Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note On *r*-equitable chromatic threshold of Kronecker products of complete graphs^{*}

Wei Wang^a, Zhidan Yan^a, Xin Zhang^{b,*}

^a College of Information Engineering, Tarim University, Alar 843300, PR China
^b School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China

ARTICLE INFO

Article history: Received 8 October 2013 Received in revised form 11 May 2014 Accepted 21 May 2014 Available online 6 June 2014

Keywords: Equitable coloring r-Equitable coloring r-Equitable chromatic threshold Kronecker product Complete graph

ABSTRACT

Let *r* and *k* be positive integers. A graph *G* is *r*-equitably *k*-colorable if its vertex set can be partitioned into *k* independent sets, any two of which differ in size by at most *r*. The *r*-equitable chromatic threshold of a graph *G*, denoted by $\chi_{t=}^*(G)$, is the minimum *k* such that *G* is *r*-equitably *k'*-colorable for all $k' \ge k$. Let $G \times H$ denote the Kronecker product of graphs *G* and *H*. In this paper, we completely determine the exact value of $\chi_{r=}^*(K_m \times K_n)$ for general *m*, *n* and *r*. As a consequence, we show that for $r \ge 2$, if $n \ge \frac{1}{r-1}(m+r)(m+2r-1)$ then $K_m \times K_n$ and its spanning supergraph $K_{m(n)}$ have the same *r*-equitable colorability, and in particular $\chi_{r=}^*(K_m \times K_n) = \chi_{r=}^*(K_{m(n)})$, where $K_{m(n)}$ is the complete *m*-partite graph with *n* vertices in each part.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, undirected and simple. Let *G* be a graph with vertex set V(G) and edge set E(G). For a positive integer *k*, let $[k] = \{1, 2, ..., k\}$. A (proper) *k*-coloring of *G* is a mapping $f : V(G) \rightarrow [k]$ such that $f(x) \neq f(y)$ whenever $xy \in E(G)$. The *chromatic number* of *G*, denoted by $\chi(G)$, is the smallest integer *k* such that *G* admits a *k*-coloring. We call the set $f^{-1}(i) = \{x \in V(G): f(x) = i\}$ a color class for each $i \in [k]$. Notice that each color class in a proper coloring is an independent set, i.e., a subset of V(G) of pairwise non-adjacent vertices, and hence a *k*-coloring for which any two color classes differ in size by at most *r*. A graph is *r*-equitable *k*-colorable if it has an *r*-equitable *k*-colorable. For a graph *G*, the *r*-equitable chromatic threshold of *G*, denoted by $\chi_{r=}^{*}(G)$, is the smallest integer *k* such that *G* is *r*-equitably *k*-colorable. For a graph *G*, the *r*-equitable chromatic threshold of *G*, denoted by $\chi_{r=}^{*}(G)$, is the smallest integer *k* such that *G* is *r*-equitable chromatic threshold of *G*, denoted by $\chi_{r=}^{*}(G)$, is the smallest integer *k* such that *G* is *r*-equitable colorable. For a graph *G*, the *r*-equitable chromatic threshold of *G*, denoted by $\chi_{r=}^{*}(G)$, is the smallest integer *k* such that *G* is *r*-equitable colorable. For a graph *G*, the concept of *r*-equitable colorability seems a natural generalization of usual equitable colorability (corresponding to r = 1) introduced by Meyer [9] in 1973, it was first proposed recently by Hertz and Ries [6,7], where the authors generalized the characterizations of usual equitable colorability of trees [2] and forests [1] to *r*-equitable colorability. Quite recently, Yen [12] proposed a necessary and sufficient condition for a complete multipartite graph *G* to have an *r*-equitable *k*-coloring and also gave exact values of $\chi_{r=}(G)$ and $\chi_{r=}^{*}(G)$. In particular, they obtained the following results f

* Corresponding author.

http://dx.doi.org/10.1016/j.dam.2014.05.036 0166-218X/© 2014 Elsevier B.V. All rights reserved.

^{*} Supported by the National Natural Science Foundation of China (No. 11301410) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130203120021).

E-mail addresses: xzhang@xidian.edu.cn, xdu.zhang@gmail.com (X. Zhang).

Lemma 1 ([12]). For integers $n, r \ge 1$ and $k \ge m \ge 2$, $K_{m(n)}$ is r-equitably k-colorable if and only if $\left\lceil \frac{n}{\lfloor k/m \rfloor} \right\rceil - \left\lfloor \frac{n}{\lceil k/m \rceil} \right\rfloor \le r$.

Lemma 2 ([12]). For integers $n, r \ge 1$ and $m \ge 2$, we have $\chi_{r=}^*(K_{m(n)}) = m \lceil \frac{n}{\theta+r} \rceil$, where θ is the minimum positive integer such that $\left\lfloor \frac{n}{\theta+1} \right\rfloor < \lceil \frac{n}{\theta+r} \rceil$.

The special case of Lemmas 1 and 2 for r = 1 was obtained by Lin and Chang [8].

