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Abstract A graph is 1-toroidal, if it can be embedded in the torus so that each edge is crossed

by at most one other edge. In this paper, it is proved that every 1-toroidal graph with maximum

degree Δ ≥ 10 is of class one in terms of edge coloring. Meanwhile, we show that there exist class two

1-toroidal graphs with maximum degree Δ for each Δ ≤ 8.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. By V (G), E(G), δ(G) and
Δ(G), we denote the vertex set, the edge set, the minimum degree and the maximum degree
of a graph G, respectively. By NG(v) and dG(v), we denote the set of neighbors of v and the
degree of v in G, respectively. For a vertex set S ⊆ V (G), let NG(S) =

⋃
v∈S NG(v). For

a plane graph G, F (G) denotes its face set and dG(f) denotes the degree of a face f in G.
Throughout this paper, a k-, k+- and k−-vertex (resp. face) is a vertex (resp. face) of degree k,
at least k and at most k, respectively. We say that u is a k-neighbor of v in G if uv ∈ E(G)
and dG(u) = k. Any undefined notation follows that of Bondy and Murty [1].

A proper edge coloring of a graph is an assignment of colors to the edges of the graph so that
no two adjacent edges receive the same color. The smallest number of colors needed in a proper
edge coloring of a graph G is the edge chromatic number, denoted by χ′(G). A well-known
theorem of Vizing states that Δ(G) ≤ χ′(G) ≤ Δ(G) + 1 for every simple graph G. By this
way, we can divide all simple graphs into two classes: a graph G is of class one if χ′(G) = Δ(G),
and is of class two if χ′(G) = Δ(G) + 1. Consequently, a major question in the area of edge
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colorings is to determine which of these two classes a given graph belongs. For a planar graph
G, it is proved that G is of class one provided that Δ(G) ≥ 7 (see [13, 16]) and G can be of
class two if Δ(G) ≤ 5 (see [14]). In this paper, we focus on non-planar graphs.

A graph G is 1-embedded in a surface if it can be drawn in the surface so that each edge is
crossed by at most one other edge. In particular, a graph G is 1-planar if it can be 1-embedded
in the plane and is 1-toroidal if it can be 1-embedded in the torus. Usually, it is assumed that G

is non-planar here and elsewhere. The notion of 1-planar graphs was introduced by Ringel [12]
while trying to simultaneously color the vertices and faces of a plane graph G such that any pair
of adjacent/incident elements receive different colors. The structure and coloring of 1-planar
graphs have been extensively studied by many authors including [2–10, 17–26]. In particular,
Zhang and Wu [21] proved the following theorem.

Theorem 1.1 Every 1-planar graph with maximum degree at least 10 is of class one.

In this paper, we aim to extend Theorem 1.1 to the following theorem. Note that every
1-planar graph is 1-toroidal.

Theorem 1.2 Every 1-toroidal graph with maximum degree at least 10 is of class one.

Throughout this paper, for any 1-toroidal graph G, we always assume that G has already
been embedded in a torus such that every edge is crossed by at most one other edge and the
number of crossings is as small as possible. We call such an embedding of G 1-torus graph. The
associated torus graph G× of a 1-torus graph G is the graph obtained from G by turning all
crossings of G into new 4-vertices. A vertex in G× is false if it is a new added vertex and is
true otherwise. We call a face in G× false or true according to whether it is incident with a
false vertex or not.

2 Proof of Theorem 1.2

For our purpose, the following lemma of Zhang and Wu is a useful starting point.

Lemma 2.1 ([21]) If G is a 1-torus graph and G× is the associated torus graph of G, then
the following hold :

(1) For any two false vertices u and v in G×, uv �∈ E(G×).

(2) If there is a 3-face uvwu in G× such that dG(v) = 2, then u and w are both true vertices.

(3) If dG(u) = 3 and v is a false vertex in G×, then either uv �∈ E(G×) or uv is not incident
with two 3-faces.

(4) If a 3-vertex v in G is incident with two 3-faces and adjacent to two false vertices in
G×, then v is incident with a 5+-face.

