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Abstract

In this paper, we verify the list edge coloring conjecture for pseudo-
outerplanar graphs with maximum degree at least 5 and the equitable ∆-
coloring conjecture for all pseudo-outerplanar graphs.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. By V(G),
E(G), δ(G) and ∆(G), we denote the vertex set, the edge set, the minimum degree
and the maximum degree of a graph G, respectively. By dG(v), or d(v) for brevity,
we denote the degree of a vertex v in G. For other undefined notations, we refer
the readers to [1].

For each edge uv ∈ E(G), assign it a set L(uv) of colors, called a list of uv. An
edge coloring ϕ is an edge L-coloring, if ϕ(xy) ∈ L(uv) for each edge xy ∈ E(G).
If |L(xy)| = k for every xy ∈ E(G), then an edge L-coloring is a list edge k-
coloring and we say that G is edge k-choosable. The minimum integer k for
which G has a list edge k-coloring, denoted by χ′l(G), is the list chromatic index
of G. It is trivial that χ′(G) ≤ χ′l(G). As far as the list edge coloring is concerned,
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Vizing, Gupta, Abertson and Collins, and Bollobás and Harris (see [14] for details)
independently posed the following conjecture, which is well-known as List Edge
Coloring Conjecture (LECC).

Conjecture 1.1. χ′l(G) = χ′(G) for every graph G.

As far as we know, Conjecture 1.1 has been proved for a few special cases, such
as bipartite graphs [6], planar graphs with maximum degree at least 12 [3], series-
parallel graphs [16] and outerplanar graphs [22]. On the other hand, Vizing’s
theorem implies that if G is a graph with maximum degree ∆, then ∆ ≤ χ′(G) ≤
∆ + 1. Thus, Vizing [21] posed a weaker conjecture than LECC, which is named
Weak List Edge Coloring Conjecture (WLECC).

Conjecture 1.2. χ′l(G) ≤ ∆(G) + 1 for every graph G.

Up to now, Conjecture 1.2 was confirmed for graphs with ∆(G) ≤ 4 [12, 15] and
some special graphs such as graphs with girth at least 8∆(G)(log∆(G) + 1.1) [18],
planar graphs with maximum degree at least 9 [2], and planar graphs with max-
imum degree ∆(G) , 5 and without adjacent 3-cycles or with maximum degree
∆(G) , 5, 6 and without 7-cycles [13]. However, the above two conjectures on
list edge coloring remain very open.

A proper vertex coloring is equitable if the sizes of any two color classes differ
by at most one, thus an equitable vertex coloring (or equitable coloring for short) is
indeed a partition of vertices among the different colors so that they are as evenly
as possible. The equitable chromatic number of a graph G, denoted by χeq(G), is
the smallest number k such that G has an equitable coloring with k colors. Note
that an equitably k-colorable graph may admit no equitably k′-colorings for some
k′ > k (the balanced complete k-partite graph with n vertices is such an example),
therefore, another chromatic parameter for equitable coloring of graphs is defined
naturally. We call the smallest k such that G has equitable k′-colorings for every
integer k′ ≥ k the equitable chromatic threshold of G, denoted by χ∗eq(G). In 1970,
Hajnal and Szemerédi [7] answered a question of Erdős by proving every graph G
with ∆(G) ≤ r has an equitable (r + 1)-coloring, which implies χ∗eq(G) ≤ ∆(G) + 1
for every graph G. Three years later, Meyer [19] considered an equitable ver-
sion of Brooks’ Theorem and made the following Equitable Coloring Conjecture
(ECC).

Conjecture 1.3. For any connected graph G, except the complete graph and the
odd cycle, χeq(G) ≤ ∆(G).

In 1994, Chen, Lih and Wu [4] posed the following Equitable ∆-coloring Con-
jecture (E∆CC), which is stronger than Conjecture 1.3, since χ∗eq(G) ≥ χeq(G),
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Conjecture 1.4. If G is a connected graph with maximum degree ∆ other than
K∆+1, K∆,∆ and odd cycle, then χ∗eq(G) ≤ ∆(G).

