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Available at: http://www.pmf.ni.ac.rs/filomat
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Abstract. Wu, Zhang and Li [4] conjectured that the set of vertices of any simple graph G can be equitably
partitioned into ⌈(∆(G)+ 1)/2⌉ subsets so that each of them induces a forest of G. In this note, we prove this
conjecture for graphs G with ∆(G) ≥ |G|/2.

1. Introduction

All graphs considered in this paper are finite, undirected, loopless and without multiple edges. For a
graph G, we use V(G), E(G), δ(G) and ∆(G) to denote the vertex set, the edge set, the minimum degree and
the maximum degree of G, respectively. By α′(G) and Gc, we denote the largest size of a matching in the
graph G and the completement graph of G. For other basic undefined concepts we refer the reader to [1].

The vertex-arboricity a(G) of a graph G is the minimum number of subsets into which the vertex set V(G)
can be partitioned so that each subset induces a forest. This notation was first introduced by Chartrand,
Kronk and Wall [2] in 1968, who named it point-arboricity and proved that a(G) ≤ ⌈(∆(G) + 1)/2⌉ for every
graph G. Recently, Wu, Zhang and Li [4] introduced the equitable version of vertex arboricity. If the set of
vertices of a graph G can be equitably partitioned into k subsets (i.e. the size of each subset is either ⌈|G|/k⌉
or ⌊|G|/k⌋) such that each subset of vertices induce a forest of G, then we call that G admits an equitable
k-tree-coloring. The minimum integer k such that G has an equitable k-tree-coloring is the equitable vertex
arboricity aeq(G) of G. As an extension of the result of Chartrand, Kronk and Wall on vertex arboricity, Wu,
Zhang and Li [4] raised the following conjecture and they proved it for complete bipartite graphs, graphs
with maximum average degree less than 3, and graphs with maximum average degree less than 10/3 and
maximum degree at least 4.

Conjecture 1.1. aeq(G) ≤
⌈
∆(G)+1

2

⌉
for every simple graph G.

In this note, we establish this conjecture for graphs G with ∆(G) ≥ |G|/2.
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2. Main results and the proofs

For convenience, we set Γ(G) =
⌈
∆(G)+1

2

⌉
throughout this section. To begin with, we introduce two useful

lemmas of Chen, Lih and Wu.

Lemma 2.1. [3] If G is a disconnected graph, then α′(G) ≥ δ(G).

Lemma 2.2. [3] If G is a connected graph such that |G| > 2δ(G), then α′(G) ≥ δ(G).

Lemma 2.3. If G is a connected graph with δ(G) ≥ 2, then G contains a cycle of length at least δ(G) + 1.

Proof. Consider the longest path P = [v0v1 . . . vk] in G. We see immediately that N(v0) ⊆ V(P), because
otherwise we would construct a longer path. Let vi be a neighbor of v0 so that i is maximum. Since δ(G) ≥ 2,
C = [v0v1 . . . viv0] is a cycle of length i + 1 ≥ δ(G) + 1.

In what follows, we prove three independent theorems, which together imply Conjecture 1.1 for graphs
G with ∆(G) ≥ |G|/2.

Theorem 2.4. If ∆(G) ≥ 2
3 |G| − 1, then aeq(G) ≤ Γ(G).

Proof. If ∆(G) = |G| − 1, then aeq(G) ≤ Γ(G) and this upper bound can be attained by the complete graphs,
since we can arbitrarily partition V(G) into Γ(G) subsets so that each of them consists of one or two
vertices, thus we assume ∆(G) ≤ |G| − 2. Since ∆(G) + δ(Gc) = |G| − 1 and ∆(G) ≥ 2

3 |G| − 1, |Gc| ≥ 3δ(Gc)
and δ(Gc) ≥ |Gc| − 2Γ(G). By Lemmas 2.1 and 2.2, we have α′(Gc) ≥ δ(Gc), so there exists a matching
M = [x1y1, . . . , xδyδ] of size δ := δ(Gc) in Gc. Since |Gc| ≥ 3δ(Gc), |V(Gc) \ V(M)| ≥ δ, thus we can select
δ distinct vertices z1, . . . , zδ among V(Gc) \ V(M). Denote β = |Gc| − 2Γ(G) and µ = 3Γ(G) − |Gc|. Since
|G| − 2 ≥ ∆(G) ≥ 2

3 |G| − 1, β, µ ≥ 0. We now use β colors to color 3β vertices of G so that the i-th color class
consists of the three vertices xi, yi and zi, and then use µ colors to color the remaining 2µ vertices of G so
that each color class consists of two vertices. One can check that each color class of G induces a (linear)
forest and the coloring of G is equitable. Therefore, aeq(G) ≤ β + µ = Γ(G).

