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1. Introduction

In this paper, all graphs are finite, simple and undirected. By V(G), E(G), 8(G) and A(G), we denote the vertex set, the
edge set, the minimum degree and the maximum degree of a graph G, respectively. By VE(G), we denote the set V(G) UE(G).
For undefined concepts we refer the readers to [1].

A total coloring of a graph G is an assignment of colors to the vertices and edges of G such that every pair of
adjacent/incident elements receives different colors. A total k-coloring of a graph G is a total coloring of G from a set of k
colors. The minimum positive integer k for which G has a total k-coloring, denoted by x”(G), is the total chromatic number
of G.

Suppose that a set L(x) of colors, called a list of x, is assigned to each element x € VE(G). A total coloring ¢ is called a list
total coloring of G for L, or a total L-coloring, if ¢(x) € VE(G) for each element x € VE(G). If |[L(x)| = k for every x € VE(G),
then a total L-coloring is called a list total k-coloring and we say that G is totally k-choosable. The minimum integer k for which
G has a list total k-coloring, denoted by x,’(G), is the total choosability of G. It is obvious that x;'(G) > x"(G) = A(G) + 1.

In 1997, Borodin, Kostochka and Woodall [2] raised the following conjecture, which is known as list total conjecture
(LTC). In the same paper, they gave an affirmative answer to LTC for planar graphs with maximum degree at least 12.

Conjecture 1. For any graph G, x/'(G) = x"(G).

Recently, LTC was investigated by many authors including [3-6,8,7,9,11,14]. In particular, Wang and Lih [9] confirmed
LTC for outerplanar graphs with maximum degree at least 4, and this result was generalized to series—parallel graphs by
Zhou, Matsuo and Nishizeki [ 14] in 2005. However, this “list total conjecture” is still very much open.

In this paper, we investigate the list total colorings of pseudo-outerplanar graphs, another class of graphs (different from
series—parallel graphs) between outerplanar graphs and planar graphs. A graph is pseudo-outerplanar if each of its blocks
has an embedding in the plane so that the vertices lie on a fixed circle and the edges lie inside the disk of this circle with

* Supported by the Fundamental Research Funds for the Central Universities (No.K5051370003), the National Natural Science Foundation of China
(No.11101243, 11201440) and the Natural Science Basic Research Plan in Shaanxi Province of China (project name: On the structural properties and
colorings of some classes of topological graphs).

E-mail addresses: xzhang@xidian.edu.cn, xdu.zhang@gmail.com.

0012-365X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.disc.2013.06.007


http://dx.doi.org/10.1016/j.disc.2013.06.007
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.disc.2013.06.007&domain=pdf
mailto:xzhang@xidian.edu.cn
mailto:xdu.zhang@gmail.com
http://dx.doi.org/10.1016/j.disc.2013.06.007

2298 X. Zhang / Discrete Mathematics 313 (2013) 2297-2306

each of them crossing at most one another. For example, K 5 and K4 are both pseudo-outerplanar graphs. The concept of
pseudo-outerplanar graph was first introduced by Zhang, Liu and Wu [13] in 2012. They proved that the class of outerplanar
graphs is the intersection of the classes of pseudo-outerplanar graphs and series-parallel graphs.

The purpose of this paper is to show that LTC holds for pseudo-outerplanar graphs with maximum degree at least 5, and
thus extending one result of [12], where is proved that every pseudo-outerplanar graphs with maximum degree at least 5
is totally (A + 1)-colorable.

2. Structural properties of PO-graphs

In what follows, we always assume that every pseudo-outerplanar graph H considered in this paper has been drawn
on the plane so that its pseudo-outerplanarity is satisfied and call such a drawing a pseudo-outerplanar diagram. Let H be
a pseudo-outerplanar diagram and let G be a block of H. Denote by v1, vy, ..., v|g the vertices of G that lie in a clockwise
sequence. Let V[v;, vj] = {vi, Vi1, ..., vj} and V(v;, vj) = V[v;, ] \ {vi, vj}, where the subscripts are taken modular |G].
A vertex set V[v;, vj] is a non-edge if j = i 4+ 1 and vjv; € E(G), is a path if vgvi1 € E(G) foralli < k < j, and is a subpath
ifj > i 4+ 1 and some edges in the form viv11 fori < k < j are missing. An edge v;v;in Gisachord ifj —i # 1or 1 — |G|.
By C[u;, vj], we denote the set of chords xy with x,y € V[v;, vj]. We say that a chord vy, is contained in a chord vjv; if
i<k<l<j.