(5) For any 4-vertex u in G, u is incident with at most three false 3-faces.

(6) For any k-vertex u in G, where k ≥ 5, u is incident with at most 2�k
2 � false 3-faces.

Here it should be remarked that the corresponding lemma in [21] is proved for 1-plane
graphs, but the proofs are also available for 1-torus graphs.

A graph G is critical if it is connected, of class two and χ′(G − e) < χ′(G) for every edge
e ∈ E(G). A critical graph with maximum degree Δ is a Δ-critical graph. The following four
lemmas on the structures of Δ-critical graphs play important roles in our proof of Theorem 1.2.
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In particular, Lemma 2.2 is well known as Vizing’s adjacency lemma, which will be cited as
VAL throughout this section.

Lemma 2.2 ([15]) Let G be a Δ-critical graph. If v and w are adjacent vertices of G and
dG(v) = k, then

(1) if k < Δ, then w is adjacent to at least (Δ − k + 1) Δ-vertices ;
(2) if k = Δ, then w is adjacent to at least two Δ-vertices.

Lemma 2.3 ([16]) Let G be a Δ-critical graph. If xy ∈ E(G) and dG(x) + dG(y) = Δ + 2,
then

(1) every vertex of NG(NG(x, y))\{x, y} is of degree at least Δ − 1;
(2) if dG(x), dG(y) < Δ, then every vertex of NG(NG(x, y))\{x, y} is a Δ-vertex.

Lemma 2.4 ([11]) Let G be a Δ-critical graph with Δ ≥ 5. If x is a 3-vertex in G, then there
are at least two Δ-vertices in NG(x) that are not adjacent to any (Δ − 2)−-vertices except x.

Lemma 2.5 ([11]) Let G be a Δ-critical graph with Δ ≥ 6 and let x be a 4-vertex. If x is not
adjacent to any (Δ − 2)-vertex and one of the neighbors y of x is adjacent to dG(y) − (Δ − 3)
(Δ− 2)−-vertices, then each of the other three neighbors of x is adjacent to only one (Δ− 2)−-
vertex, which is x.

Let G be a counterexample to Theorem 1.2 with the smallest number of edges. One can
observe that G is Δ-critical and δ(G) ≥ 2. For a vertex v in G, denote the degree of the
neighbors of v in G as δ1(v) ≤ δ2(v) ≤ · · · ≤ δdG(v)(v). In what follows, we process by the
discharging method.

First of all, we assign an initial charge c(v) = dG(v)−4 to every vertex v ∈ V (G) and c(f) =
dG×(f)− 4 to every face f ∈ F (G×). By Euler’s formula |V (G×)| − |E(G×)|+ |F (G×)| = 0 on
the torus graph G× and by the fact that c(v) = 0 for every v ∈ V (G×)\V (G), one can easily
deduce that

∑

x∈V (G)∪F (G×)

c(x) =
∑

v∈V (G)

(dG(v) − 4) +
∑

f∈F (G×)

(dG×(f) − 4)

=
∑

v∈V (G×)

(dG×(v) − 4) +
∑

f∈F (G×)

(dG×(f) − 4)

= 0.

Whereafter, we define discharging rules that only move charge around but do not affect the
total charges. Let c′ be the final charge function on the vertices and faces after discharging.
We first prove that c′(x) ≥ 0 for every x ∈ V (G) ∪ F (G×), and then show that there exists
a vertex v ∈ V (G) with c′(v) > 0. Therefore, we would get 0 =

∑
x∈V (G)∪F (G×) c(x) =

∑
x∈V (G)∪F (G×) c′(x) > 0, a contradiction completing the proof.
Based on the discharging procedure described as above, the proof of Theorem 1.1 (see [21,

pp. 126–128]) actually implies that every 1-toroidal graph with maximum degree at least 11 is
of class one∗. Therefore, we only need consider a single case Δ = 10 in this section.

The discharging rules are defined as follows.

