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graphs G and H. In this paper, we completely determine the exact value of x; (K, x K,) for
general m, nandr. As a consequence, we show that forr > 2,ifn > ﬁ (m+r)y(m+2r—1)

g:ﬁﬁgﬁ:mlormg then K, X K,, and its spanning supergraph Kn ) have the same r-equitable colorability, and
r-Equitable coloring in particular x;_ (K X Kn) = X;_ (Kin(n)), Where Kin(n) is the complete m-partite graph with
r-Equitable chromatic threshold n vertices in each part.

Kronecker product © 2014 Elsevier B.V. All rights reserved.

Complete graph

1. Introduction

All graphs considered in this paper are finite, undirected and simple. Let G be a graph with vertex set V(G) and edge set
E(G). For a positive integer k, let [k] = {1, 2, ..., k}. A (proper) k-coloring of G is a mapping f : V(G) — [k] such that
f(x) # f(y) whenever xy € E(G). The chromatic number of G, denoted by yx (G), is the smallest integer k such that G admits
a k-coloring. We call the set f~1(i) = {x € V(G):f(x) = i} a color class for each i € [k]. Notice that each color class in
a proper coloring is an independent set, i.e., a subset of V(G) of pairwise non-adjacent vertices, and hence a k-coloring is
a partition of V(G) into k independent sets. For a fixed positive integer r, an r-equitable k-coloring of G is a k-coloring for
which any two color classes differ in size by at most r. A graph is r-equitably k-colorable if it has an r-equitable k-coloring.
The r-equitable chromatic number of G, denoted by x,—(G), is the smallest integer k such that G is r-equitably k-colorable.
For a graph G, the r-equitable chromatic threshold of G, denoted by x;* (G), is the smallest integer k such that G is r-equitably
k’-colorable for all k¥ > k. Although the concept of r-equitable colorability seems a natural generalization of usual equitable
colorability (corresponding to r = 1) introduced by Meyer [9] in 1973, it was first proposed recently by Hertz and Ries [6,7],
where the authors generalized the characterizations of usual equitable colorability of trees [2] and forests [1] to r-equitable
colorability. Quite recently, Yen [12] proposed a necessary and sufficient condition for a complete multipartite graph G to
have an r-equitable k-coloring and also gave exact values of x,—(G) and x;_(G). In particular, they obtained the following
results for Ky ), where K,y denotes the complete m-partite graph with n vertices in each part.
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Lemma 1 ([12]). For integersn,r > 1and k > m > 2, Kin(n) is r-equitably k-colorable if and only if {WL”U—I - LWLMJ <r

Lemma 2 ([12]). For integers n,r > 1and m > 2, we have x;" (Knmn) = m[ﬁr], where 6 is the minimum positive integer
such that | 71 | < [751.

The special case of Lemmas 1 and 2 for r = 1 was obtained by Lin and Chang [8].

For two graphs G and H, the Kronecker product G x H of G and H is the graph with vertex set {(x, y): x € V(G),y € V(H)}
and edge set {(x,y)(x',¥):xxX' € E(G) andyy’ € E(H)}. In this paper, we analyze the r-equitable colorability of Kronecker
product of two complete graphs. We refer to [3,5,8,11] for more studies on the usual equitable colorability of Kronecker
products of graphs.

In [4], Duffus et al. showed that if m < n then x (K, x K;;) = m. From this result, Chen [3] got that x_ (K, x K,) = m for
m < n.Indeed, let V(Kn x K,) = {(x;,y;): i € [m],j € [n]}. Then we can partition V (K, x K;) into m sets {(x;, y;): j € [n]}
withi =1, 2, ..., m,all of which have equal size and are clearly independent. Similarly, for any r > 1, x,—(K;;, X K,) = m
for m < n. However, it is much more difficult to determine the exact value of x;°_ (K, x K;), even forr = 1.

mn
m+1 1

Lemma 3 ([8]). For positive integers m < n, we have x* (K, x K;) < (

In the same paper, Lin and Chang determined the exact values of x* (K; x K;;) and x* (K5 x K;). Note that the case when
m = 1is trivial since K; x K}, is the empty graph I, and hence x* (K; x K;) = 1. Recently, those results have been improved
to the following.

Theorem 4 ([10]). For integersn > m > 2,
mn

|—m +1

m|—sﬁ*-|, ifn=0,1, m(mod m+ 1),

1. ifn=2,....,m—1(mod m+ 1);
XE(Km x Kp) =

mn

where s* is the minimum positive integer such that s* f nand m|[ %] < [ ).

