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Abstract A graph is 1-planar if it can be drawn on a plane so that each edge is crossed by at most one

other edge. A plane graph with near independent crossings (say NIC-planar graph) is a 1-planar graph

with the restriction that for any two crossings the four crossed edges are incident with at most one

common vertex. The full characterization of NIC-planar complete and complete multipartite graphs is

given in this paper.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. By V (G), E(G), δ(G)
and Δ(G), we denote the vertex set, the edge set, the minimum degree and the maximum
degree of a graph G, respectively. For a plane graph G, F (G) denotes its face set. Set v(G) =
|V (G)|, e(G) = |E(G)| and f(G) = |F (G)|. The crossing number of a graph G, denoted by
cr(G), is the minimum possible number of crossings with which the graph can be drawn on the
plane. Note that the crossings of more than two edges in the same point must be forbidden. All
graph drawings here are optimal, that is, all intersecting edges intersect in a single point that
arises from exactly four distinct vertices. For other undefined notations, we refer the readers
to [2].

A graph is 1-planar if it can be drawn on a plane so that each edge is crossed by at
most one other edge. The concept of the 1-planarity was introduced by Ringel [13] when he
considered the vertex-face coloring of planar graphs (corresponding to the vertex coloring of
1-planar graphs). In [13], Ringel gave the first result on the coloring of 1-planar graphs: every
1-planar graph is 7-colorable. Almost two decades later, Borodin [3, 4] improved this bound
to 6 and showed the sharpness of the new bound. Recently, more and more papers on the
coloring problems of 1-planar graphs appear (see the introduction in [15] for details) and the
full characterization of 1-planar complete and complete multipartite graphs is given by Czap
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and Hudák [5]. However, compared to the well-established planar graphs, the class of 1-planar
graphs is still litter explored.

Now we transfer our attention to the subclasses of 1-planar graphs. Can we find a class
of graphs that lies between planar graphs and 1-planar graphs? To answer this question, we
need some new notions. A 1-planar drawing is good if it contains the minimum number of
crossings, and normally, we would assume that every 1-planar drawing is good. We know that
every crossing (note that it is not a real vertex) is generalized by two mutually crossed edges,
thus for every crossing c there exists a vertex set S(c) of size four, where S(c) consists of the
end-vertices of the two edges that generalize c. We call S(c) the cluster set around c.

Proposition 1.1 If c1 and c2 are two crossings in a good 1-planar drawing of a 1-planar
graph G, then |S(c1) ∩ S(c2)| ≤ 2.

Proof Let S(c1) = {v1, v2, v3, v4} and let v1v2 crosses v3v4. If |S(c1)∩ S(c2)| = 4, then either
v1v3 crosses v2v4 or v1v4 crosses v2v3, which are impossible. If |S(c1) ∩ S(c2)| = 3, then let
S(c2) = {v1, v2, v3, v5} with v5 �= v4. By the definition of 1-planarity, v1v2 cannot be the edge
that is incident with c2, thus we assume, without loss of generality, that v1v3 crosses v2v5 at c2.
We redrawn the edge v1v3 so that v1, v3 and c1 form a closed area that has no interior vertex.
This can be done since c1 is not a real vertex of G and the edges v1v2, v3v4 cannot be crossed
any more. After doing so, we reduce the number of crossings by one, which contradicts the fact
that the current drawing is good. Therefore, |S(c1) ∩ S(c2)| ≤ 2. �

In view of the above proposition, we can naturally define two classes of graphs. First, we
consider the graph that satisfies |S(c1) ∩ S(c2)| = 0 for every two crossings c1 and c2. In fact,
this class of graphs has already been investigated by Král and Stacho [12] and Zhang et al.
[14, 16] since 2010 under the notion of plane graphs with independent crossings, or IC-planar
graphs for short. In particular, Zhang and Liu [14] showed that e(G) ≤ 13v(G)/4− 6 for every
IC-planar graph G and thus every IC-planar graph G contains a vertex of degree at most 6 (the
bound 6 is sharp because of the existence of a 6-regular IC-planar graph (see Figure 1 of [14])).
Second, there is a class of graphs that satisfies |S(c1)∩S(c2)| ≤ 1 for every two crossings c1 and
c2. Actually, this class of graphs is just the one we are introducing in this paper. From now
on, we call such graphs plane graphs with near independent crossings, or NIC-planar graphs for
short. Let G be an NIC-planar graph and uv be an edge of G. If uv is crossed by at least two
other edges, that is, uv is incident with at least two crossings c1 and c2, then it is easy to see
that |S(c1) ∩ S(c2)| ≥ 2, a contradiction. This implies that G is 1-planar. Therefore, the class
of NIC-planar graphs lies between IC-planar graphs and 1-planar graphs.