∗In that paper, the authors proved the nonnegativity of every vertex and face, and in particular, they proved

that the final charge of every Δ-vertex is at least (Δ − 10)/2.
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R1 If v is a 2-vertex in G and uv ∈ E(G), then v receives 1
2 from u and receives 1

18 from
each of the vertices in NG(u)\{v} through u.

R2 If v is a 3-vertex and u is a 10-neighbor of v in G so that u is not adjacent to any
8−-vertices in G except v, then v receives 3

4 from u.
R3 Let v be a 4-vertex in G and let v1, v2, v3, v4 be neighbors of v in G so that dG(v1) ≤

dG(v2) ≤ dG(v3) ≤ dG(v4).
R3.1 If dG(v1) = 8, then v receives 1

2 from each of v2, v3 and v4.
R3.2 If dG(v1) ≥ 9 and v4 is adjacent to exactly three 8−-vertices in G, then v receives 3

8

from each of v1, v2 and receives 3
4 from v3.

R3.3 If dG(v1) ≥ 9 and any 10-neighbor of v is adjacent to at most two 8−-vertices in G,
then v receives 3

8 from each of the neighbors of v in G.
R4 If v is a 5-vertex in G, then v receives 1

5 from each of the neighbors of v in G.
R5 Let v be a 6-vertex in G and let v1, v2, v3, v4, v5, v6 be neighbors of v in G so that

dG(v1) ≤ dG(v2) ≤ dG(v3) ≤ dG(v4) ≤ dG(v5) ≤ dG(v6).
R5.1 If dG(v1) = 6, then v receives 1

5 from each of v2, v3, v4, v5 and v6.
R5.2 If dG(v1) = 7, then v receives 3

28 from each of v1, v2 and receives 11
56 from each of

v3, v4, v5 and v6.
R5.3 If dG(v1) ≥ 8, then v receives 1

6 from each of the neighbors of v in G.
R6 If v is a 7-vertex in G, then v receives 1

56 from each of its 8-neighbors, 3
70 from each of

its 9-neighbors and 1
7 from each of its 10-neighbors.

R7 If v is a 8-vertex or 9-vertex in G, then v receives 1
10 from each of its 10-neighbors.

R8 If f is a false 3-face in G×, then f receives 1
2 from each of its incident true vertices.

R9 Let f be a true 3-face in G× and let v1, v2, v3 be vertices that are incident with f so
that dG(v1) ≤ dG(v2) ≤ dG(v3).

R9.1 If dG(v1) ≤ 5, then f receives 1
2 from each of v2 and v3.

R9.2 If dG(v1) ≥ 6, then f receives 1
3 from each of v1, v2 and v3.

R10 If f is a 5+-face and v is a 3-vertex incident with f , then v receives 1
2 from f .

We now prove that c′(x) ≥ 0 for every x ∈ F (G×) ∪ V (G).
First of all, for every false 3-face f we have c′(f) = −1+2× 1

2 = 0 by R8, since f is incident
with two true vertices in G×, and for every true 3-face f , we have c′(f) ≥ −1+min{2× 1

2 , 3× 1
3}

= 0 by R9. The final charge of every 4-face in G× is exactly 0, since 4-faces are not involved
in the rules. For a 5+-face f , the number of 3-vertices that are incident with f cannot exceed
the half of the degree of f , since no two 3-vertices are adjacent in G (and thus in G×) by VAL.
Therefore, c′(f) ≥ dG×(f) − 4 − 1

2�
dG× (f)

2 � ≥ 0 by R10.
Let v be a vertex in G. If dG(v) = 2 (suppose NG(v) = {u, w}), then by VAL, every vertex

in NG(u, w) ∪ {u, w} is of degree 10 except v. Moreover, v is incident with no false 3-faces
by (2) of Lemma 2.1. Thus by R1, R8 and R9, c′(v) ≥ −2 + 2 × 1

2 + 2 × 9 × 1
18 = 0.