Theorem 2.5. If 2
3 |G| − 1 > ∆(G) ≥ 2

3 |G| − 2, then aeq(G) ≤ Γ(G).

Proof. If |G| ≤ 3, then the result is trivial, so we assume |G| ≥ 4. If |G| = 3k, then ∆(G) = 2k − 2 and
δ(Gc) = k + 1, since 2

3 |G| − 1 > ∆(G) ≥ 2
3 |G| − 2 and ∆(G) + δ(Gc) = |G| − 1. By Lemmas 2.1 and 2.2, we have

α′(Gc) ≥ δ(Gc) > k. Let M1 = [x11y11, . . . , x1ky1k] be a matching of Gc. We now partition the vertices of G
into k subsets so that the i-th subset consists of the vertices x1i, y1i and one another vertex different from the
vertices in V(M1). It is easy to check that this is an equitable partition so that each subset induces a (linear)
forest, therefore, aeq(G) ≤ k = Γ(G). If |G| = 3k + 2, then ∆(G) = 2k and δ(Gc) = k + 1. This also implies,
by Lemma 2.1 and 2.2, that α′(Gc) ≥ δ(Gc) > k. Let M2 = [x21y21, . . . , x2ky2k] be a matching of Gc. We now
partition the vertices of G into k + 1 subsets so that the i-th subset with i ≤ k consists of the vertices x2i, y2i
and one another vertex different from the vertices in V(M2) and the (k+ 1)-th subset consists of two vertices
in V(G) \ V(M2). It is easy to check that this is an equitable partition so that each subset induces a (linear)
forest, therefore, aeq(G) ≤ k + 1 = Γ(G). If |G| = 3k + 1, then ∆(G) = 2k − 1 and δ(Gc) = k + 1. By Lemmas 2.1
and 2.2, we have α′(Gc) ≥ δ(Gc). Let M3 = [x31y31, . . . , x3(k+1)y3(k+1)] be a matching of Gc. If x31 has a neighbor
in Gc among {x32, y32, . . . , x3(k+1), y3(k+1)} (without loss of generality, assume that x31x32 ∈ E(Gc)), then we can
partition the vertices of G into k subsets so that the the first subset consists of the four vertices x31, y31, x32
and y32 and the i-th subset with 2 ≤ i ≤ k consists of the vertices x3(i+1), y3(i+1) and one another vertex
different from the vertices in V(M2). One can check that this is an equitable partition so that each subset
induces a (linear) forest, therefore, aeq(G) ≤ k = Γ(G). Hence, we shall assume that x31x3 j, x31y3 j < E(Gc) for
each 2 ≤ j ≤ k + 1. Since dGc (x31) ≥ δ(Gc) = k + 1 and |Gc| = 3k + 1, x31z ∈ E(Gc) for each z ∈ V(Gc) \ V(M3).
Similarly, we shall assume that y31z ∈ E(Gc) for each z ∈ V(Gc) \ V(M3), because otherwise we return to a
case we have considered before. We now partition the vertices of G into k subsets so that the the first subset
consists of the two vertices x31, y31 and two distinct vertices z1, z2 ∈ V(Gc) \ V(M3) and the i-th subset with
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2 ≤ i ≤ k consists of the vertices x3i, y3i and one another vertex different from the vertices in V(M2). One
can again check that this is an equitable partition so that each subset induces a (linear) forest, therefore,
aeq(G) ≤ k = Γ(G).

Theorem 2.6. If 2
3 |G| − 2 > ∆(G) ≥ 1

2 |G|, then aeq(G) ≤ Γ(G).