For two graphs *G* and *H*, the *Kronecker product* $G \times H$ of *G* and *H* is the graph with vertex set $\{(x, y): x \in V(G), y \in V(H)\}$ and edge set $\{(x, y)(x', y'): xx' \in E(G) \text{ and } yy' \in E(H)\}$. In this paper, we analyze the *r*-equitable colorability of Kronecker product of two complete graphs. We refer to [3,5,8,11] for more studies on the usual equitable colorability of Kronecker products of graphs.

In [4], Duffus et al. showed that if $m \le n$ then $\chi(K_m \times K_n) = m$. From this result, Chen [3] got that $\chi_{=}(K_m \times K_n) = m$ for $m \le n$. Indeed, let $V(K_m \times K_n) = \{(x_i, y_j): i \in [m], j \in [n]\}$. Then we can partition $V(K_m \times K_n)$ into m sets $\{(x_i, y_j): j \in [n]\}$ with i = 1, 2, ..., m, all of which have equal size and are clearly independent. Similarly, for any $r \ge 1$, $\chi_{r=}(K_m \times K_n) = m$ for $m \le n$. However, it is much more difficult to determine the exact value of $\chi_{r=}^*(K_m \times K_n)$, even for r = 1.

Lemma 3 ([8]). For positive integers $m \le n$, we have $\chi^*_{=}(K_m \times K_n) \le \left\lceil \frac{mn}{m+1} \right\rceil$.

In the same paper, Lin and Chang determined the exact values of $\chi_{=}^{*}(K_{2} \times K_{n})$ and $\chi_{=}^{*}(K_{3} \times K_{n})$. Note that the case when m = 1 is trivial since $K_{1} \times K_{n}$ is the empty graph I_{n} and hence $\chi_{=}^{*}(K_{1} \times K_{n}) = 1$. Recently, those results have been improved to the following.

Theorem 4 ([10]). For integers $n \ge m \ge 2$,

$$\chi_{=}^{*}(K_{m} \times K_{n}) = \begin{cases} \lceil \frac{mn}{m+1} \rceil, & \text{if } n \equiv 2, \dots, m-1 \pmod{m+1}; \\ m \lceil \frac{n}{s^{*}} \rceil, & \text{if } n \equiv 0, 1, m \pmod{m+1}, \end{cases}$$

where s^* is the minimum positive integer such that $s^* \nmid n$ and $m \left\lceil \frac{n}{s^*} \right\rceil \leq \left\lceil \frac{mn}{m+1} \right\rceil$.

From the definition of s^* , we see that $s^* \neq 1$ and hence $s^* \geq 2$. Let $\theta = s^* - 1$. Then we can restate Theorem 4 as follows.

Theorem 5. For integers $n \ge m \ge 2$,

$$\chi_{=}^{*}(K_{m} \times K_{n}) = \begin{cases} \lceil \frac{mn}{m+1} \rceil, & \text{if } n \equiv 2, \dots, m-1 \pmod{m+1}; \\ m \lceil \frac{n}{\theta+1} \rceil, & \text{if } n \equiv 0, 1, m \pmod{m+1}, \end{cases}$$

where θ is the minimum positive integer such that $\theta + 1 \nmid n$ and $m \left\lceil \frac{n}{\theta+1} \right\rceil \leq \left\lceil \frac{mn}{m+1} \right\rceil$.

A graph *H* is called a *subgraph* of *G* if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A subgraph *H* is a *spanning subgraph* of *G* if it has the same vertex set as *G*.

Corollary 6. If $n \ge m$ and $n \equiv 2, ..., m - 1 \pmod{m + 1}$ then $\chi^*_{=}(K_m \times K_n) < \chi^*_{=}(K_{m(n)})$.

Proof. Since $K_m \times K_n$ is a spanning subgraph of $K_{m(n)}, \chi_{=}^*(K_m \times K_n) \leq \chi_{=}^*(K_{m(n)})$. Therefore, the corollary follows if we can show $\chi_{=}^*(K_m \times K_n) \neq \chi_{=}^*(K_{m(n)})$. Let n = (m + 1)s + t with $s = \lfloor \frac{n}{m+1} \rfloor$ and $2 \leq t \leq m - 1$. We have $\lceil \frac{mn}{m+1} \rceil = \lceil \frac{m(m+1)s+mt}{m+1} \rceil = \lceil \frac{m(m+1)s+(m+1)t-t}{m+1} \rceil = ms + t + \lceil \frac{-t}{m+1} \rceil = ms + t$. By Theorem 5, $\chi_{=}^*(K_m \times K_n) = \lceil \frac{mn}{m+1} \rceil = ms + t$ and hence *m* is not a factor of $\chi_{=}^*(K_m \times K_n)$. On the other hand, by Lemma 2, *m* is a factor of $\chi_{=}^*(K_{m(n)})$. Therefore, $\chi_{=}^*(K_m \times K_n) \neq \chi_{=}^*(K_{m(n)})$ and hence the proof is complete. \Box

The main purpose of this paper is to obtain the exact value of $\chi_{r=}^*(K_m \times K_n)$ for any $r \ge 1$, which we state as the following theorem.