We know that a graph is planar if and only if it contains no K5-minors or K3,3-minors, that
is to say, the class of planar graphs is minor closed. However, the classes of IC-planar graphs,
NIC-planar graphs and 1-planar graphs are not minor closed. Indeed, take a plane drawing of G

and then for every crossing c at which v1v2 crosses v3v4, place one new 2-valent vertex on each
of the segments cv1, cv2, cv3 and cv4 (note that this operation is iterative), we then obtain an
IC-planar subdivision of G, and thus also an NIC-planar and a 1-planar subdivision. Therefore,
for any graph H, there exists an IC-planar graph (so an NIC-planar graph and a 1-planar graph)
that contains an H-minor. This fact brings us a big obstruction to recognize those superclasses
of planar graphs. In fact, it has already been proved by Korzhik and Mohar [11] that testing
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the 1-planarity is NP-hard, and we guess the following:

Conjecture 1.2 Testing the IC-planarity and the NIC-planarity are NP-hard.

Now, how can we determine whether a given graph is IC-planar or NIC-planar? There are
some feasible ways, one of which is to show that it has a large number of edges. For example,
if we can prove that e(G) > 13v(G)/4− 6, then G is not IC-planar. For NIC-planar graphs, we
can show that e(G) ≤ 18(v(G)−2)/5, the proof of which is left to the next section, thus graphs
satisfy e(G) > 18(v(G) − 2)/5 are not NIC-planar graphs. Note that every subgraph of an IC-
planar graph or an NIC-planar graph is IC-planar or NIC-planar, thus if we can show that G

contains a non-IC-planar small graph or a non-NIC-planar small graph then G is non-IC-planar
or non-NIC-planar. Therefore, looking for non-IC-planar graphs and non-NIC-planar graphs
with small number of vertices and edges seems helpful. In the next section, we are to present
the full characterizations of NIC-planar and IC-planar complete and complete k-partite graphs.

2 Main Results and Their Proofs

In this section, we always assume that every NIC-planar graph and IC-planar graph has been
drawn on the plane so that its NIC-planarity or IC-planarity is satisfied and the number of
crossings is as small as possible. The associated plane graph G× of G is the plane graph that
is obtained from G by turning all crossings of G into new 4-valent vertices. We call the new
added 4-valent vertices in G× false vertices and the faces incident a false vertex false faces. If
a vertex or face in G× is not false, then we call it true.

Lemma 2.1 If G is an NIC-planar graph, then cr(G) ≤ v(G)− 2− 1
2fT (G×), where fT (G×)

is the number of true faces in the associated plane graph G× of any NIC-planar drawing of G.

Proof It is easy to see that 2e(G×) =
∑

f∈F (G×) d(f) ≥ 3f(G×) = 3fT (G×)+3fF (G×), where
fF (G×) denotes the number of false faces in G×. Since e(G×) = v(G×)+ f(G×)− 2 by Euler’s
formula, fF (G×) = 4cr(G) and v(G×) = v(G)+cr(G), we have cr(G) ≤ v(G)−2− 1

2fT (G×). �

Theorem 2.2 cr(G) ≤ 3
5 (v(G) − 2) for any NIC-planar graph G.