Lemma 2. Let v; and v; be vertices of a 2-connected pseudo-outerplanar diagram G. If there are no crossed chords in C[v;, vj]
and no edges between V(v;, vj) and V(v;, v;), then V[v;, v;] is either non-edge or path.

Proof. The proof is same to the one of Claim 1 in [13], we refer the readers to [13, p. 2794]. O
Lemma 3 ([10]). Each outerplanar graph G with minimum degree at least 2 contains a 2-vertex that is adjacent to a 4~ -vertex.

Theorem 4. Each pseudo-outerplanar graph G with minimum degree at least 2 contains at least one of the following
configurations:

(a) a2-vertex u adjacent to a 4~ -vertex v;

(b) apath ViU VU V3U3 V4 with V1V3, V1VU3, UaV3, UaV4, U3Vg € E(G), d(ul) = d(uz) = d(U3) =2and d(Uz) = d(l}g) =5
(c) acycle uquyusuy with d(uy) = d(ug) = 2;

(d) a cycle ujuyusug with upuy € E(G), d(uy) = d(uy) = 3 and d(uz) < 4;

(e) acycle ujuyusug with uuy € E(G), d(uy) = d(uy) = 3 and us being adjacent to a 2-vertex v;

(f) acycle uquyusuy with uuy € E(G), d(uy) = d(uyg) = 3 and us being adjacent to a 3-vertex v and a vertex x with vx € E(G);
(g) a cycle ujuyusug with uqus, uyuy € E(G), d(uy) = d(ug) = 3 and us being adjacent to a vertex v with uv € E(G).

Proof. We first assume that G is a 2-connected pseudo-outerplanar diagram with vy, ..., vg being the vertices of this
diagram that lie in a clockwise sequence. If G contains no crossings, then G is outerplanar, which implies that G contains (a)
by Lemma 3. If G contains a crossing, then we can choose one pair of crossed chords v;v; and vyv; such that

(1) vjvj crosses viv; in G;
(2) vi, v, vy and vy lie in a clockwise sequence;
(3) besides v;v; and vy, there are no crossed chords in C[v;, v/].

Suppose that this theorem is false. By a same proof of Theorem 4.2 in [13], we can prove that
l—]:]—k:k—lzl and V;Vk, UkVj, UjU]EE(G), (1)

since G does not contain (a), (b) or (c). This pair of crossed chords v;v; and viv; satisfying (1) are called co-crossed chords.

Since the configuration (d) is absent from G, min{d(v;), d(v;)} > 5. This implies that there are at least one chord v;v;
with s # i, k and at least one chord v,,v; with m # j, L. We now choose s and m so that there is no chord vjv; contained
in vjvs and no chord v;v, contained in v;vy,. In the following, we call the graph induced by v;v;, vivy, vivk, VkVj, vjv;, Vivs OF
by vivj, vkvy, vivk, VkY;, Vi1, ViV, an inner cluster of G, denoted by IC(i, [, s) or IC(m, i, I), respectively. The width of the two
inner clusters defined above is | V[v;, vs]| and | V[vn, v/]|, respectively.

Claim 1. If IC(i, I, s) is an inner cluster with the shortest width among all the inner clusters that contained in the graphs induced
by V[v;, vg], then the chord vjv; is crossed.

Proof. Without loss of generality, assume that i = 1 and [ = 4. If v4vs is a non-crossed chord, then there are no edges
between V(v4, vs) and V(vs, vy). If there are no chords contained in v4vs, then (a) or (e) would appear in G. If there are
chords contained in v4vs, then we consider two cases.

Case 1.1. Every chord contained in v4v; is non-crossed.

If every chord contained in v4vs is non-crossed, then by Lemma 2, V[vg4, vg] is a path. We now claim that there exists a
chord in S := CJ[uy, vs] \ {v4vs} that contains at least one other chord. If this proposition does not hold, then we choose one
chord vjv; with4 < i < j < s so that v;v; contains no other chords. If |j — i| > 3, then we can find two adjacent 2-vertices in
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V[v;, vj], a contradiction. If [j — i| = 2, then d(vi+1) = 2 and d(v;) > 5. This implies that there are at least two non-crossed
chords besides v;v; that are incident with v;. Therefore, we would find two chords in S so that one contains the otherin G, a
contradiction. Hence, we can choose a chord v;v; in S so that v;v; contains at least one other chord, say v,vs, and moreover,
every chord contained in v;v; contains no other chords. Without loss of generality, assume that b # j. If [b —a| > 3, then we
can find two adjacent 2-vertices in V[vg, vp], a contradiction. If |b — a| = 2, then d(vq+1) = 2 and d(vp) > 5. This implies
that besides v,vp, there are at least two non-crossed chords that are incident with vy, therefore, we would find two chords
in C[v;, v;] \ {viv;} so that one contains the other, a contradiction to our assumption.

