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LIGHT 3-CYCLES IN 1-PLANAR GRAPHS WITH DEGREE

RESTRICTIONS

Xin Zhang

Abstract. In this paper, we prove that the 3-cycle is light in the family
of 1-planar graphs with minimum vertex degree at least 5 and minimum
edge degree at least 12. This generates a known result of Fabrici and
Madaras [8].

1. Introduction

All graphs considered in the paper are finite, simple and undirected. We
use V (G), E(G), F (G), δ(G) and ∆(G) to denote the set of vertices, the set
of edges, the set of faces, the minimum degree and the maximum degree of
a plane graph G, respectively. The degree of an edge uv in G is the value of
dG(u) + dG(v). A k-, k+- and k−-vertex (resp. face) is a vertex (resp. face) of
degree k, at least k and at most k, respectively. For other undefined concepts
we refer the reader to [2].

A graph is 1-planar if it can be drawn on a plane so that each edge is crossed
by at most one other edge. The notion of 1-planarity was introduced by Ringel
[14], who proved that each 1-planar graph is vertex 7-colorable. This is the
first result on the colorings of 1-planar graphs, and from then on, many authors
started to investigate the coloring problems (see [1, 3, 4, 6, 15, 16, 17, 21, 23, 24])
and the structural properties (see [5, 8, 9, 10, 11, 13, 18, 19, 20, 22]) of 1-planar
graphs. One of possible approaches in the study of local graph structures can
be formalized in the following way (see [12]):

Let H be a connected graph and G be a family of graphs. If for any graph
G ∈ G, G contains a subgraphK ≃ H such that maxx∈V (K){dG(x)} is bounded
above by a constant independent of G, then we say that H is light in G; other-
wise H is heavy in G. By L(G), we denote the set of light graphs in the family
G, and by P1

δ (ε), we denote the family of 1-planar graphs with minimum vertex
degree at least δ and minimum edge degree at least ε.

In 2007, Fabrici and Madaras [8] completely determined the set of light
graphs in the family P1

4 (8); they are P1, P2 and P3. Recently, the set of light
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graphs in the family P1
5 (10) is also completely determined (see [8, 7, 19]); they

are P1, P2, P3, P4 and S3, but L(P
1
6 (12)) and L(P1

7 (14)) are still undetermined.
In the reference [8], Fabrici and Madaras proved that the 3-cycle C3 is light in
P1
6 (12). As P1

5 (12) is a superfamily of P1
6 (12), we are to prove the following

main theorem in this paper, which generates the result of Fabrici and Madaras.

Theorem 1. Each 1-planar graph with minimum vertex degree at least 5 and

minimum edge degree at least 12 contains a 3-cycle C = [x1x2x3] such that

min{d(x1), d(x2), d(x3)} ≤ 7 and max{d(x1), d(x2), d(x3)} ≤ 20.

Before giving a proof of the above theorem, we introduce some useful nota-
tions. Let G be a 1-planar graph. From now on, we always assume that G has
been drawn on a plane so that the 1-planarity of G is satisfied. The associated

plane graph of G, denoted by G×, is the graph obtained from G by turning
all crossings of G into new 4-vertices, and those new 4-vertices are called false

vertices. The face that is incident with no false vertex in G× is called true face,
and otherwise, we call it false face.

2. The proof of Theorem 1

Suppose that G is a counterexample to the Theorem 1 and G× is the as-
sociated plane graph of G. Assign an initial charge c to each element x ∈
V (G×)

⋃

F (G×) as follows:

c(x) =

{

dG×(x) − 6, if x ∈ V (G×);
2dG×(x)− 6, if x ∈ F (G×),

By Euler’s formula on G×,
∑

x∈V (G×)
⋃

F (G×) c(x) < 0. We now redistribute

the charges among V (G×)
⋃

F (G×) according to the rules defined below. Be-
fore stating them, we introduce some useful notations. In what follows, a
special 4-face is a 4-face in G× that is incident with two 4-vertices and two
5-vertices. By big, mid and small vertices, we denote the vertices v in G×

with d(v) ≥ 21, 6 ≤ d(v) ≤ 20 and 4 ≤ d(v) ≤ 5, respectively. Let v1, v2 and
v3 be three consecutive neighbors of a big vertex v in G×. If v1 and v3 are
both 4-vertices and v2 is a 5-vertex with v1v2, v2v3 ∈ E(G×), then v2 is called
a special 5-vertex that is adjacent to v. The discharging rules are as follows.