From the definition of s*, we see that s* # 1 and hence s* > 2.Let § = s* — 1. Then we can restate Theorem 4 as follows.

Theorem 5. For integersn > m > 2,

[

mf

mn

m+1
n

0+1

1. ifn=2,...,m—1(mod m+ 1);
XZ(Kin x Ky) =

|, ifn=0,1,m@modm+ 1),

where 0 is the minimum positive integer such that 6 + 1{ nand m| 7| < [ 4],
A graph H is called a subgraph of Gif V(H) C V(G) and E(H) C E(G). A subgraph H is a spanning subgraph of G if it has

the same vertex set as G.

Corollary 6. If n > mandn=2,...,m — 1(mod m + 1) then x* (Kn x Ky) < xZ (Km(n))-
Proof. Since K, x K; is a spanning subgraph of Knm), xZ(Km X K;) < xZ(Kne)). Therefore, the corollary follows if

we can show x*(Kn x Kp) # x*(Kmm).letn = (m+ Ds+twiths = |-I5|and2 < t < m — 1. We have

] = m(’";l)f*'mﬂ = |'m(m+1)fn++(']"+m‘[ =ms+t+[ =] = ms+t.By Theorem 5, x* (Kp x Ky) = [ ;2% ] = ms+t

and hence m is not a factor of x*(K; x K;). On the other hand, by Lemma 2, m is a factor of xZ* (Ky). Therefore,
X2 (Km x Kn) # xZ(Kmen) and hence the proof is complete. O

The main purpose of this paper is to obtain the exact value of x;* (K x K,) for any r > 1, which we state as the following
theorem.

Theorem 7. For any integersn > m > 2andr > 1,

n
n—rl——~] ¥n=2....m—1(modm+r)and

Xr= (K x Ky) = “n/(n,:jL r)J-‘ B \Jn/(r:—i— rﬂJ -

n .
m| . 1. otherwise,

where 6 is the minimum positive integer such that | 725 | < [ 74 ] and m| 78] < min{n —r| 2= |, m[ ;2 1)
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Theorem 7 agrees with Theorem 5 when r = 1.First,n — [ 25 | = n+ [ =% ] = (mfnm 1] = [ ;m]. Second, we

claimthatn = 2, ..., m — 1(mod m + 1) implies {Ln/(nnlﬂn—l — Ln/(m-HﬂJ > 1.Letn = (m+ 1)s + t withs = [
and2 <t<m-—1.Then(m+ 1)s <n < (m+ 1)(s + 1) and hence

L”/(mnH)JW - Ln/(mnﬂ)]J - EW B LLJ >(m+2)—m>2.

Finally, we need to check that two definitions of 6 in Theorems 5 and 7 are equivalent. Clearly, | 745 | < [ 7% | if and only

m+1

if & + 1 { n. Since m(m”+1-| is an integer and m(m"ﬂ—| > L we have m[m+1—| > [m+1—| As we have already shown

n— |5 =[], we see that min{n — | -t |, m[ 25} = [ ]. This shows that the two definitions of 6 are
equivalent.

For fixed integers m and r > 2, Theorem 7 can be simplified when n is sufficiently large. Compared to Corollary 6, the
following theorem indicates that the behaviors of x;_ (K@) and x;° (K x K,,) with r > 2 are quite different from the case
whenr = 1.

Theorem 8. For any integersn > m > 2andr > 2,if n > ﬁ(m +r)(m+ 2r — 1) then x;_ (K x Ky) = x}_ (Kp(n)), and
moreover, Ky, X K, and Ki,ny have the same r-equitable colorability, that is, K, % K, is r-equitably k-colorable if and only if Kinny
is r-equitably k-colorable.

2. Proofs of Theorems 7 and 8

Let us begin with the following

Lemma 9. Let m, n and r be positive integers and let n = (m +r)s + t, wheres:L
min n—r{ n Jm( n “ _ms+t, 0<t<m-—1,
m+rd Am+rl| |mGs+1), m<t<m+r-—1

Proof. Clearly,n —r| ;2= | = (m+1)s+t —rs =ms+ t and

|- Then

m-+r

m{ n “_ ms t=0,
marl |ms+m, t=1...,m+r—1
The lemma follows. O

Now we give an upper bound for x;_ (K, x K;), a generalization of Lemma 3.
Lemma 10. For positive integers m < n and r, we have x;_(Kmn x Ky) < min{n — r| 21 |, m[ -1}

Proof. Let I' = minfn—r| ;1 |, (m’l 1} and letk be any integer with k > I'. We need to show that K,,, x K, is r-equitably

k-colorable. Since x,"_ * (K x K,) < n.Therefore, we further
may assume k < n and hence F < k 5 n. Let V(K >< K) = {(x,,y])' ie[m],je [n]}andn = (m+ r)s + t, where
s=|ag )

Case1:0<t<m-—1.