If dG(v) = 3, then by Lemma 2.4, there are at least two 10-vertices in NG(v) that are not
adjacent to any 8−-vertices except v, so v receives at least 2 × 3

4 = 3
2 from those 10-neighbors

of v by R2. If v is incident with at most one false 3-face, then by R8 and R9, v sends at most
1
2 to its incident faces and therefore, c′(v) ≥ −1 + 3

2 − 1
2 = 0. If v is incident with at least two

false 3-faces, then by (3) of Lemma 2.1, v is adjacent to exactly two false vertices and incident
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with exactly two false 3-faces in G×, to which v sends at most 2× 1
2 = 1 by R8 and R9. By (4)

of Lemma 2.1, v is also incident with a 5+-face, from which v receives 1
2 by R10. Therefore,

c′(v) ≥ −1 − 1 + 1
2 + 3

2 = 0.
If dG(v) = 4, then by (5) of Lemma 2.1, v is incident with at most three false 3-faces,

so by R8 and R9, v sends at most 3 × 1
2 = 3

2 to its incident faces. On the other hand, we
have δ1(v) ≥ 8 by VAL (otherwise, v has a 7−-neighbor, thus by VAL, v is adjacent to at least
10−7+1 = 4, 10-vertices in G, a contradiction). If δ1(v) = 8, then by R3.1, v receives 3× 1

2 = 3
2

from its neighbors in G, so c′(v) = 0 − 3
2 + 3

2 = 0. If δ1(v) ≥ 9, then either any 10-neighbor
of v is adjacent to at most two 8−-vertices in G, in which case v receives 4 × 3

8 = 3
2 from its

neighbors in G by R3.3, or one 10-neighbor of v is adjacent to exactly three 8−-vertices in G by
VAL, in which case v receives 2 × 3

8 + 4
3 = 25

12 > 3
2 from its neighbors in G by R3.2. Therefore,

we have c′(v) ≥ 0 − 3
2 + 3

2 = 0.
If dG(v) = 5, then by (6) of Lemma 2.1, v is incident with at most four false 3-faces, so

by R8 and R9, v sends at most 4 × 1
2 = 2 to its incident faces. On the other hand, v receives

5 × 1
5 = 1 from its neighbors in G by R4. Thus, c′(v) ≥ 1 − 2 + 1 = 0.
If dG(v) = 6, then by VAL, δ1(v) ≥ 6. Let v1 be the neighbor of v in G with dG(v1) = δ1(v).

If dG(v1) = 6, then by R5.1, v receives 5 × 1
5 = 1 from its neighbors in G. If dG(v1) = 7, then

by R5.2, v receives 2× 3
28 + 4× 11

56 = 1 from its neighbors in G. If dG(v1) ≥ 8, then by R5.3, v

receives 6× 1
6 = 1 from its neighbors in G. Note that v sends at most 6× 1

2 = 3 to its incident
faces by R8 and R9. Thus, c′(v) ≥ 2 + 1 − 3 = 0.

If dG(v) = 7, then by VAL, δ1(v) ≥ 5. If δ1(v) = 5, then v shall be adjacent to at least
10 − 5 + 1 = 6, 10-vertices in G by VAL, which implies that δ2(v) = 10. In this case, v sends
at most 7 × 1

2 = 7
2 to its incident faces by R8 and R9, and 1

5 to its adjacent 5-vertex in G

by R4. Meanwhile, v receives 6 × 1
7 = 6

7 from its adjacent 10-vertices in G by R6. Thus,
c′(v) ≥ 3 − 7

2 − 1
5 + 6

7 > 0. If δ1(v) = 6, then δ3(v) = 10 by VAL. In this case, v sends at
most 7 × 1

2 = 7
2 to its incident faces by R8 and R9 and receives 5 × 1

7 = 5
7 from its adjacent

10-vertices in G by R6. Let v1 and v2 be the neighbors of v in G with dG(v1) = δ1(v) and
dG(v2) = δ2(v). First of all, v sends to v1 at most 3

28 by R5 and VAL. If dG(v2) > 6, then v

sends none to v2; otherwise, v2 is a 6-vertex and thus v sends to v2 at most 3
28 by R5 and VAL.