Rule 1 Each mid vertex v sends 1− 6
d
G× (v) to each of its incident faces;

Rule 2 Each big vertex v sends 2
3 to each of its incident faces;

Rule 3 Each big vertex v sends 8
63 to each of its adjacent special 5-vertices;

Rule 4 Each 3-face f with positive charge c2(f) after applications of Rules 1
and 2 sends 2

3c2(f) to each of its incident 4-vertices, 1
3c2(f) to each of

its incident 5-vertices if f is incident with two small vertices, or c2(f)
to the unique small vertex that is incident with f if f is incident with
exactly one small vertex;

Rule 5 Each special 4-face sends 2
3 to each of its incident 4-vertices and 1

3 to
each of its incident 5-vertices;
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Rule 6 Each non-special 4+-face with positive charge after applications of
Rules 1 and 2 redistributes this charge uniformly among its incident
small vertices.

Let c′(x) be the final charge of x ∈ V (G×)
⋃

F (G×) after applications of
the above rules. We now prove that c′(x) ≥ 0 for each x ∈ V (G×)

⋃

F (G×),
therefore,

∑

x∈V (G×)
⋃

F (G×) c(x) =
∑

x∈V (G×)
⋃

F (G×) c
′(x) ≥ 0, which is a

contradiction.
Since no two 4-vertices and no two 5-vertices are adjacent in G×, any 3-face

f in G× is incident with at most one 4-vertex and at most one 5-vertex. Hence,
by Rule 4, f has a nonnegative final charge. By Rules 1, 5 and 6, it is also
easy to check that the final charges of all mid vertices and all 4+-faces are
nonnegative. Thus in the following, we only need estimate the final charges of
the small vertices and big vertices.

Claim 1. Each non-special 4+-face in G× sends at least 2
3 to each of its incident

small vertices.

Proof. Let f be a non-special 4+-face in G×. Note that after applications of
Rules 1 and 2, the saved charge c2(f) of f is at least c(f) = 2d(f)− 6 > 0. If
dG×(f) = 4, then the number of small vertices that are incident with f is at
most 3, since no two 4-vertices and no two 5-vertices are adjacent in G×, thus
by Rule 6, f sends at least 2×4−6

3 = 2
3 to each of its incident small vertices. If

dG×(f) ≥ 5, then it is easier to check that f sends at least 2×5−6
5 = 4

5 > 2
3 to

each of its incident small vertices by Rule 6. �

Claim 2. Each true 3-face in G× sends at least 17
21 to each of its incident

5-vertices.

Proof. Let f = [uvw] be a true 3-face in G× with dG×(v) = 5. Since G is a
counterexample to the theorem and the minimum edge degree of G is at least
12, max{dG×(v), dG×(w)} ≥ 21 and min{dG×(v), dG×(w)} ≥ 7. By Rules 1
and 2, f totally receives at least 1 − 6

7 + 2
3 = 17

21 from v and w. This implies

that c2(f) ≥ 2× 3− 6 + 17
21 = 17

21 and this charge would be transferred to v by
Rule 4. �

Claim 3. Each big vertex v is adjacent to at most ⌊ 1
3dG×(v)⌋ special 5-vertices

in G×.

Proof. Suppose dG×(v) = 3r + s, where r and s are two nonnegative integers
with 0 ≤ s < 3. In what follows, we assume that s > 0. (The case when
s = 0 can be dealt with similarly.) Let v1, v2, . . . , v3r+s be the neighbors of
v in a clockwise order. We now divide those 3r + s vertices into r + 1 parts
U1, U2, . . . , Ur, Ur+1 so that Ui = {v3i−2, v3i−1, v3i} for 1 ≤ i ≤ r and Ur+1 =
{v3r+1, . . . , v3r+s}. By the definitions of Ui’s, one can check that Ui with
1 ≤ i ≤ r contains at most two special 5-vertices. If Ui contains exactly two
special 5-vertices, then v3i−1 must be a 4-vertex, moreover, the two 5-vertices
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v3i−2 and v3i satisfy v3i−2v3i−1, v3i−1v3i ∈ E(G×) and v3i−2v3i ∈ E(G). This
contradicts the fact that the minimum edge degree of G is at least 12. Hence,
each Ui with 1 ≤ i ≤ r contains at most one special 5-vertex. Similarly, Ur+1

also contains at most one special 5-vertex. If s = 1 and each Ui with 1 ≤
i ≤ r contains exactly one special 5-vertex, then dG×(v3r−2) = dG×(v3r) = 4,
dG×(v3r−1) = 5 and v3r−2v3r−1, v3r−1v3r ∈ E(G×). This implies that v3r+1

is not a special 5-vertex, because otherwise we have v3rv3r+1 ∈ E(G×), which
implies v3r−1v3r+1 ∈ E(G), a contradiction. Similarly, we can prove that v3r+1

and v3r+2 are not special 5-vertices when s = 2 and each Ui with 1 ≤ i ≤ r

contains exactly one special 5-vertex. Therefore, v is adjacent to at most r

special 5-vertices in G×. �

In the following, we estimate the final charge of the big vertices v ∈ V (G×).
Since Rules 2 and 3 are the only rules that are involved with v, and Rules 2
and 3 can be applied to v at most dG×(v) times and ⌊ 1

3dG×(v)⌋ times by Claim

3, respectively, c′(v) ≥ dG×(v)−6− 2
3dG×(v)− 8

63⌊
1
3dG×(v)⌋ ≥ 1

189 (55dG×(v)−

1134) ≥ 1
9 > 0 for dG×(v) ≥ 21.