Theorem 7. For any integers $n \ge m \ge 2$ and $r \ge 1$,

$$\chi_{r=}^{*}(K_{m} \times K_{n}) = \begin{cases} n - r \lfloor \frac{n}{m+r} \rfloor, & \text{if } n \equiv 2, \dots, m-1 \pmod{m+r} \text{ and} \\ & \left\lceil \frac{n}{\lfloor n/(m+r) \rfloor} \right\rceil - \left\lfloor \frac{n}{\lceil n/(m+r) \rceil} \right\rfloor > r; \\ m \lceil \frac{n}{\theta+r} \rceil, & \text{otherwise}, \end{cases}$$

where θ is the minimum positive integer such that $\lfloor \frac{n}{\theta+1} \rfloor < \lceil \frac{n}{\theta+r} \rceil$ and $m \lceil \frac{n}{\theta+r} \rceil \le \min\{n - r \lfloor \frac{n}{m+r} \rfloor, m \lceil \frac{n}{m+r} \rceil\}$.

Theorem 7 agrees with Theorem 5 when r = 1. First, $n - \lfloor \frac{n}{m+1} \rfloor = n + \lceil \frac{-n}{m+1} \rceil = \lceil \frac{(m+1)n-n}{m+1} \rceil = \lceil \frac{mn}{m+1} \rceil$. Second, we claim that $n \equiv 2, ..., m - 1 \pmod{m+1}$ implies $\lceil \frac{n}{\lfloor n/(m+1) \rfloor} \rceil - \lfloor \frac{n}{\lfloor n/(m+1) \rceil} \rfloor > 1$. Let n = (m+1)s + t with $s = \lfloor \frac{n}{m+1} \rfloor$ and $2 \le t \le m-1$. Then (m+1)s < n < (m+1)(s+1) and hence

$$\left\lceil \frac{n}{\lfloor n/(m+1) \rfloor} \right\rceil - \left\lfloor \frac{n}{\lceil n/(m+1) \rceil} \right\rfloor = \left\lceil \frac{n}{s} \right\rceil - \left\lfloor \frac{n}{s+1} \right\rfloor \ge (m+2) - m \ge 2.$$

Finally, we need to check that two definitions of θ in Theorems 5 and 7 are equivalent. Clearly, $\lfloor \frac{n}{\theta+1} \rfloor < \lceil \frac{n}{\theta+1} \rceil$ if and only if $\theta + 1 \nmid n$. Since $m \lceil \frac{n}{m+1} \rceil$ is an integer and $m \lceil \frac{n}{m+1} \rceil \ge \frac{mn}{m+1}$, we have $m \lceil \frac{n}{m+1} \rceil \ge \lceil \frac{mn}{m+1} \rceil$. As we have already shown $n - \lfloor \frac{n}{m+1} \rfloor = \lceil \frac{mn}{m+1} \rceil$, we see that $\min\{n - \lfloor \frac{n}{m+1} \rfloor, m \lceil \frac{n}{m+1} \rceil\} = \lceil \frac{mn}{m+1} \rceil$. This shows that the two definitions of θ are equivalent.

For fixed integers *m* and $r \ge 2$, Theorem 7 can be simplified when *n* is sufficiently large. Compared to Corollary 6, the following theorem indicates that the behaviors of $\chi_{r=}^*(K_{m(n)})$ and $\chi_{r=}^*(K_m \times K_n)$ with $r \ge 2$ are quite different from the case when r = 1.

Theorem 8. For any integers $n \ge m \ge 2$ and $r \ge 2$, if $n \ge \frac{1}{r-1}(m+r)(m+2r-1)$ then $\chi_{r=}^*(K_m \times K_n) = \chi_{r=}^*(K_{m(n)})$, and moreover, $K_m \times K_n$ and $K_{m(n)}$ have the same r-equitable colorability, that is, $K_m \times K_n$ is r-equitably k-colorable if and only if $K_{m(n)}$ is r-equitably k-colorable.

2. Proofs of Theorems 7 and 8

Let us begin with the following

Lemma 9. Let m, n and r be positive integers and let n = (m + r)s + t, where $s = \lfloor \frac{n}{m+r} \rfloor$. Then

 $\min\left\{n-r\left\lfloor\frac{n}{m+r}\right\rfloor, m\left\lceil\frac{n}{m+r}\right\rceil\right\} = \begin{cases}ms+t, & 0 \le t \le m-1,\\m(s+1), & m \le t \le m+r-1.\end{cases}$

Proof. Clearly, $n - r \left| \frac{n}{m+r} \right| = (m+r)s + t - rs = ms + t$ and

$$m\left\lceil\frac{n}{m+r}\right\rceil = \begin{cases} ms, & t = 0, \\ ms+m, & t = 1, \dots, m+r-1 \end{cases}$$

The lemma follows. \Box

Now we give an upper bound for $\chi_{r=}^{*}(K_m \times K_n)$, a generalization of Lemma 3.

Lemma 10. For positive integers $m \le n$ and r, we have $\chi_{r=}^*(K_m \times K_n) \le \min\{n - r\lfloor \frac{n}{m+r} \rfloor, m\lceil \frac{n}{m+r} \rceil\}$.