Although Conjectures 1.3 and 1.4 were confirmed for many classes of graphs
such as graphs with ∆ ≤ 3 [4, 5] or ∆ = 4 [17], bipartite graphs [9], planar graphs
with maximum degree at least 9 [11], series-parallel graphs [24] and outerplanar
graphs [23], they are still much open. One can refer to the survey contributed
by Lih [8] for more progresses concerning the research on equitable coloring of
graphs.

A graph is pseudo-outerplanar if each block has an embedding on the plane in
such a way that the vertices lie on a fixed circle and the edges lie inside the disk of
this circle with each of them crossing at most one another. This notion was firstly
introduced by Zhang, Liu and Wu [26], where is proved that the class of outer-
planar graphs is the intersection of the classes of pseudo-outerplanar graphs and
series-parallel graphs and the edge coloring and the linear arboricity of pseudo-
outerplanar were considered. Recently, Zhang [25] also proved that every pseudo-
outerplanar graphs with maximum degree ∆ ≥ 5 is totally (∆ + 1)-choosable.

In this paper, we aim to confirm Conjecture 1.1 for pseudo-outerplanar graphs
with maximum degree at least 5 by Theorem 2.5, Conjectures 1.2 for all pseudo-
outerplanar graphs by Theorem 2.6, and Conjectures 1.3 and 1.4 for all pseudo-
outerplanar graphs by Theorem 2.10.

2 Main results and their proofs

Lemma 2.1. [26] Every pseudo-outerplanar graph with minimum degree at least
2 contains one of the first seventeen configurations in Figure 1.

Lemma 2.2. Every pseudo-outerplanar graph contains one of the configurations
in Figure 1, where the degree of a solid vertex is exactly shown, and the degree of
a hollow vertex is at least the number of edges incident to the hollow vertex in the
figure, and moreover, hollow vertices may be not distinct while solid vertices are
distinct.

Proof. Let G be a pseudo-outerplanar graph. If δ(G) ≥ 2, then G contains one
of the configurations among G1–G17 by Lemma 2.1. We now assume that δ(G) =

1 and G contains none of the above configurations. Due to the absence of the
configuration G18, G has only one vertex of degree 1, say v. Let u be the neighbor
of v in G. If δ(G − v) = 1, then d(u) = 2, which implies the appearance of the
configuration G19 in G. Therefore, δ(G− v) ≥ 2 and then G− v contains one of the
configurations among G1–G17 by Theorem 4.2 of [26], say Gi. If v is not adjacent
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Figure 1: The unavoidable structures of pseudo-outerplanar graphs

to any solid vertex in Gi, then the configuration Gi occurs in G. If v is adjacent to
some solid vertex in Gi, then one of the configurations among G19–G23 appears in
G. �

By Lemma 2.2, we immediately have the following corollary.

Corollary 2.3. Every pseudo-outerplanar graph contains either a vertex of degree
at most two or a configuration G6 as shown in Figure 1.

Lemma 2.4. [16] Let G be the graph from Figure 2 and let L be an edge-list
assignment for G such that |L(e)| ≥ 2 if e is incident with x or z, and |L(e)| ≥ 4
otherwise. Then G admits an edge L-coloring.

Figure 2: A special graph with the numbers of remaining colors
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Figure 3: Label the vertices in S when G contains G3 or G6 and k = ∆ = 5

Theorem 2.5. Let G be a pseudo-outerplanar graph with maximum degree ∆. If
∆ ≤ k and k ≥ 5, then χ′l(G) ≤ k.