Until now, the remaining task is to check the nonnegativity of the final
charge of small vertices. First, suppose that v is a 5-vertex. Let v1, . . . , v5
be the neighbors of v in a clockwise sequence and let fi be the face incident
with the path vivvi+1 in G×, where the addition on i are taken modulo 5. By
B(v), T (v) and F (v), we denote the number of 4+-faces, true 3-faces and false
3-faces that are incident with v, respectively. If B(v) ≥ 3, then by Rule 5
and Claim 1, v receives at least 3 × 1

3 = 1 from its incident 4+-faces, which
implies that c′(v) ≥ 5 − 6 + 1 = 0. If B(v) = 2 and f is incident with a
non-special 4+-face, then by Rule 5 and Claim 1, c′(v) ≥ 5− 6 + 1

3 + 2
3 = 0. If

B(v) = 2 and f is incident with two special 4-faces, then those two 4-faces are
adjacent in G×, since otherwise we would find two adjacent 4-vertices in G×,
a contradiction. Without loss of generality, suppose that f1 and f2 are both
special 4-faces. Since v1, v3 are false now and f3, f5 are 3-faces, v4 and v5 are
true, which implies that f4 is a true 3-face. Thus by Claim 2, f4 sends at least
17
21 to v, so c′(v) ≥ 5−6+2× 1

3 +
17
21 > 0 by Rule 5. If B(v) = 1 and v is incident

with a true 3-face, then by Rule 5, Claims 1 and 2, c′(v) ≥ 5−6+ 1
3 +

17
21 > 0. If

B(v) = 1 (here we assume that f5 is a 4+-face incident with v) and all 3-faces
incident with v are false, then either v2 and v4 are both 4-vertices, or v1, v3 and
v5 are all 4-vertices. If the former case occurs, then f5 is non-special and v1, v5

are not small. This implies that f5 sends at least
2d

G× (f5)−6

d
G× (f5)−2 ≥ 1 to v by Rule 6,

and thus c′(v) ≥ 5−6+1 = 0. If the latter case occurs, then v, v2 and v4 induce
a 3-cycle in G with dG×(v) = 5, which implies that v2 and v4 are 7+-vertices
and at least one of them is big. Without loss of generality, assume that v4 is a
big vertex, then by Rule 3, v4 sends 8

63 to v, since v is special. On the other
hand, one can check that the saved charge of f1, f2, f3 and f4 after applying
Rules 1 and 2 is at least 1

7 ,
1
7 ,

2
3 and 2

3 , respectively, and f5 sends at least
1
3 to v
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by Rules 5 and 6. Therefore, c′(v) ≥ 5−6+ 8
63 +2× 1

7 ×
1
3 +2× 2

3 ×
1
3 +

1
3 = 0 by

Rule 4. If B(v) = 0 and T (v) ≥ 2, then by Claim 2, c′(v) ≥ 5− 6+ 2× 17
21 > 0.

If B(v) = 0, T (v) = 1 and F (v) = 4 (assume that f5 is true and v1 is big),
then by Rules 2 and 4, f1 sends at least 1

3 × 2
3 = 2

9 to v, thus by Claim 2, we

still have c′(v) ≥ 5− 6 + 2
9 + 17

21 > 0.
Now, suppose that v is a 4-vertex in G×. By Rule 5 and Claim 1, the

final charge of v is nonnegative if v is incident with at least three 4+-faces, so
in the following, we assume that v is incident with at least two 3-faces. Let
v1, v2, v3, v4 be the neighbors of v in a clockwise order. By fi, we denote the
face that is incident with vvi and vvi+1, where the subscripts are taken modulo
4. By τ(f → v), we denote the charge transferred from f to its incident vertex
v.

Case 1. v is incident with exactly two 3-faces.

First, suppose that dG×(f1) = dG×(f3) = 3. Without loss of generality,
assume that v is adjacent to at least two 5-vertices (the opposite case when
v is adjacent to at most one 5-vertex can be dealt with similarly). Since the
degree of any neighbor of a 5-vertex in G is at least 7, we can assume that
dG×(v2) = dG×(v3) = 5 and min{dG×(v1), dG×(v4)} ≥ 7. Since dG×(v1) ≥ 7,
the saved charge of f1 after applying Rules 1 and 2 is at least 1

7 , and two thirds
of this charge would be transferred to v by Rule 4, that is to say, τ(f1 →
v) ≥ 1

7 × 2
3 = 2

21 . Similarly, we have τ(f2 → v) ≥ 2
3 , τ(f3 → v) ≥ 2

21 and

τ(f4 → v) ≥ 8
7 . This implies that c′(v) ≥ −2 + 2

21 + 2
3 + 2

21 + 8
7 = 0.