Proof. Let $\Gamma = \min\{n - r \lfloor \frac{n}{m+r} \rfloor, m \lceil \frac{n}{m+r} \rceil\}$ and let k be any integer with $k \ge \Gamma$. We need to show that $K_m \times K_n$ is r-equitably k-colorable. Since $\chi_{r=}^*(K_m \times K_n) \le \chi_{=}^*(K_m \times K_n)$ and $\lceil \frac{mn}{m+1} \rceil \le n$, Lemma 3 implies $\chi_{r=}^*(K_m \times K_n) \le n$. Therefore, we further may assume $k \le n$ and hence $\Gamma \le k \le n$. Let $V(K_m \times K_n) = \{(x_i, y_j): i \in [m], j \in [n]\}$ and n = (m + r)s + t, where $s = \lfloor \frac{n}{m+t} \rfloor$.

 $Case 1: 0 \le t \le m - 1.$

By Lemma 9, $\Gamma = ms + t$. Let $V_j = \{(x_i, y_j): i \in [m]\}$ for $1 \le j \le k - ms$. By the definition of Kronecker products, each V_j is an independent set. Let n' = n - (k - ms). Since $ms + t = \Gamma \le k \le n$, we have $ms \le n' \le n - t = (m + r)s$ and hence

$$m \le \left\lfloor \frac{n'}{s} \right\rfloor \le \left\lceil \frac{n'}{s} \right\rceil \le m + r.$$
⁽¹⁾

Let $U_i = \{(x_i, y_j): k - ms + 1 \le j \le n\}$ for i = 1, 2, ..., m. Clearly each U_i is an independent set of size n'. Therefore, we can partition each U_i with i = 1, 2, ..., m into s independent sets, each of which has size $\lfloor \frac{n'}{s} \rfloor$ or $\lfloor \frac{n'}{s} \rfloor$. In this way, we partition $\bigcup_{i=1}^{m} U_i$ into ms independent sets and all of these sets have sizes between m and m + r because of (1). Since each V_j with $1 \le j \le k - ms$ is of size m, combining $V_1, ..., V_{k-ms}$ with these ms independent sets gives an r-equitable k-coloring of $K_m \times K_n$.

Case 2: $m \le t \le m + r - 1$.

By Lemma 9, $\overline{\Gamma} = m(s+1)$ and hence $m(s+1) \le k \le n$. Let $V_j = \{(x_i, y_j): i \in [m]\}$ for $1 \le j \le k - m(s+1)$. Clearly, each V_j is an independent set of size m. Let n' = n - (k - m(s+1)). Since $m(s+1) \le k \le n$, we have $m(s+1) \le n' \le n = (m+r)s + t \le (m+r)(s+1)$ and hence

$$m \le \left\lfloor \frac{n'}{s+1} \right\rfloor \le \left\lceil \frac{n'}{s+1} \right\rceil \le m+r.$$
⁽²⁾

Let $U_i = \{(x_i, y_j): k - m(s + 1) + 1 \le j \le n\}$ for i = 1, 2, ..., m. Clearly each U_i is an independent set of size n'. Similar to that of Case 1, from (2), we can partition $\bigcup_{i=1}^m U_i$ into m(s + 1) independent sets of sizes between m and m + r. Combining $V_1, ..., V_{k-m(s+1)}$ with these m(s + 1) independent sets gives an r-equitable k-coloring of $K_m \times K_n$. \Box

Since $K_m \times K_n$ is a spanning subgraph of $K_{m(n)}$, any *r*-equitable *k*-coloring of $K_{m(n)}$ yields an *r*-equitable *k*-coloring of $K_m \times K_n$. The following lemma indicates that the converse is also true under the assumption that *k* is less than the upper bound given in Lemma 10.

Lemma 11. For positive integers $m \ge 2, s, \theta, n$ and r, if $K_m \times K_n$ is r-equitably k-colorable for some $k < \min\{n - r \lfloor \frac{n}{m+r} \rfloor, m \lceil \frac{n}{m+r} \rceil\}$, then $K_{m(n)}$ is also r-equitably k-colorable.

Proof. Let $V(K_m \times K_n) = V(K_{m(n)}) = \{(x_i, y_j): i \in [m], j \in [n]\}$. Let *c* be any *r*-equitable *k*-coloring of $K_m \times K_n$ with $k < \min\{n - r\lfloor \frac{n}{m+r} \rfloor, m\lceil \frac{n}{m+r} \rceil\}$. It suffices to show that each color class of *c* is a subset of $\{(x_i, y_j): j \in [n]\}$ for some $i \in [m]$. Let ℓ denote the number of color classes, each of which is a subset of $\{(x_i, y_j): i \in [m]\}$ for some $j \in [n]$. Note that, each independent set of $V(K_m \times K_n)$ is either a subset of $\{(x_i, y_j): j \in [n]\}$ for some $i \in [m]$ or a subset of $\{(x_i, y_j): i \in [m]\}$ for some $j \in [n]$. Therefore, we only need to prove $\ell = 0$. Suppose to the contrary that $\ell > 0$ and let U_1, \ldots, U_ℓ be such color classes defined above. Since any two color classes of *c* differ in size by at most *r* and some color classes contained in $W_i = \{(x_i, y_j): j \in [n]\} \setminus \bigcup_{p=1}^{\ell} U_p$. Since $|W_i| \ge n - \ell$, we have $k_i \ge \lceil \frac{n-\ell}{m+r} \rceil$. Therefore, $k = k_1 + \cdots + k_m + \ell \ge m\lceil \frac{n-\ell}{m+r} \rceil + \ell$.