Proof Let G be an NIC-planar drawing of the graph and let c be a crossing at which v1v2

crosses v3v4. By the definition of NIC-planarity, v1v4, v2v4, v1v3 and v2v3 (if exist) are not
crossed. Therefore, if one edge mentioned above, say v1v4 for example, do not exist in G, then
we add it to G so that the closed area formed by v1, v4 and c contains no interior vertices,
and if such an edge exists, then we redraw it if necessary so that the closed area formed by
v1, v4 and c has no interior vertices. For every crossing in G we do the above operation, then
we obtain a new NIC-planar graph G1. Triangulate the associated plane graph G∗

1 of G1 and
denote the resulted graph by G∗

2. It is easy to see that G∗
2 is an associated plane graph of an

NIC-planar graph G2. For any crossing c generalized by v1v2 crossing v3v4 in G2, there are four
true faces of degree 3 that are incident with one of the edges among v1v4, v2v4, v1v3 and v2v3 in
G∗

2. Thus, 4cr(G2) ≤ 3fT (G∗
2), where fT (G∗

2) is the number of true faces in G∗
2. By Lemma 2.1,

cr(G2) ≤ v(G2)− 2− 1
2fT (G∗

2) ≤ v(G)− 2− 2
3cr(G2), which implies cr(G) ≤ 3

5 (v(G)− 2), since
cr(G) = cr(G2). �

Theorem 2.3 e(G) ≤ 18
5 (v(G) − 2) for any NIC-planar graph G.
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Proof If we remove one edge from every pair of mutually crossed edges, we obtain a plane
graph. Therefore, e(G) ≤ 3v(G) − 6 + cr(G) and by Theorem 2.2 the result follows. �

By Theorem 2.3, it is easy to conclude that every NIC-planar graph G contains a vertex of
degree at most 7. However, this is not a new result since it already holds for 1-planar graphs.
Surprisedly, by discharging method we can prove the following better result.

Theorem 2.4 Every NIC-planar graph contains a vertex of degree at most 6.

Proof Let G be a counterexample to it and let G× be the associated plane graph of an NIC-
planar drawing of G. Note that δ(G) ≥ 7. Assign to each vertex v ∈ V (G×) an initial charge
c(v) = d(v)− 4 and each face f ∈ F (G×) an initial charge c(f) = d(f)− 4. By Euler’s formula,
we have

∑
v∈V (G×)(d(v) − 4) +

∑
f∈F (G×)(d(f) − 4) = −8, thus

∑
x∈V (G×)∪F (G×) c(x) = −8.

Define the discharging rule as follows:

Rule Every vertex of degree at least 7 transfers 1
2 or 1

3 to each of its incident false or true
faces of degree 3, respectively.

Let c′ be the final charge function after discharging. It is easy to see that c′(f) ≥ 0 for
every f ∈ F (G×), since every false or true face is incident with two or three vertices of degree
at least 7, respectively. Let v be a vertex of G×. If d(v) ≥ 8, then c′(v) ≥ d(v)− 4− 1

2d(v) ≥ 0.
If d(v) = 7 and v is incident with at most 6 faces of degree 3, then c′(v) ≥ 7 − 4 − 6 × 1

2 = 0.
If d(v) = 7 and v is incident with only faces of degree 3, then by the NIC-planarity of G, v is
incident with at most four false faces, thus c′(v) ≥ 7 − 4− 4× 1

2 − 3 × 1
3 = 0. If d(v) = 4, then

c′(v) = 0. Therefore,
∑

x∈V (G×)∪F (G×) c(x) =
∑

x∈V (G×)∪F (G×) c′(x) ≥ 0, a contradiction. �
Theorem 2.4 generalized Zhang and Liu’s result in [14]: every IC-planar graph contains a

vertex of degree at most 6. Since there is a 6-regular IC-planar graph (see Figure 1 of [14]) and
every IC-planar graph is NIC-planar, the bound 6 in Theorem 2.4 is best possible.

Theorems 2.2, 2.3 and 2.4 tell us that any NIC-planar graph has small crossing number,
small number of edges and small minimum degree. In the following, we are to present the
full characterizations of NIC-planar and non-NIC-planar complete k-partite graphs, which are
helpful to recognize some non-NIC-planar graphs.

Theorem 2.5 The complete graph Kn is NIC-planar if and only if n ≤ 5.

Proof It is easy to see that K5 is NIC-planar since cr(K5) = 1. For Kn with n ≥ 6, e(Kn) =
1
2n(n − 1) > 18

5 (n − 2) = 18
5 (v(Kn) − 2), so by Theorem 2.3 it is not NIC-planar. �

Lemma 2.6 ([10]) If m ≤ 6, then cr(Km,n) = �m
2 ��m−1

2 ��n
2 ��n−1

2 �.
In the following, Z(m, n) denotes the right member of the equality in Lemma 2.6.

