vertices, then by Rules 2 and 8, c′(v) ≥

−2− 4× 1
3 + 2× 5

3 = 0.
If only one of v1, v2, v3, v4, say v1, is a big vertex, then we can assume that v2, v3 and

v4 are 7+-vertices. Otherwise, without loss of generality, suppose d(v2) = 6. Since no two
6-vertices are adjacent in G, d(v3) ≥ 7 and d(v4) ≥ 7. If v3 and v4 are 8+-vertices, then
c′(v) ≥ −2− 4× 1

3 + 5
3 + 2× 5

6 = 0 by Rules 2 and 8. We now assume that one of v3 and
v4, say v3, is a 7-vertex. If now d(v4) ≥ 9, then c′(v) ≥ −2 − 4 × 1

3 + 5
3 + 5

12 + 5
4 = 0
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Rules 2 and 8. If d(v4) ≤ 8, then by a similar argument as in Case 1, we can show that v
receives 5

12 through the edges v2v3 and another 5
12 through the edges v3v4. Therefore, by

Rules 2 and 8, c′(v) ≥ −2 − 4 × 1
3 + 5

3 + 2 × 5
12 + 2 × 5

12 = 0. Hence, we can assume
min{d(v2), d(v3), d(v4)} ≥ 7. If at least one of v2, v3 and v4 is a 8+-vertex, then by Rules
2 and 8, c′(v) ≥ −2 − 4 × 1

3 + 2 × 5
12 + 5

6 = 0. If d(v2) = d(v3) = d(v4) = 7, then
by a similar argument as in Case 1, one can show that a charge of 5

12 would be transferred
to v through each of the edges v2v3 and v3v4. Hence, by Rules 2 and 8, we have c′(v) ≥
−2− 4× 1

3 + 3× 5
12 + 2× 5

12 > 0.
We now consider the last case when v1, v2, v3 and v4 are intermediate vertices. If they

all are 8+-vertices, then by Rules 2 and 8, c′(v) ≥ −2−4× 1
3 +4× 5

6 = 0. If one of them,
say v1, is a 6-vertex, then v2, v3 and v4 are 9+-vertex, because otherwise the configuration
(b) would appear inG. This implies that c′(v) ≥ −2−4× 1

3 +3× 5
4 > 0 by Rules 2 and 8.

We now assume that d(v1) = 7 and min{d(v2), d(v3), d(v4)} ≥ 7. If at least two of v2, v3
and v4 are 9+-vertices, then by Rules 2 and 8, c′(v) ≥ −2− 4× 1

3 + 2× 5
12 + 2× 5

4 = 0.
Thus, we assume that at least two of v2, v3, v4, say v2 and v3, are 8−-vertices. In this case,
v4 should be a semi-big vertex because otherwise the configuration (c) would occur in G.
If d(v2) = d(v3) = 8, then by Rules 2 and 8, c′(v) ≥ −2− 4× 1

3 + 5
12 + 2× 5

6 + 5
4 = 0.

If min{d(v2), d(v3)} = 7, then by a similar argument as in Case 1, one can prove that
a charge of 5

12 would be transferred to v through each of the edges v1v2 and v2v3. This
implies that c′(v) ≥ −2− 4× 1

3 + 3× 5
12 + 2× 5

12 + 5
4 = 0.

Hence, we deduce that
∑
x∈V (G×)

⋃
F (G×) c

′(x) ≥ 0. This contradiction completes the
proof.

Corollary 2.3. K−4 ∈ L(P1
6 (13)) and h(K−4 ,P1

6 (13)) ≤ 12.

Corollary 2.4. K−4 ∈ L(P1
7 ) and h(K−4 ,P1

7 ) ≤ 10.

Corollary 2.5. h(P2, P
1
6 ) ≤ 8 and w(P2, P

1
6 ) ≤ 15.
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