Define $a_q = m \left\lceil \frac{n-q}{m+r} \right\rceil + q$ for $q \ge 0$. Since $a_{q+m+r} = m \left\lceil \frac{n-q-m-r}{m+r} \right\rceil + q + m + r = m \left\lceil \frac{n-q}{m+r} \right\rceil + q + r = a_q + r > a_q$, the minimum of $\{a_q: q \ge 0\}$ exists and is achieved by a_q for some $q \in \{0, 1, \dots, m+r-1\}$. Therefore, $k \ge a_\ell \ge \min\{a_0, a_1, \dots, a_{m+r-1}\}$. Let n = (m+r)s + t with $s = \lfloor \frac{n}{m+r} \rfloor$. Now, $a_q = m \lceil \frac{n-q}{m+r} \rceil + q = ms + m \lceil \frac{t-q}{m+r} \rceil + q$. We will distinguish two cases.

Case 1: $0 \le t \le m - 1$.

We claim in this case that $\min\{a_0, a_1, \dots, a_{m+r-1}\} = ms + t$ and hence $k \ge ms + t$. Clearly, $a_t = ms + t$. If $0 \le q \le t - 1$ then $a_q = ms + m \left\lceil \frac{t-q}{m+r} \right\rceil + q \ge ms + m > ms + t$. If $t + 1 \le q \le m+r-1$ then $t - q \ge 0 - (m+r-1) > -(m+r)$ and hence $a_q = ms + m \left\lceil \frac{t-q}{m+r} \right\rceil + q \ge ms + q > ms + t$. On the other hand, by Lemma 9, we have $\min\{n - r \lfloor \frac{n}{m+r} \rfloor, m \lceil \frac{n}{m+r} \rceil\} = ms + t$. This is a contradiction to our assumption that $k < \min\{n - r \lfloor \frac{n}{m+r} \rfloor, m \lceil \frac{n}{m+r} \rceil\}$.

Case 2: $m \le t \le m + r - 1$.

We claim in this case that $\min\{a_0, a_1, \ldots, a_{m+r-1}\} = m(s+1)$ and hence $k \ge m(s+1)$. Clearly, $a_0 = ms + m\left\lceil \frac{t}{m+r} \right\rceil = m(s+1)$. If $1 \le q \le t-1$ then $a_q = ms + m\left\lceil \frac{t-q}{m+r} \right\rceil + q \ge ms + m+1 > m(s+1)$. If $t \le q \le m+r-1$ then $a_q = ms + m\left\lceil \frac{t-q}{m+r} \right\rceil + q = ms + q \ge ms + t \ge m(s+1)$. Similarly, by Lemma 9, we have $\min\{n-r\lfloor \frac{n}{m+r} \rfloor, m\left\lceil \frac{n}{m+r} \right\rceil\} = m(s+1)$, a contradiction. \Box

Lemmas 10 and 11 reduce the *r*-equitable colorability of $K_m \times K_n$ to that of $K_{m(n)}$. We need the following two results on *r*-equitable colorability of $K_{m(n)}$.

Lemma 12. If m, n, r and θ are positive integers with $m \ge 2$ and $\lfloor \frac{n}{\theta+1} \rfloor < \lceil \frac{n}{\theta+r} \rceil$, then $K_{m(n)}$ is not r-equitably $\left(m \lceil \frac{n}{\theta+r} \rceil - i\right)$ -colorable for $1 \le i < m$.

Proof. Let $q = \left\lceil \frac{n}{\theta+r} \right\rceil$. If $\theta + r \mid n$, then $\left\lceil \frac{n}{\theta+r} \right\rceil = \frac{n}{\theta+r} \le \frac{n}{\theta+1}$, yielding $\left\lceil \frac{n}{\theta+r} \right\rceil \le \left\lfloor \frac{n}{\theta+1} \right\rfloor$, a contradiction to the assumption of this lemma. Hence $\theta + r \nmid n$. Now we have $q = \left\lceil \frac{n}{\theta+r} \right\rceil > \frac{n}{\theta+1} \ge \frac{n}{\theta+r} > \left\lfloor \frac{n}{\theta+r} \right\rfloor = q - 1$. Consequently, $\frac{n}{q} < \theta + 1$ and $\frac{n}{q-1} > \theta + r$. Note that we may assume $q - 1 \neq 0$ since the lemma trivially follows when q = 1. Therefore, $\left\lceil \frac{n}{\lfloor (mq-i)/m \rfloor} \right\rceil - \left\lfloor \frac{n}{\lceil (mq-i)/m \rceil} \right\rfloor = \left\lceil \frac{n}{q-1} \right\rceil - \left\lfloor \frac{n}{q} \right\rfloor \ge (\theta + r + 1) - \theta = r + 1$ for $1 \le i < m$. By Lemma 1, $K_{m(n)}$ is not r-equitably $\left(m \left\lceil \frac{n}{\theta+r} \right\rceil - i\right)$ -colorable. \Box

Lemma 13. For positive integers $m \ge 2$, s, θ , n and r, if $K_{m(n)}$ is not r-equitably k-colorable for some $k \ge m \left\lceil \frac{n}{\theta + r} \right\rceil$, then there is a positive integer θ' such that $\left\lfloor \frac{n}{\theta' + 1} \right\rfloor < \left\lceil \frac{n}{\theta' + r} \right\rceil$, $\left\lceil \frac{n}{\theta' + r} \right\rceil = \left\lceil \frac{k}{m} \right\rceil$ and $\theta' < \theta$.