By Lemma9, I' = ms+t.Let V; = {(x;, ¥;): i € [m]} for 1 < j < k — ms. By the definition of Kronecker products, each V;
is an independent set. Letn’ = n — (k — ms).Sincems +t = I" <k <n,wehavems <n’ <n—t = (m+ r)s and hence

/ /

n n
msL—Js{—-‘sm—i-r. (m
S s
LetU; = {(x;, ¥)): k—ms+1 <j <n}fori=1,2,..., m.Clearly each U; is an independent set of size n’. Therefore, we can
partition each U; withi = 1, 2, ..., minto s independent sets, each of which has size L“?/J or ("?/1. In this way, we partition
UL, U; into ms independent sets and all of these sets have sizes between m and m + r because of (1). Since each V; with
1 <j < k — ms is of size m, combining V1, ..., Vi_ns with these ms independent sets gives an r-equitable k-coloring of
Kin X K.

Case2:m<t<m+r—1.

By Lemma 9, " = m(s+ 1) and hence m(s +1) < k < n.LetV; = {(x;,yj): i € [ml}for1 <j < k—m(s+ 1).
Clearly, each V; is an independent set of size m. Let n’ = n — (k — m(s + 1)). Since m(s + 1) < k < n, we have
mis+1) <n<n=@m+r)s+t < (m-+r)(s+ 1) and hence

/ /

e |2 <[ eme
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Let Uy = {(x;,yj): k—m(s+1)+1<j <n}fori=1,2,...,m.Clearly each U; is an independent set of size n’. Similar to
that of Case 1, from (2), we can partition U ; U; into m(s + 1) independent sets of sizes between m and m + r. Combining
Vi, ..., Vicme+1) with these m(s + 1) independent sets gives an r-equitable k-coloring of K, x K,. O

Since K, x K, is a spanning subgraph of Ky, any r-equitable k-coloring of K, yields an r-equitable k-coloring of
K, x K. The following lemma indicates that the converse is also true under the assumption that k is less than the upper
bound given in Lemma 10.

Lemma 11. For positive integers m > 2,s,0,n and r, if K, x K, is r-equitably k-colorable for some k < min{n —
r| 7= |, m[ 5]}, then Kingy is also r-equitably k-colorable.

Proof. Let V(Ky, x Kp) = V(Knm) = {(xi,y;)): i € [m], j € [n]}. Let c be any r-equitable k-coloring of K;;, x K;, with
k < min{n —r| ;2= |, m[ -E-1}. It suffices to show that each color class of ¢ is a subset of {(x;, y): j € [n]} for some i € [m].
Let £ denote the number of color classes, each of which is a subset of {(x;, y;): i € [m]} for some j € [n]. Note that, each
independent set of V (K, x K,) is either a subset of {(x;, y;): j € [n]} for some i € [m] or a subset of {(x;,y;): i € [m]} for
some j € [n]. Therefore, we only need to prove £ = 0. Suppose to the contrary that £ > 0 and let Uy, . .., Uy be such color
classes defined above. Since any two color classes of ¢ differ in size by at most r and some color class, say Uj, contains at
most m vertices, each color class is of the size at most m +r. For each i € [m], let k; be the number of color classes contained
inW; = {(x;,y): j € [n]}\ Uf;:] Up. Since |W;| > n — £, we have k; > -t ky + € >
m[ 2] + ¢

Define ag = m[ 124 + g for g > 0.Since agymir = m["=02=] +q+m+r =m[ 4] +q+r =a,+r1 > a,

the minimum of {a;: ¢ > 0} exists and is achieved by a, for some g € {0,1,...,m 4+ r — 1}. Therefore, k > a, >
min{ag, a1, ..., Gmer—1}. Letn = (m 4+ r)s + t withs = Lm+rJ. Now, a; = mHH‘H +q=ms+ m(m+qr—| + g. We will

distinguish two cases.

Case1:0<t<m-—1.