Proof. Since ∆(G) + δ(Gc) = |G| − 1 and ∆(G) ≥ 1
2 |G|, |Gc| ≥ 2δ(Gc) + 2. We split our proof into two cases.

Case 1: Gc is connected.

Since |Gc| ≥ 2δ(Gc) + 2 > 2δ(Gc), there exists a path P = [x0, x1, . . . , x2δ] of length 2δ := 2δ(Gc) in Gc (see
[1, Exercise 4.2.9]). Denote β = |G| − 3Γ(G) and µ = 4Γ(G) − |G|. Since 2

3 |G| − 2 > ∆(G) ≥ 1
2 |G|, β, µ ≥ 1. Since

2Γ(G) > ∆(G) = |G| − δ(Gc)− 1, δ(Gc) ≥ |G| − 2Γ(G) = 2β+µ. Thus, the vertex sets Vi = {x4i−4, x4i−3, x4i−2, x4i−1}
with 1 ≤ i ≤ β and Ui = {x4β+2i−2, x4β+2i−1}with 1 ≤ i ≤ µ are well defined. Note that V(P) ⊇ ∪βi=1 Vi∪

∪µ
i=1 Ui.

Since |G| − 4β − 3µ = µ, |G − ∪βi=1 Vi −
∪µ

i=1 Ui| = µ. Let V(G) \
(∪β

i=1 Vi ∪
∪µ

i=1 Ui

)
= {y1, . . . , yµ} and let

Wi = Ui ∪ {yi} with 1 ≤ i ≤ µ. We now partition the vertices of G into β + µ subsets V1, . . . ,Vβ,W1, . . . ,Wµ.
One can check that this is an equitable partition so that each subset induces a (linear) forest, therefore,
aeq(G) ≤ β + µ = Γ(G).

Case 2: Gc is disconnected.

Let G1, . . . ,Gt be the components of Gc with t ≥ 2. Since ∆(G) + δ(Gc) = |G| − 1 and ∆(G) < 2
3 |G| − 2,

min{δ(G1), . . . .δ(Gt)} ≥ δ(Gc) ≥ 2. This implies, by Lemma 2.3, that Gi contains a cycle Ci = [xi
0xi

1 . . . x
i
l(Ci)

xi
0]

of length l(Ci)+ 1 ≥ δ(Gi)+ 1 for each 1 ≤ i ≤ t. Let Vi
j = {xi

4 j−4, x
i
4 j−3, x

i
4 j−2, x

i
4 j−1}with 1 ≤ i ≤ t and 1 ≤ j ≤ ni,

in which 4ni − 1 ≤ l(Ci) and n1 + . . . + nt = β. Note that Vi
j is well defined by Claim 2.7.

Claim 2.7.
t∑

i=1

⌊
δ(Gi)+1−4ni

2

⌋
≥ µ.

Proof. Otherwise, δ(Gc) ≤ 1
2 tδ(Gc) ≤ 1

2

t∑
i=1
δ(Gi) ≤

t∑
i=1

⌊
δ(Gi)+1

2

⌋
< 2β + µ = |G| − 2Γ(G) ≤ |G| − ∆(G) − 1,

contradicting to ∆(G) + δ(Gc) = |G| − 1.

We conclude, by Claim 2.7, that there exists a matching M of size at leastµ in Gc−∪t
i=1
∪ni

j=1 Vi
j. Therefore,

we can partition the vertices of G into β + µ subsets so that the i-th subset with 1 ≤ i ≤ µ consists of a pair
of vertices matched under M and one vertex in V(G) \

(
V(M) ∪∪t

i=1
∪ni

j=1 Vi
j

)
and the last β subsets are

V1
1 , . . . ,V

1
n1
, . . . ,Vt

1, . . . ,V
t
nt

. One can check that this is an equitable partition so that each subset induces a
(linear) forest, therefore, aeq(G) ≤ β + µ = Γ(G).

From the proofs of the above three theorems, we can immediately deduce the following conclusion.

Conclusion 2.8. If G is a simple graph with ∆(G) ≥ 1
2 |G|, then V(G) can be equitably partitioned into Γ(G) subsets

so that each of them induces a linear forest of G, i.e., the equitable linear vertex arboricity of G is at most Γ(G), and
the upper bound Γ(G) is sharp.
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