Proof. By Lemma 1, $\left\lceil \frac{n}{\lfloor k/m \rfloor} \right\rceil - \left\lfloor \frac{n}{\lceil k/m \rceil} \right\rfloor > r$. Hence, $\frac{n}{\lfloor k/m \rfloor} > \theta' + r > \theta' + r - 1 > \cdots > \theta' + 1 > \frac{n}{\lceil k/m \rceil}$ for some nonnegative integer θ' and so

$$\left\lceil \frac{k}{m} \right\rceil > \frac{n}{\theta' + 1} > \dots > \frac{n}{\theta' + r} > \left\lfloor \frac{k}{m} \right\rfloor.$$
(3)

If $\theta' = 0$ then the first inequality of (3) implies k > mn and hence $K_{m(n)}$ is clearly *r*-equitably *k*-colorable, a contradiction. Thus, $\theta' > 0$. By (3), we see $\left\lceil \frac{k}{m} \right\rceil > \left\lfloor \frac{k}{m} \right\rfloor$ and hence $\left\lceil \frac{k}{m} \right\rceil = \left\lfloor \frac{k}{m} \right\rfloor + 1$. Also from (3), we have $\left\lceil \frac{n}{\theta'+r} \right\rceil = \left\lceil \frac{k}{m} \right\rceil$ and $\left\lfloor \frac{n}{\theta'+1} \right\rfloor = \left\lfloor \frac{k}{m} \right\rfloor < \left\lceil \frac{n}{\theta'+r} \right\rceil$. Finally, $\frac{n}{\theta'+r} > \left\lfloor \frac{k}{m} \right\rfloor \ge \left\lfloor \frac{m}{\theta} \right\rceil \frac{n}{\theta+r} \right\rceil = \left\lceil \frac{n}{\theta+r} \right\rceil \ge \frac{n}{\theta+r}$ implying $\theta' < \theta$. \Box

Proof of Theorem 7. Let $\Gamma = \min\{n - r\lfloor \frac{n}{m+r} \rfloor, m\lceil \frac{n}{m+r} \rceil\}$ and n = (m+r)s + t, where $s = \lfloor \frac{n}{m+r} \rfloor$. We divide the proof into two cases.

Case 1: $n \equiv 2, ..., m - 1 \pmod{m+r}$ and $\left\lceil \frac{n}{\lfloor n/(m+r) \rfloor} \right\rceil - \left\lfloor \frac{n}{\lfloor n/(m+r) \rfloor} \right\rfloor > r$.

Note that $2 \le t \le m - 1$ from the first condition of this case. By Lemmas 10 and 9, $\chi_{r=}^*(K_m \times K_n) \le \Gamma = ms + t$. Let k = ms + t - 1. We need to show that $K_m \times K_n$ is not *r*-equitably *k*-colorable. Noting $k < \Gamma$, it suffices to show that $K_{m(n)}$ is not *r*-equitably *k*-colorable by Lemma 11.

Since $2 \le t \le m - 1$ and k = ms + t - 1, we have ms < k < m(s + 1). Consequently, $\lfloor \frac{k}{m} \rfloor = s$ and $\lceil \frac{k}{m} \rceil = s + 1$. Since $\lfloor \frac{n}{m+r} \rfloor = s$ and $\lceil \frac{n}{m+r} \rceil = s + 1$, we have $\lceil \frac{n}{\lfloor k/m \rfloor} \rceil - \lfloor \frac{n}{\lfloor k/m \rceil} \rfloor = \lceil \frac{n}{s} \rceil - \lfloor \frac{n}{s+1} \rfloor = \lceil \frac{n}{\lfloor n/(m+r) \rfloor} \rceil - \lfloor \frac{n}{\lfloor n/(m+r) \rceil} \rfloor > r$ from the last condition of this case. Therefore, by Lemma 1, $K_{m(n)}$ is not *r*-equitably *k*-colorable. This completes the proof of this case.

Case 2: $n \equiv 0, 1, m, m+1, ..., m+r-1 \pmod{m+r}$, or $n \equiv 2, ..., m-1 \pmod{m+r}$ and $\left\lceil \frac{n}{\lfloor n/(m+r) \rfloor} \right\rceil - \left\lfloor \frac{n}{\lceil n/(m+r) \rceil} \right\rfloor \le r$. Since $\lfloor \frac{n}{\theta+1} \rfloor < \lceil \frac{n}{\theta+r} \rceil$, by Lemma 12, $K_{m(n)}$ is not *r*-equitably $\left(m \lceil \frac{n}{\theta+r} \rceil - 1\right)$ -colorable. Since $m \lceil \frac{n}{\theta+r} \rceil - 1 < \Gamma$ from the definition of θ in Theorem 7, by Lemma 11, $K_m \times K_n$ is not *r*-equitably $\left(m \lceil \frac{n}{\theta+r} \rceil - 1\right)$ -colorable. In the following, we prove that $K_m \times K_n$ is *r*-equitably *k*-colorable for all $k \ge m \lceil \frac{n}{\theta+r} \rceil$, which implies that $\chi_{r=}^*(K_m \times K_n) = m \lceil \frac{n}{\theta+r} \rceil$.