Theorem 2.7 The complete bipartite graph Km,n with m ≥ n is NIC-planar if and only if
n ≤ 2, or n = 3 and m ≤ 4.

Proof Since K4,3 has an NIC-planar drawing (see Figure 1) and Km,n is planar if n ≤ 2, the
sufficiency holds. To prove the necessity, we just need to show that K5,3 and K4,4 are not NIC-
planar, since any graph containing as a subgraph a non-NIC-planar graph is non-NIC-planar.
If they are NIC-planar graphs, then by Theorem 2.2, cr(K5,3) ≤ 3 and cr(K4,4) ≤ 3. However,
cr(K5,3) = cr(K4,4) = 4 by Lemma 2.6, a contradiction. �
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Figure 1 An NIC-planar drawing of K4,3

Lemma 2.8 ([1]) cr(K1,3,n) = Z(4, n) + �n
2 � and cr(K2,3,n) = Z(5, n) + n.

Lemma 2.9 If G is NIC-planar and v(G) ≤ 8, then cr(G) ≤ 2.

Proof Without loss of generality, assume that V (G) = {v1, . . . , v8} and that there are three
crossings c1, c2, c3 in an NIC-planar drawing of G. Suppose that S(c1) = {v1, v2, v3, v4} and
S(c2) ⊃ {v5, v6, v7}. If v8 ∈ S(c2), then |S(c3)∩S(ci)| ≥ 2 for some i ∈ {1, 2}, which contradicts
the NIC-planarity of G. If v8 �∈ S(c2), then assume, without loss of generality, that v4 ∈ S(c2),
which still implies that |S(c3) ∩ S(ci)| ≥ 2 for some i ∈ {1, 2}, a contradiction. �

Theorem 2.10 The complete 3-partite graph Ka1,a2,a3 with a1 ≥ a2 ≥ a3 is NIC-planar if
and only if a2 = 1, or a1 ≤ 4, a2 = 2 and a3 = 1, or a1 = a2 = a3 = 2.

Figure 2 An NIC-planar drawing of K4,2,1

Proof Since K4,2,1 has an NIC-planar drawing (see Figure 2) and K2,2,2, Ka1,1,1 are planar,
the sufficiency holds. To prove the necessity, we just need to show that K5,2,1, K3,3,1 and K3,2,2

are not NIC-planar graphs. Since K5,2,1 contains as a subgraph K5,3 which is non-NIC-planar
by Theorem 2.7, it is non-NIC-planar. If K3,3,1 is NIC-planar, then Lemma 2.9 implies that
cr(K3,3,1) ≤ 2, which contradicts the fact that cr(K3,3,1) = 3 by Lemma 2.8. In the following,
we claim that K3,2,2 has no NIC-planar drawings.

If K3,2,2 has an NIC-planar drawing G with ε crossings, then the associated plane graph
G× of G has 16 + 2ε edges, 11 + ε faces. 3 + ε vertices of degree 4 and four vertices of degree 5.
On the other hand, we have

∑
v∈V (G×)(d(v) − 4) +

∑
f∈F (G×)(d(f) − 4) = −8, which implies

that
∑

f∈F (G×)(d(f)− 4) = −12. Therefore, G× has at least 12 faces of degree 3. By the proof
of Lemma 2.9, we conclude that the NIC-drawing G of the 7-vertex graph K3,2,2 has at most
two crossings, so ε ≤ 2. By Lemma 2.8, we have cr(K3,2,2) = 2, thus ε = 2. Hence G× has 13
faces, twelve of which are of degree 3 and one of them is of degree 4. Note that there may be
six types of crossings in G, see Figure 3, where the vertices marked by αi are taken from the
i-th part of K3,2,2.
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Figure 3 Six types of crossings in any possible NIC-drawing of K3,2,2

It is easy to see that if there is one crossing point u in G as in one of the first three graphs
in Figure 3, then u is a false vertex in G× that is incident with at least one face of degree at
least 6 or at least two faces of degree at least 4, a contradiction to the fact that F (G×) consists
of 12 faces of degree 3 and one face of degree 4. If there is one crossing point u in G as in one
of the last three graphs in Figure 3, then u is a false vertex in G× that is incident with exactly
one face of degree at least 4, say fu, and moreover, if u and v are two different crossing points
of G in this type and d(fu) = d(fv) = 4, then fu �= fv by the NIC-planarity of G. This implies
that there is a face of degree at least 5 or two faces of degree 4 in G×, a contradiction. �

Theorem 2.11 The complete 4-partite graph Ka1,a2,a3,a4 with a1 ≥ a2 ≥ a3 ≥ a4 is NIC-
planar if and only if a1 ≤ 4 and a2 = 1, or a1 = a2 = 2 and a3 = 1.