Therefore, we have c′(v) ≥ 3− 7
2 + 5

7 − 2× 3
28 = 0. If δ1(v) = 7, then δ4(v) = 10 by VAL. Note

that v sends none to its neighbors in G and v is adjacent to four 10-vertices in G, from which v

receives 4× 1
7 = 4

7 by R6, so by R8 and R9, we have c′(v) ≥ 3+4× 1
7 − 7× 1

2 > 0. If δ1(v) = 8,
then δ5(v) = 10 by VAL, which implies that v is adjacent to three 10-vertices in G, from which
v receives 3 × 1

7 = 3
7 by R6. Since v receives at least 1

56 from each of its 8+-neighbors by R6,
we have c′(v) ≥ 3 + 3

7 + 4 × 1
56 − 7 × 1

2 = 0 by R8 and R9. If δ1(v) = 9, then δ6(v) = 10 by
VAL. Similarly, we can prove that c′(v) ≥ 3 + 2× 1

7 + 5× 3
70 − 7× 1

2 = 0 by R6, R8 and R9. If
δ1(v) = 10, then it is easy to check that c′(v) ≥ 3 − 7 × 1

2 + 7 × 1
7 > 0 by R6, R8 and R9.

If dG(v) = 8, then by VAL, δ1(v) ≥ 4. If δ1(v) = 4, then δ2(v) = 10 by VAL. Since v

sends at most 1
2 × 8 = 4 to its incident faces by R8 and R9, and sends none to any of its

4-neighbors by R3.1, we have c′(v) ≥ 4 − 4 = 0. If δ1(v) = 5, then δ3(v) = 10 by VAL, which
implies that v has six 10-neighbors in G, from which v receives 6 × 1

10 = 3
5 by R7. Since v

sends at most 1
5 to each of its k-neighbors by R4, R5.2, R5.3 and R6, where k ≤ 9, we have
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c′(v) ≥ 4+ 3
5 −2× 1

5 − 1
2 ×8 > 0 by R8 and R9. If δ1(v) = 6, then δ4(v) = 10 by VAL. Similarly,

we have c′(v) ≥ 4 + 5 × 1
10 − 3 × 1

6 − 1
2 × 8 = 0 by R5.2, R5.3 and R6–R9. If δ1(v) = 7, then

δ5(v) = 10 by VAL. Similarly, we also have c′(v) ≥ 4 + 4 × 1
10 − 4 × 1

56 − 1
2 × 8 > 0 by R6–R9.

If δ1(v) ≥ 8, then v sends at most 1
2 × 8 = 4 to its incident faces by R8 and R9 and none to its

neighbors in G, so we have c′(v) ≥ 4 − 4 = 0.
If dG(v) = 9, then by VAL, δ1(v) ≥ 3. If δ1(v) = 3, then δ2(v) = 10 by VAL. Since v sends

at most 9 × 1
2 = 9

2 to its incident faces by R8 and R9 and none to its adjacent 3-vertex in G

by R2, we have c′(v) ≥ 5− 1
2 × 9 = 1

2 > 0. If δ1(v) = 4, then δ3(v) = 10 by VAL, which implies
that v has seven 10-neighbors in G, from which v receives 7 × 1

10 = 7
10 by R7. Since v sends

at most 3
8 to each of its k-neighbors by R3.2, R3.3, R4, R5.3 and R6, where k ≤ 9, we have

c′(v) ≥ 5 + 7
10 − 2 × 3

8 − 1
2 × 9 > 0. If δ1(v) = 5, then δ4(v) = 10 by VAL and we similarly

have c′(v) ≥ 5 + 6 × 1
10 − 3 × 1

5 − 1
2 × 9 > 0 by R4–R9. If δ1(v) = 6, then δ5(v) = 10 by VAL.