We claim in this case that min{ag, ay, ..., Gnir—1} = ms+t and hence k > ms+t. Clearly,a; = ms+t.If0 <g<t—1
thenay = ms—{—m(m q—|—|—q > ms+m > ms+t Ift+1<qg<m+r—1thent—q>0—(m+r—1) > —(m+r) and hence
ag =ms+m|[=91]4q > ms+q > ms+t.On the other hand, by Lemma 9, we have min{n —r| ;= |, m[ 2]} = ms +t.
This is a contradiction to our assumption that k < min{n — r| -2 |, m[ -2}

Case2:m<t<m—+r—1.

We claim in this case that min{ag, a1, ..., Gmir—1} = m(s + 1) and hence k > m(s 4 1). Clearly, ap = ms + m[m%rﬂ =
ms+1.1f1 <q<t—1thenag =ms+m[—L]4+qg=ms+m+1>ms+1.Ift <q < m+r—1then
ag = ms+m[ =4 ]4q = ms+q > ms+t > m(s+1). Similarly, by Lemma 9, we have min{n—r| -2 |, m[ -= ]} = m(s+1),
a contradiction. O

Lemmas 10 and 11 reduce the r-equitable colorability of K;, x K, to that of Ki;). We need the following two results on
r-equitable colorability of K.

Lemma 12. If m, n, r and 6 are positive integers withm > 2 and | 7 | < [ 7%, then Kp(n) is not r-equitably (m[ 72| —i)-
colorable for 1 <i < m.

Proof. Letq = [ ].1f0 +r | n, then [ ;2] = ;- < ;1 yielding [ /-] < | 745 |, a contradiction to the assumption
of this lemma. Hence 6 + r { n. Now we have g = [ ;-] > 745 > ;& > [ ;4] = q — 1. Consequently, 1<o+1

and q%] > 6 4+ r. Note that we may assume ¢ — 1 # O since the lemma trivially follows when q¢ = 1. Therefore,

(L(mqfi)/mj-‘ — Lr(mqfi)/mWJ =[] -1i]=2@+r+1) -6 =r+1for1 < i< mByLemma 1, Kua) is not
r-equitably (m[ ;-] — i)-colorable. O

Lemma 13. For positive integers m > 2,s,6, nand r, if Ky is not r-equitably k-colorable for some k > m[e%rﬂ, then there
is a positive integer 6’ such that Le'+1J < [9,+r-| [9, ] = [ lando’ <.

> r. Hence >0 +r>0+r—-1>-.->60+1> for some

n n
Proof. By Lemma 1, {W—‘ — LWJ , U</mJ |'k/m]

nonnegative integer 6" and so

{m>9'11>”'>9’:r>L%J' ®
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If 6" = 0 then the first inequality of (3) implies k > mn and hence Kp ) is clearly r-equitably k-colorable, a contradiction.
Thus, 6’ > 0.By (3), we see [£] > | X | and hence [£] = | £| + 1. Also from (3), we have [;A-] = [£] and

|75 ] = [&] < [7%]-Fnally, 72~ > | £ | > [ 2[4 ]] = [7%] = 7% implying#’ <6. O

Proof of Theorem 7. Let I" = min{n — rl ] ml 2] and n = (m +r)s + t, where s = | -1 |. We divide the proof
into two cases.

Casel:n=2,...,m— 1(mod m +r) and L”/@r;“)J—I — LFH/(£+r)1J

Note that 2 < t < m — 1 from the first condition of this case. By Lemmas 10 and 9, x,;_ (K, x K;) < I' = ms + t. Let
k = ms 4t — 1. We need to show that K, x K, is not r-equitably k-colorable. Noting k < I', it suffices to show that Ky is
not r-equitably k-colorable by Lemma 11.

Since2 <t <m—1landk=ms+t—1,wehavems < k < m(s + 1). Consequently, | £ | = sand [ £] = s + 1. Since

|t ] =sand [ 2] = s+ 1, we have {ﬁ—‘ — Lk/”md =[] = [Ln/(n’;mﬂ — Ln/(n';ﬂﬂj > r from the last
condition of this case. Therefore, by Lemma 1, Kin(s) is not r-equitably k-colorable. This completes the proof of this case.