Figure 4 An NIC-planar drawing of K4,1,1,1

Proof Since K4,1,1,1 has an NIC-planar drawing (see Figure 4) and K2,2,1,1 has a drawing
with only one crossing (thus has an NIC-planar drawing), the sufficiency holds. To prove the
necessity, we just need to show that K5,1,1,1, K3,2,1,1 and K2,2,2,1 are not NIC-planar graphs.
Since K5,1,1,1 contains as a subgraph K5,3 which are non-NIC-planar by Theorem 2.7, it is non
NIC-planar. Since K3,2,2 is non-NIC-planar by Theorem 2.10 and it is a subgraph of K3,2,1,1

or K2,2,2,1, K3,2,1,1 and K2,2,2,1 are non-NIC-planar. �

Lemma 2.12 ([8]) cr(K1,1,1,1,n) = Z(4, n) + n.

Lemma 2.13 If G is NIC-planar and v(G) ≤ 6, then cr(G) ≤ 1.

Proof If there are at least two crossings c1 and c2, then by the definition of NIC-planarity we
have |S(c1) ∪ S(c2)| ≥ 7, contradicting the assumption v(G) ≤ 6. �

Theorem 2.14 There is only one NIC-planar complete 5-partite graph, that is, K1,1,1,1,1.

Proof It is easy to see that K1,1,1,1,1 = K5 has a drawing with only one crossing, thus it is
NIC-planar. By Lemma 2.12, we have cr(K2,1,1,1,1) = 2. However, if K2,1,1,1,1 is NIC-planar,
then by Lemma 2.13, cr(K2,1,1,1,1) ≤ 1, a contradiction. �

Theorem 2.15 There is no NIC-planar complete t-partite graphs with t ≥ 6.
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Proof Since any complete t-partite graph G with t ≥ 6 contains as a subgraph K6 which is a
non-NIC-planar graph by Theorem 2.5, G is not NIC-planar. �

We now collect our results to the following table that presents the full characterization of
NIC-planar complete k-partite graphs. Note that the graphs after which we mark a star are
planar graphs, and after which we mark two stars are non-planar IC-planar graphs.

k NIC-planar complete k-partite graphs

2 K1,n(*), K2,n(*), K3,3(**), K3,4

3 K1,1,n(*), K1,2,2(*), K1,2,3(**), K1,2,4 ,K2,2,2(*)

4 K1,1,1,1(*), K1,1,1,2(*), K1,1,1,3(**), K1,1,1,4, K1,1,2,2(**)

5 K1,1,1,1,1(**)

Since IC-planar graphs is the subclass of NIC-planar graphs, we deduce the following full
characterization of IC-planar complete k-partite graphs.

k IC-planar complete k-partite graphs

2 K1,n(*), K2,n(*), K3,3

3 K1,1,n(*), K1,2,2(*), K1,2,3, K2,2,2(*)

4 K1,1,1,1(*), K1,1,1,2(*), K1,1,1,3, K1,1,2,2

5 K1,1,1,1,1

Corollary 2.16 Any non-NIC-planar complete multipartite graphs contains one of the fol-
lowing graph : K3,5, K2,2,3, K1,1,1,1,2.

Corollary 2.17 Any non-IC-planar complete multipartite graph contains K3,4 or K1,1,1,1,2.

As we have mentioned in Section 1, if we are to prove that a graph G is non-NIC-planar,
we can try to prove that G contains a known non-NIC-planar graph H. It is easy to see that
H has a subgraph H ′ such that H ′ − e is NIC-planar. We call such a graph H ′ minimum
non-NIC-planar graph. Therefore, every non-NIC-planar graph contains a minimum non-NIC-
planar graph. How many minimum non-NIC-planar graphs are they? If the number is finite,
then a graph is non-NIC-planar if and only if it contains one of those minimum non-NIC-planar
graphs. This seems to be a good characterization of NIC-planar graphs. Unluckily, the answer
of the above question is in the negative.