In this case, one can similarly prove that c′(v) ≥ 5 + 5 × 1
10 − 4 × 1

6 − 1
2 × 9 > 0 by R5–R9. If

δ1(v) ≥ 7, then δ6(v) = 10 by VAL and we similarly have c′(v) ≥ 5+4× 1
10 −5× 3

70 − 1
2 ×9 > 0

by R6–R9.
If dG(v) = 10, then by VAL, δ1(v) ≥ 2. If δ1(v) = 2, then δ2(v) = 10 by VAL, which implies

that v has nine 10-neighbors in G, through which v sends out at most 9× 1
18 = 1

2 by R1. Since
v sends at most 10 × 1

2 = 5 to its incident faces by R8 and R9 and 1
2 to its 2-neighbor by

R1, we have c′(v) ≥ 6 − 1
2 − 5 − 1

2 = 0. If δ1(v) = 3, then δ3(v) = 10 by VAL. Let u be a
3-neighbor of v. If v sends 3

4 to u by R2, then δ2(v) ≥ 9 by the definition of this rule. This
implies that c′(v) ≥ 6 − 1

2 × 10 − 3
4 − 1

10 > 0 by R2 and R7–R9. On the other hand, if v sends
none to u, then c′(v) ≥ 6 − 1

2 × 10 − 3
4 > 0 by R2–R9. If δ1(v) = 4, then δ4(v) = 10 by VAL.

Let u be a 4-neighbor of v. If v sends 1
2 to u by R3.1, then u has a 8-neighbor w in G. Since

dG(u)+dG(w) = 12 = Δ(G)+2, by (2) of Lemma 2.3, every neighbor of v in G except u and w is
of degree 10 (note that we may have vw ∈ E(G)), which implies that δ2(v) ≥ 8 and δ3(v) = 10.
Therefore, we have c′(v) ≥ 6− 1

2 × 10− 1
2 − 1

10 > 0 by R3.1 and R7–R9. If v sends 3
8 or 3

4 to u

by R3.2, then by the definition of this rule, u is not adjacent to any 8−-vertices in G and has a
10-neighbor z in G which is adjacent to exactly three 8−-vertices in G. Thus, by Lemma 2.5, v

is adjacent to only one 8−-vertex in G, which is u. This implies that δ2(v) ≥ 9. Therefore, we
have c′(v) ≥ 6− 1

2 ×10− 3
4 −2× 1

10 > 0 by R3.2 and R7–R9. If v sends 3
8 to u by R3.3, then by

the definition of this rule, one can easily confirm that v is adjacent to at most two 8−-vertices
in G, which implies that δ3(v) ≥ 9. Thus, we have c′(v) ≥ 6 − 1

2 × 10 − 3
8 − 1

2 − 1
10 > 0 by

R3–R9. We now assume that v sends none to any of its 4-neighbors in G. In this case, we can
easily obtain that c′(v) ≥ 6 − 1

2 × 10 − 2 × 1
5 > 0 by R4–R9. If δ1(v) = 5, then δ5(v) = 10 by

VAL, which implies that c′(v) ≥ 6− 1
2 ×10−4× 1

5 > 0 by R4–R9. If δ1(v) = 6, then δ6(v) = 10
by VAL. Let u be a 6-neighbor of v. If v sends 1

5 to u by R5.1, then by the definition of this
rule, u has a 6-neighbor w in G. Since dG(u) + dG(w) = 12 = Δ(G) + 2, by (2) of Lemma 2.3,
every neighbor of v in G except u and w is of degree 10 (note that we may have vw ∈ E(G)).
This implies that δ2(v) ≥ 6 and δ3(v) = 10. Thus, we have c′(v) ≥ 6 − 1

2 × 10 − 2 × 1
5 > 0 by

R5–R9. If v sends charges (at most 11
56 ) to u by R5.2 or R5.3, then one can easily obtain that

c′(v) ≥ 6− 1
2 × 10− 11

56 − 4× 1
5 > 0 by R5–R9. We now assume that v sends none to any of its

6-neighbors in G. In this case, we immediately have c′(v) ≥ 6 − 1
2 × 10 − 5 × 1

7 > 0 by R6–R9,
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since v sends at most 1
7 to each of its 7+-neighbors in G. If δ1(v) ≥ 7, then by R6–R9 and

VAL, we similarly have c′(v) ≥ 6 − 1
2 × 10 − max{6 × 1

7 , 7 × 1
10 , 8 × 1

10} > 0.
At this stage, we have proved that c′(x) ≥ 0 for every x ∈ V (G) ∪ F (G×) and c′(v) > 0 for

every 10-vertex v with δ1(v) ≥ 3. If there exists a 10-vertex v with δ1(v) ≥ 3, then we would
get

∑
x∈V (G)∪F (G×) c′(x) > 0, a contradiction.