Proof. Suppose, to the contrary, that G is a minimum counterexample to this the-
orem. It is easy to see that δ(G) ≥ 2. If G contains G3, then we delete the four
edges in this configuration from G and denote the resulted graph by G′. Since G
is the minimum counterexample to this theorem, G′ has a list edge k-coloring φ.
Since 4-cycles are edge 2-choosable, we can color the four deleted edges from
their lists so that the extended coloring is still a list edge k-coloring. Hence G
does not contain G3. If G contains an edge uv with d(u) + d(v) ≤ k + 1, then
G − uv has a list edge k-coloring φ since G is the minimum counterexample to
this theorem. Since the edge uv is incident with at most k − 1 colored edges un-
der φ, one can easily extend φ to a list edge k-coloring of G by coloring uv with
a color from its list. Therefore, d(u) + d(v) ≥ k + 2 for every edge uv ∈ E(G).
The above two facts along with Lemma 2.2 imply that k = 5 and G contains
the configuration G17: a 7-path x′uxvywy′ such that d(u) = d(v) = d(w) = 2,
d(x) = d(y) = 5 and xx′, yy′, xy, x′y, xy′ ∈ E(G). Here we shall also assume
that d(x′) = d(y′) = 5 since x′ and y′ are adjacent to 2-vertices in G. Let L
be the list assigned to the edges of G with |L(e)| = k for every edge e ∈ E(G)
and let G′ = G − {u, v, w, x, y}. By the minimality of G, G′ has a list edge k-
coloring φ under the list L. Let Aφ(e) be the set of the available colors in L(e)
to color an edge e ∈ {ux′, ux, vx, vy, wy, wy′, xx′, xy, yy′, x′y, xy′} so that the color
received by e is different with the colors incident with e under φ. It is easy to
see that |Aφ(xx′)|, |Aφ(yy′)|, |Aφ(x′y)|, |Aφ(xy′)| ≥ 3. Without loss of generality, as-
sume that |Aφ(xx′)| = |Aφ(yy′)| = |Aφ(x′y)| = |Aφ(xy′)| = 3. We now claim that
one can color x′y and xy′ from their available lists so that the extended coloring
θ satisfies |Aθ(xx′)|, |Aθ(yy′)| ≥ 2 by discussing the following two cases. First, if
Aφ(x′y)∩ Aφ(xy′) , ∅, then we construct the above coloring θ by coloring x′y and
xy′ with a same coloring from Aφ(x′y)∩Aφ(xy′). Second, if Aφ(x′y)∩Aφ(xy′) = ∅,
then there are two colors α ∈ Aφ(x′y) and β ∈ Aφ(xy′) so that {α, β} * Aφ(xx′) and
{α, β} * Aφ(yy′), thus we can construct the above coloring θ by coloring x′y and
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xy′ with α and β. One can also check that the extended partial coloring θ satisfies
|Aθ(ux′)|, |Aθ(wy′)| ≥ 2, |Aθ(xy)| ≥ 3 and |Aθ(ux)|, |Aθ(vx)|, |Aθ(vy)|, |Aθ(wy)| ≥ 4.
Without loss of generality, we assume that all of the above equalities hold (oth-
erwise we meet easier cases and can deal with them much more easily). We
claim that θ can be extended by coloring wy, wy′ and yy′ properly to another
partial coloring λ of G which satisfies |Aλ(ux′)|, |Aλ(xx′)|, |Aλ(xy)|, |Aλ(vy)| ≥ 2
and |Aλ(ux)|, |Aλ(vx)| ≥ 4. First, if Aθ(yy′) * Aθ(xy), then we color yy′ with
λ(yy′) ∈ Aθ(yy′) \ Aθ(xy) , ∅, wy′ with λ(wy′) ∈ Aθ(wy′) \ {λ(yy′)} and wy with
λ(wy) ∈ Aθ(wy) \ {λ(wy′), λ(yy′)}. Second, if Aθ(yy′) ⊆ Aθ(xy), then we color
wy with λ(wy) ∈ Aθ(wy) \ Aθ(xy) , ∅, wy′ with λ(wy′) ∈ Aθ(wy′) \ {λ(wy)} and
yy′ with λ(yy′) ∈ Aθ(yy′) \ {λ(wy′)} (note that λ(wy) < Aθ(yy′)). In either case,
one can confirm that the partial coloring λ of G satisfies the above required con-
ditions. Therefore, λ can be extended to a final list edge k-coloring ϕ of G by
Lemma 2.4. �

Theorem 2.6. Every pseudo-outerplanar graph with maximum degree ∆ is edge
(∆ + 1)-choosable.

Proof. This is an immediate corollary from Theorem 2.5 and the fact that every
graph with maximum degree ∆ = 3 [12] or ∆ = 4 [15] is edge (∆ + 1)-choosable.

�

Corollary 2.7. LECC holds for pseudo-outerplanar graph with maximum degree
at least 5.