Suppose to the contrary that $K_m \times K_n$ (and hence $K_{m(n)}$) is not *r*-equitably *k*-colorable for some $k \ge m \lceil \frac{n}{\theta+r} \rceil$. By Lemma 10, $k < \Gamma$. By Lemma 13, there is a positive integer θ' such that $\lfloor \frac{n}{\theta'+1} \rfloor < \lceil \frac{n}{\theta'+r} \rceil$, $\lceil \frac{n}{\theta'+r} \rceil = \lceil \frac{k}{m} \rceil$ and $\theta' < \theta$. By the minimality of θ , $m \lceil \frac{n}{\theta'+r} \rceil > \Gamma$. We show that each of the following three subcases yields a contradiction.

Subcase 2.1:
$$n \equiv 0$$
, 1(mod $m + r$), i.e., $t = 0$, 1.

By Lemma 9, $\Gamma = ms + t$. Since $k < \Gamma$ we see $k < ms + t \le ms + 1$, and hence $k \le ms$. Therefore, $m \lfloor \frac{n}{\theta' + r} \rfloor = m \lfloor \frac{k}{m} \rfloor \le ms \le \Gamma$. This is a contradiction.

Subcase 2.2: $n \equiv m, \dots, m+r-1 \pmod{m+r}$, i.e., $t = m, \dots, m+r-1$. By Lemma 9, $\Gamma = m(s+1)$. Hence k < m(s+1) and $m \lceil \frac{n}{\theta'+r} \rceil = m \lceil \frac{k}{m} \rceil \le m(s+1) \le \Gamma$. This is a contradiction.

Subcase 2.3: $n \equiv 2, ..., m - 1 \pmod{m+r}$ and $\left\lceil \frac{n}{\lfloor n/(m+r) \rfloor} \right\rceil - \left\lfloor \frac{n}{\lfloor n/(m+r) \rfloor} \right\rfloor \le r$.

By Lemma 9, $\Gamma = ms + t$. If $k \le ms$ then $m \lceil \frac{n}{\theta' + r} \rceil = m \lceil \frac{k}{m} \rceil \le ms \le \Gamma$, a contradiction. Now assume that k > ms. Since $k < \Gamma = ms + t$, we have ms < k < ms + t < m(s + 1), yielding $\lfloor \frac{k}{m} \rfloor = s$ and $\lceil \frac{k}{m} \rceil = s + 1$. Consequently, by the second condition of this subcase, $\lceil \frac{n}{\lfloor k/m \rfloor} \rceil - \lfloor \frac{n}{\lceil k/m \rceil} \rfloor = \lceil \frac{n}{s} \rceil - \lfloor \frac{n}{s+1} \rfloor = \lceil \frac{n}{\lfloor n/(m+r) \rfloor} \rceil - \lfloor \frac{n}{\lfloor n/(m+r) \rceil} \rfloor \le r$. Therefore, $K_{m(n)}$ is *r*-equitably *k*-colorable. This is a contradiction. \Box

Proof of Theorem 8. Comparing Theorem 7 with Lemma 2, it suffices to show, for the first part, that under the assumption of this theorem, the following two statements hold:

(i) $\left\lceil \frac{n}{\lfloor n/(m+r) \rfloor} \right\rceil - \left\lfloor \frac{n}{\lceil n/(m+r) \rceil} \right\rfloor \le r;$ (ii) if $\lfloor \frac{n}{\theta+1} \rfloor < \lceil \frac{n}{\theta+r} \rceil$ then $m \lceil \frac{n}{\theta+r} \rceil \le \min\{n - r \lfloor \frac{n}{m+r} \rfloor, m \lceil \frac{n}{m+r} \rceil\}.$

By the assumption that $n \ge \frac{1}{r-1}(m+r)(m+2r-1)$, we have $(r-1)\frac{n}{m+r} \ge m+2r-1$, yielding

$$(r-1)\left\lfloor \frac{n}{m+r} \right\rfloor > (r-1)\frac{n}{m+r} - (r-1) \ge (m+2r-1) - (r-1) = m+r.$$

Multiplying the first and last term of the inequality by $\left\lceil \frac{n}{m+r} \right\rceil$ gives

$$(r-1)\left\lfloor \frac{n}{m+r} \right\rfloor \left\lceil \frac{n}{m+r} \right\rceil > (m+r)\left\lceil \frac{n}{m+r} \right\rceil \ge n \ge \left(\left\lceil \frac{n}{m+r} \right\rceil - \left\lfloor \frac{n}{m+r} \right\rfloor \right) n.$$

Dividing by $\lfloor \frac{n}{m+r} \rfloor \lceil \frac{n}{m+r} \rceil$ leads to $\frac{n}{\lfloor n/(m+r) \rfloor} - \frac{n}{\lceil n/(m+r) \rceil} < r - 1$. Hence, $\lceil \frac{n}{\lfloor n/(m+r) \rfloor} \rceil - \lfloor \frac{n}{\lceil n/(m+r) \rfloor} \rfloor < r + 1$, which implies (i).