Therefore, we shall assume that δ1(v) = 2 for every 10-vertex v ∈ V (G). Let v be a 10-
vertex that has one 2-neighbor u in G. By VAL, the vertices of NG(v)\{u} are all of degree 10.
Choose one vertex w ∈ NG(v)\{u} such that uw �∈ E(G). By (1) of Lemma 2.3, every neighbor
of w in G is of degree at least 9, which implies that δ1(w) ≥ 9, contradicting our assumption
that δ1(w) = 2 (note that w is a 10-vertex in G).

3 Class Two 1-toroidal Graphs

In this section, we focus on 1-toroidal graphs with small maximum degree. To begin with, we
prove the following basic result.

Theorem 3.1 Every 1-toroidal graph contains a vertex of degree at most 8; the bound 8 is
best possible.

Proof We prove this theorem by contradiction. Let G be a 1-toroidal graph with δ(G) ≥ 9.
It is easy to see that |E(G)| ≥ 9

2 |V (G)|. However, it is proved in [20] that |E(G)| ≤ 4|V (G)|
for every 1-toroidal graph G. This contradiction implies that δ(G) ≤ 8. Furthermore, since the
complete graph K9 is 1-toroidal (see Figure 1), the bound 8 in the theorem is sharp. �

9 5 6 9

7 1 2 7

8 3 4 8

9 5 6 9

Figure 1 K9 is a 1-toroidal graph

In [18], Zhang and Liu presented examples of 1-planar graphs (and thus 1-toroidal graph)
of class two with maximum degree no more than 7. In this paper, we display that the complete
graph K9 is a class two (this can be easily checked) 1-toroidal graph with maximum degree 8.
We conclude the following theorem.

Theorem 3.2 There exist 1-toroidal graphs of class two with maximum degree Δ for each
Δ ≤ 8.

We end this paper with an interesting conjecture, the proof of which may need much more
detailed discussions.
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Conjecture 3.3 Every 1-toroidal graph with maximum degree 9 is of class one.

Acknowledgements The authors want to thank the referees for their careful reading and
valuable suggestions.

References
[1] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications, North-Holland, New York, 1976

[2] Borodin, O. V.: Solution of Ringel’s problems on the vertex-face coloring of plane graphs and on the

coloring of 1-planar graphs. Diskret. Analiz., 41, 12–26 (1984)

[3] Borodin, O. V.: A new proof of the 6-color theorem. J. Graph Theory, 19(4), 507–521 (1995)

[4] Borodin, O. V., Dmitriev, I. G., Ivanova, A. O.: The height of a cycle of length 4 in 1-planar graphs with

minimum degree 5 without triangles (in Russian). Diskretn. Anal. Issled. Oper., 15(1), 11–16 (2008)

[5] Borodin, O. V., Kostochka, A. V., Raspaud, A., et al.: Acyclic colouring of 1-planar graphs. Discrete Appl.

Math., 114, 29–41 (2001)

[6] Chen, Z.-Z., Kouno, M.: A linear-time algorithm for 7-coloring 1-plane graphs. Algorithmica, 43(3), 147–

177 (2005)

[7] Fabrici, I., Madaras, T.: The structure of 1-planar graphs. Discrete Math., 307, 854–865 (2007)

[8] Hudák, D., Madaras, T.: On local structures of 1-planar graphs of minimum degree 5 and girth 4. Discuss.

Math. Graph Theory, 29, 385–400 (2009)

[9] Hudák, D., Madaras, T.: On local properties of 1-planar graphs with high minimum degree. Ars Math.

Contemp., 4(2), 245–254 (2011)
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