Lemma 2.18 ([6]) cr(Kn) ≥ 0.8594Z(n), where Z(n) = 1
4�n

2 ��n−1
2 ��n−2

2 ��n−3
2 �.

Theorem 2.19 There are infinite many minimum non-NIC-planar graphs.

Proof Suppose that there are finite many minimum non-NIC-planar graphs. Let M be the
maximum order of those minimum non-NIC-planar graphs. Since every 5-vertex graph is NIC-
planar by Theorem 2.5, M ≥ 6. We now place M vertices of degree 2 on each edge of the
complete graph K4M . It is easy to see that the resulted graph G is a graph with v(G) =
4M + 2M(4M − 1)M < 2M(2M − 1)(2M + 1) < M(2M − 1)2(M − 1) < 5

3cr(K4M ) = 5
3cr(G)

by Lemma 2.18. Therefore, G is non-NIC-planar by Theorem 2.2, and moreover, G contains
as a subgraph a minimum non-NIC-planar graph H. Since H shall be 2-connected, H contains
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at least one subdivided edge of G in its entirety, which implies that v(H) ≥ M + 2. This
contradicts the definition of M . �

By similar arguments as in the proof of Theorem 2.19, we can also prove the following.
Note that the notion of minimum non-IC-planar graph can be defined similarly to the one of
minimum non-NIC-planar graph. In fact, Theorems 2.19 and 2.20 support Conjecture 1.2 in
some sense.

Theorem 2.20 There are infinite many minimum non-IC-planar graphs.

Since K5 has an IC-planar drawing on the plane with only crossing, every 5-vertex graph
is IC-planar and thus is NIC-planar.

Theorem 2.21 G := K6 − e is non-NIC-planar and H := G − e is IC-planar.

Figure 5 Two non-isomorphic IC-planar drawings of K6 − 2e

Proof Since cr(K6) = Z(6) = 3 (see [7]), cr(K6 − e) ≥ 2. If K6 − e is NIC-planar, then
cr(K6 − e) ≤ 1 by Lemma 2.13, a contradiction. Therefore, K6 − e is non-NIC-planar, and thus
is non-IC-planar. Since K6 − 2e may represent two non-isomorphic graphs and Figure 5 shows
the IC-planar drawings of these two graphs, G − e is IC-planar and is NIC-planar. �

By Theorem 2.21, we have the following immediate corollary.

Corollary 2.22 K6 − e is the unique minimum non-NIC-planar 6-vertex graph and is also
the unique minimum non-IC-planar 6-vertex graph.

Theorem 2.23 K3,5 and K2,2,3 are both minimum non-NIC-planar graphs.

K3,5 - e K2,2,3 - e23 K2,2,3 - e22

Figure 6 K3,5 − e and K2,2,3 − e are both NIC-planar

Proof First, K3,5 and K2,2,3 are non-NIC-planar by Theorems 2.7 and 2.10. On the other
hand, K3,5 − e and K2,2,3 − e are both NIC-planar, see Figure 6. Note that K2,2,3 − e would
represent two graphs: one is obtained from K2,2,3 by removing an edge e22 between the two
2-vertex parts, and the other is obtained from K2,2,3 by removing an edge e23 between one
2-vertex part and one 3-vertex part. �
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By Corollaries 2.16, 2.22 and 2.23, we have the following result. Note that K6−e ∼= K1,1,1,1,2.

Corollary 2.24 There are only three minimum non-NIC-planar complete multipartite graphs :
K3,5, K2,2,3 and K1,1,1,1,2.

Figure 7 K3,4 − e is IC-planar

For IC-planar complete multipartite graphs, we know that K3,4 is non-IC-planar and K3,4−e

has an IC-planar drawing (see Figure 7). Therefore, K3,4 is a minimum non-IC-planar graph.
Hence, by Corollaries 2.17 and 2.22, we deduce the following.

Corollary 2.25 There are only two minimum non-IC-planar complete multipartite graphs :
K3,4 and K1,1,1,1,2.
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