Now we assume further $\lfloor \frac{n}{\theta+1} \rfloor < \lceil \frac{n}{\theta+r} \rceil$ and show $m \lceil \frac{n}{\theta+r} \rceil \le \min\{n - r \lfloor \frac{n}{m+r} \rfloor, m \lceil \frac{n}{m+r} \rceil\}$. If $\frac{n}{\theta+1} - \frac{n}{\theta+r} \ge 1$ then $\lfloor \frac{n}{\theta+1} \rfloor \ge \lfloor \frac{n}{\theta+r} + 1 \rfloor \ge \lceil \frac{n}{\theta+r} \rceil$, a contradiction. Hence $\frac{n}{\theta+1} - \frac{n}{\theta+r} < 1$. Multiplying by $(\theta + 1)(\theta + r)$ gives $(\theta + 1)(\theta + r) > (r - 1)n \ge (m + r)(m + 2r - 1)$, implying $\theta > m + r - 1$. Hence $m \lceil \frac{n}{\theta+r} \rceil \le m \lceil \frac{n}{m+r} \rceil$. It remains

to show $m\left\lceil \frac{n}{\theta+r}\right\rceil \le n-r\left\lfloor \frac{n}{m+r}\right\rfloor$. Since $\theta > m+r-1$ and $n \ge \frac{1}{r-1}(m+r)(m+2r-1)$, we have

$$m\left\lceil \frac{n}{\theta+r}\right\rceil + r\left\lfloor \frac{n}{m+r}\right\rfloor - n \le m\left\lceil \frac{n}{m+2r-1}\right\rceil + \left(r\frac{n}{m+r} - n\right)$$
$$\le m\left(1 + \frac{n}{m+2r-1}\right) - m\frac{n}{m+r}$$
$$= m\left(1 - \frac{(r-1)n}{(m+r)(m+2r-1)}\right)$$
$$< 0,$$

as desired.

Since $K_m \times K_n$ is a spanning subgraph of $K_{m(n)}$, $K_{m(n)}$ has an *r*-equitable *k*-coloring only if $K_m \times K_n$ has an *r*-equitable *k*-coloring. Suppose that $K_m \times K_n$ is *r*-equitably *k*-colorable for some integer *k*. If $k \ge \chi_{r=}^*(K_m \times K_n)$ then $k \ge \chi_{r=}^*(K_{m(n)})$, since $\chi_{r=}^*(K_m \times K_n) = \chi_{r=}^*(K_{m(n)})$, and hence $K_{m(n)}$ is *r*-equitably *k*-colorable. If $k < \chi_{r=}^*(K_m \times K_n)$, then $k < \min\{n - r\lfloor \frac{n}{m+r} \rfloor\}$ by Lemma 10. Therefore, Lemma 11 implies that $K_{m(n)}$ is *r*-equitably *k*-colorable. This completes the proof of Theorem 8. \Box

Acknowledgments

The authors thank the referees for their careful reading and valuable suggestions.

References

- [1] G.J. Chang, A note on equitable colorings of forests, European J. Combin. 30 (2009) 809-812.
- [2] B.-L. Chen, K.-W. Lih, Equitable coloring of trees, J. Combin. Theory Ser. B 61 (1994) 83-87.
- [3] B.-L. Chen, K.-W. Lih, J.-H. Yan, Equitable coloring of interval graphs and products of graphs, arXiv:0903.1396v1.
- [4] D. Duffus, B. Sands, R.E. Woodrow, On the chromatic number of the product of graphs, J. Graph Theory 9 (4) (1985) 487–495.
- [5] H. Furmańczyk, Equitable colorings of graph products, Opuscula Math. 26 (2006) 31-44.
- [6] A. Hertz, B. Ries, On r-equitable colorings of trees and forests, Les Cahiers du GERAD, 2011, G-2011-40.
- [7] A. Hertz, B. Ries, A note on r-equitable k-colorings of trees, Yugosl. J. Oper. Res. (2014). http://dx.doi.org/10.2298/YJOR130704039H. in press.
- [8] W.-H. Lin, G.J. Chang, Equitable colorings of Kronecker products of graphs, Discrete Appl. Math. 158 (2010) 1816–1826.
- [9] W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973) 920-922.
- [10] Z. Yan, W. Wang, Equitable chromatic threshold of direct products of complete graphs, Ars Combin. Accept on 13 August 2013.
- [11] Z. Yan, W. Wang, Equitable coloring of Kronecker products of complete multipartite graphs and complete graphs, Discrete Appl. Math. 162 (2014)
- 328–333. [12] C.-H. Yen, On *r*-equitable coloring of complete multipartite graphs, Taiwanese J. Math. 13 (2013) 991–998.