>T.

n
rn/<m+r>1J =T

Since | 7% | < [ 7% | by Lemma 12, Ky is not r-equitably (m[ ;% | — 1)-colorable. Since m[ ;%] — 1 < I from the

. — I n
Case2:n=0,1,m,m+1, ..., m+r—1(mod m+r),orn=2, ..., m—1(mod m+r) and ’VLH/(MT)J—‘—[

definition of # in Theorem 7, by Lemma 11, K;, X K, is not r-equitably (m [9L+r—| — 1)—colorable. In the following, we prove
that Ky, x Kj is r-equitably k-colorable for all k > m{[ ;%-], which implies that x,_ (Kn x Ky) = m][ 7% 1.

Suppose to the contrary that K, x K, (and hence Kp ;) ) is not r-equitably k-colorable for some k > m [HL—H—| By Lemma 10,

k < I'.By Lemma 13, there is a positive integer 6’ such that | 725 | < [721]. [ 74 | = [ 4] and 6’ < 6.By the minimality
of 6, m (0,—';1 > I'. We show that each of the following three subcases yields a contradiction.

Subcase 2.1:n =0, 1(mod m +r),ie.,t =0, 1.

ByLlemma9, I" = ms+t.Since k < I" we see k < ms+t < ms+ 1, and hence k < ms. Therefore, m|—9,1r-| =m[£] <
ms < I'. This is a contradiction.

Subcase2.2:n=m,...,m+r—1(mod m+r),ie,t=m,...,m+r—1.

By Lemma 9, I" = m(s + 1). Hence k < m(s + 1) and m[ ;2= | = m[ £ < m(s+ 1) < I'. This is a contradiction.

. J— _ n —
Subcase2.3:n=2,...,m l(modm—}-r)andﬂn/(mm]—‘ L r.

n
[n/(m+1)] J =

By Lemma 9, " = ms + t.If k < msthen m[ ;=] = m[ﬂ < ms < I, a contradiction. Now assume that k > ms.

i
Since k < I' = ms + t,we have ms < k < ms +t < m(s + 1), yielding | £ | = sand [ £] = s + 1. Consequently, by the

e . n _ n n _ n n 1
second condition of this subcase, Lk/mj—‘ - LF’JMJ =[] -1 = Ln/<m+r)J—‘ - \Jn/(mrﬂj < r. Therefore, K, is
r-equitably k-colorable. This is a contradiction. O

Proof of Theorem 8. Comparing Theorem 7 with Lemma 2, it suffices to show, for the first part, that under the assumption
of this theorem, the following two statements hold:

(i) Ln/(mﬂr)ﬂ - Ln/m’hrﬂJ =n
) 1 L5t) = [ thenm 2] < mingn e[ 2, m[ 2. ).

By the assumption that n > ﬁ(m +r)(m+2r — 1), we have (r — 1)

n
m+r

> m+ 2r — 1, yielding

r—1 I >(r—l)L—(r—l)z(m+2r—1)—(r—1):m+r.
m+r m+r

n

Multiplying the first and last term of the inequality by [ -1 gives

- el ()L D

Dividing by | -2 |[ -] leads to

m—+r

n .
< r — 1. Hence, ’V — \jn/(m+r)JJ < r + 1, which

n n n
[Wmn] ~ Tafmtn)] ) J-‘
implies (i).

Now we assume further Lﬁj < [GLH] and show mb”?] < min{n — erLHJm[mLH]} If 7 — % > 1

TH jutl
then || > [z + 1] = [4% ] a contradiction. Hence ;%5 — ;& < 1. Multiplying by (6 + 1)(6 + r) gives

O+ DO+ > @ —Dn > (m+r)(m+2r—1),implying & > m +r — 1. Hence m[ | < m[ 1. It remains
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toshowm| 78] <n—r| 2 ].Since@ > m+r—1andn > 15 (m+r)(m+ 2r — 1), we have

n n n n
ml g |+l =l 1+ (s )
0+r m+4r m+2r—1 m+4r

n n
Y A .
m+2r—1 m+4r
(r—1n
(m+ry(m+2r—1)
<0,

as desired.

Since K, x K, is a spanning subgraph of K, K@y has an r-equitable k-coloring only if K, x K; has an r-equitable
k-coloring. Suppose that K;; x K is r-equitably k-colorable for some integer k. If k > x_ (K x K;) then k > x_ (Knn),
since x_(Km x Kp) = x;_ (K@), and hence Ky, is r-equitably k-colorable. If k < x;_ (Ky x K;), then k < min{n —
r| 52 ], m[ -2=]} by Lemma 10. Therefore, Lemma 11 implies that Ky, is r-equitably k-colorable. This completes the
proof of Theorem 8. O
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