Second, suppose that dG×(f1) = dG×(f2) = 3. Since v1, v2 and v3 induce a 3-
cycle in G, we either have max1≤i≤3{dG×(vi)} ≥ 21 or have min1≤i≤3{dG×(vi)}
≥ 8. If the former case occurs, then we can assume, without loss of generality,
that dG×(v1) ≥ 21. By Rules 2, 4, 5, 6 and Claim 1, we have τ(f1 → v) ≥
2
3 × 2

3 = 4
9 , τ(f3 → v) ≥ 2

3 and τ(f4 → v) ≥ 1
3 × (2 + 2

3 ) = 8
9 . This implies

that c′(v) ≥ −2 + 4
9 + 2

3 + 8
9 = 0. If the latter case occurs, then by Rules 1

and 4, τ(f1 → v) ≥ 2 × (1 − 6
8 ) =

1
2 and τ(f2 → v) ≥ 2 × (1 − 6

8 ) =
1
2 , and

by Rule 5 and Claim 1, τ(f3 → v) ≥ 2
3 and τ(f4 → v) ≥ 2

3 . This implies that

c′(v) ≥ −2 + 2× 1
2 + 2× 2

3 > 0.

Case 2. v is incident with exactly three 3-faces.

Suppose that f1, f2 and f3 are 3-faces and f4 is a 4+-face. If v is adjacent
to no big vertices, then v is adjacent only to 8+-vertices, since otherwise a
light 3-cycle is found in G, a contradiction. By Rules 1 and 4, τ(fi → v) ≥
2 × (1 − 6

8 ) =
1
2 for i = 1, 2, 3. By Rule 5 and Claim 1, τ(f4 → v) ≥ 2

3 . This

implies that c′(v) ≥ −2+ 3× 1
2 +

2
3 > 0. Therefore, we consider the case when

v is adjacent to at least one big vertex. If v2 or v3, say v2, is big, then either
dG×(v1) = dG×(v3) = dG×(v4) = 6 or max{dG×(v1), dG×(v3), dG×(v4)} ≥ 7,
since v1, v3 and v4 induce a 3-path in G. If the former case occurs, by Rules
2 and 4, τ(f1 → v) ≥ 2

3 and τ(f2 → v) ≥ 2
3 , and by Rule 5 and Claim 1,

τ(f4 → v) ≥ 2
3 . This implies that c′(v) ≥ −2 + 3 × 2

3 = 0. If the latter
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case occurs, then consider the worst case (one can easily check this fact) when
dG×(v1) = dG×(v4) = 5 and dG×(v3) = 7. By Rules 1, 2, 3, 5 and Claim 1,
we can still estimate that τ(f1 → v) ≥ 2

3 × 2
3 = 4

9 , τ(f2 → v) ≥ 2
3 + 1

7 = 17
21 ,

τ(f3 → v) ≥ 1
7 × 2

3 = 2
21 and τ(f4 → v) ≥ 2

3 . This implies that c′(v) ≥

−2 + 4
9 + 17

21 + 2
21 + 2

3 = 1
63 > 0.

Case 3. v is incident with four 3-faces.

If v is adjacent only to 8+-vertices, then by Rules 1 and 4, each face incident
with v sends at least 2 × (1 − 6

8 ) = 1
2 to v, which implies that c′(v) ≥ −2 +

4 × 1
2 = 0. If min1≤i≤4{dG×(vi)} ≤ 7, then there are at least two big vertices

among the neighbors of v, because otherwise a light 3-cycle would appear in
G. Without loss of generality, assume that both v1 and v3 are big vertices and
that dG×(v2) = 5 and dG×(v4) ≥ 7 (other cases can be handled similarly and
much more easily). In this case, by Rules 1, 2 and 4, one can estimate that
mini=1,2{τ(fi → v)} ≥ 2

3 × 2
3 = 4

9 and mini=3,4{τ(fi → v)} ≥ 2
3 + 1

7 = 17
21 .

This implies that c′(v) ≥ −2 + 2× 4
9 + 2× 17

21 > 0. �

Since C3 is heavy in the family of 1-planar graphs with minimum vertex
degree at least 5, the bound 12 for the minimum edge degree in Theorem 1
cannot be improved to 10. In view of this, we end this paper by the following
open problem.

Problem 1. Determine whether C3 ∈ L(P1
5 (11)) or not.
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