Corollary 2.8. WLECC holds for all pseudo-outerplanar graph.

Lemma 2.9. [27] Let S = {v1, v2, . . . , vk} where {v1, v2, . . . , vk} are distinct vertices
in graph G. If G − S has an equitable k-coloring, and |NG(vi) − S | ≤ k − i with
1 ≤ i ≤ k, then G has an equitable k-coloring.

Theorem 2.10. Every connected pseudo-outerplanar graph with maximum de-
gree ∆ has an equitable coloring with k colors for every k ≥ max{∆, 5}.

Proof. We prove the theorem by induction on the order of G. If ∆ ≤ 4, then
the result holds by the Hajnal-zemerédi Theorem on equitable coloring, so we
assume that k ≥ ∆ ≥ 5 in the following arguments. Since G is pseudo-outerplanar,
G contains one of the 24 configurations by Lemma 2.2.

If G contains a configuration among G4,G5,G7–G17 and G22–G24, then label
the vertices v1, vk−2, vk−1 and vk as they are in the Figure 2 and fill the remaining
unspecified positions in S as described in Lemma 2.9 from highest to lowest in-
dices by choosing at each step a vertex of degree at most 3 in the graph obtained
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from G by deleting the vertices thus far chosen for S . This can be done by using
Corollary 2.3. Since |NG(vi)−S | ≤ k− i for all 1 ≤ i ≤ k and G−S has an equitable
k-coloring by the induction hypothesis, G has an equitable k-coloring by Lemma
2.9.

If G contains a configuration among G1,G2 and G18–G21, then we first label
the vertices v1, vk−1 and vk as they are in the Figure 1. Let Hi be the graph derived
from G by deleting the labeled vertices in the configuration Gi if G contains Gi. By
Corollary 2.3, we consider two cases for i ∈ {1, 2, 18, 19, 20, 21}. If Hi contains
a 2-vertex, then label this vertex by vk−2. If Hi contains a pair of adjacent 3-
vertices, then label these two vertices by v2 and vk−2. In either case, we fill the
remaining unspecified positions in S as described in Lemma 2.9 from highest to
lowest indices by choosing at each step a vertex of degree at most 3 in the graph
obtained from G by deleting the vertices thus far chosen for S . Since |NG(vi)−S | ≤
k − i for all 1 ≤ i ≤ k and G − S has an equitable k-coloring by the induction
hypothesis, G has an equitable k-coloring by Lemma 2.9.

If G contains a configuration G3 or G6 and k ≥ 6, then we first label the
vertices v1, v2, vk−1 and vk as they are in the Figure 1. If H3 or H6 contains a
2-vertex, then label this vertex by vk−2. If H3 or H6 contains a pair of adjacent
3-vertices, then label these two vertices by v3 and vk−2. In either case, we fill the
remaining unspecified positions in S as described in Lemma 2.9 from highest to
lowest indices by choosing at each step a vertex of degree at most 3 in the graph
obtained from G by deleting the vertices thus far chosen for S . Since |NG(vi)−S | ≤
k − i for all 1 ≤ i ≤ k and G − S has an equitable k-coloring by the induction
hypothesis, G has an equitable k-coloring by Lemma 2.9.

If G contains a configuration G3 or G6 and k = ∆ = 5, then one neighbor of the
2-vertices in this configuration is of degree at least 3, otherwise G is isomorphic
to C4, contradicting the fact that ∆ = 5. Under this condition, we label the vertices
v1, v2, v3, v4 and v5 as they are in the Figure 3. It is easy to see that |NG(vi)−S | ≤ k−i
for all 1 ≤ i ≤ 5. Since G − S has an equitable k-coloring by the induction
hypothesis, G has an equitable k-coloring by Lemma 2.9. �

Since ECC and E∆CC holds for graphs with maximum degree 3 [4, 5] and 4
[17], we immediately have the following corollaries.

Corollary 2.11. ECC and E∆CC holds for all pseudo-outerplanar graphs.

Corollary 2.12. Every connected pseudo-outerplanar graph except K4 with max-
imum degree ∆ has an equitable coloring with k colors for every k ≥ max{∆, 3}.
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