Case 1.2. There is at least one pair of crossed chords that are contained in C[vy, vs].

If there is at least one pair of crossed chords that are contained in v4v;, then we choose one pair of co-crossed chords
vavp and vevg withc —a = b —c =d — b = 1and vyv, vevp, vyvg € E(G). Since the configuration (d) is absent from
G, min{d(v,), d(vg)} > 5.1f a = 4, then it is easy to see that (f) occurs in G. If d = s, then there exists an inner cluster
IC(x, a,d) with 4 < x < a and width |V[vy, v4]| < s, a contradiction. Therefore, we assume that a # 4 and d # s.
Since IC(1, 4, s) is an inner cluster with the shortest width in G, there is no chord in the form v,v; with4 < i < aorin
the form vpv; withd < j < s. Since the configuration (d) is absent from G, min{d(v,), d(vq)} > 5. The above two facts
imply that v,us € E(G) and there are a chord vjvg with 4 < i < a and a chord v,v; withd < j < s. We call the graph
induced by vqvp, VaVc, VaVd, UpVc, UpVd.VcVd, VaV; and vqvj a Ky-cluster derived from vqvy, and vevg, and by |V[v;, vj]], we
denote the width of this Ky-cluster. Without loss of generality, we assume that the width of the above K4-cluster is the
shortest among all the K,-clusters contained in the graph induced by V[vs, v]. If there are no crossed chords in C[vg, vj],
then by Lemma 2, V[vg, v;] is either a non-edge or a path, because there are no edges between V(vq4, vj) and V(vj, vq). Since
d(vg) > 5, V[vg, vj] cannot be a non-edge, thus it is a path. If there are no chords that are contained in V[vy, vj], then either
(a), (e) or (g) would occur in G. If there are chords contained in V[vg, v;], then by similar arguments as in Case 1.1, one can
prove that there are no non-crossed chords contained in V[vg, vj]. If there is at least one pair of co-crossed chords vy vy
and vevg with @' < ¢’ < b’ < d' that are contained in V[vg, vj], then a’ # d, because otherwise IC(a, d, b’) would be an
inner cluster shorter than IC(1, 4, s), a contradiction. This implies, by similar arguments as above, that either there is an
inner cluster IC(x, a’, d) with d < x < a’ and width | V[vy, vg]| < s, or d’ # j and there is an inner cluster IC(d’, d’, y) with
d’ <y <jand width |[V[vy, vy]| < s, or d’ # j and there is a K4-cluster derived from vy vy and v vy with width no more
than |V[vg, vj]| < |V[v;, vj]|. In either case, we would obtain a contradiction to our assumption.

Hence, the chord v4vs is crossed. 0O

Claim 2. If IC(i, I, s) is an inner cluster with the shortest width among all the inner clusters that contained in the graphs induced
by V[uv;, vs], then the chords v;vs cannot be crossed.

Proof. Without loss of generality, assume thati = 1 and [ = 4. Suppose, to the contrary, that vjv; is crossed by one other
chord vavp with 4 < a < s. If there is at least one pair of crossed chords that are contained in C[vy4, v4] or Cvg, vs], then by
similar arguments as in Case 1.2, one can obtain contradictions. Therefore, every chord contained in C[vy4, v4] or Clvg, vs]
is non-crossed. Since there are no edges between V(vy4, v,) and V(vg, v4), or between V (v, vs) and V(vs, v4), by Lemma 2,
V[vg, vq] Or V[vg, vs] is either non-edge or path. If V[v4, v,] and V[v,, vs] are non-edges, then d(v,) = 1, a contradiction. If
V[vg, vq] and V[vg, vs] are paths, then by similar arguments as in Case 1.1, (a) or (f) would appear in G. If V[v4, v,] is path and
V[vg, vs] is non-edge, then by similar arguments as in Case 1.1, (a) would appear in G unless a = 5, in which case (e) occurs
in G. Hence, we assume that V[v,, v,] is non-edge and C[v,, vs] is path in the following. By similar arguments as in Case 1.1,
one can obtain contradictions ifs—a > 2, so assume thats—a = 1, thatis,a = 5and s = 6.Since d(v,) = 2, b # 1, because
otherwise we would find (e). In the following, the graph induced by v{v,, v2v3, U3V4, V1V3, U2V4.04V6, Usvg and vsvy, (Or a
graph isomorphic to this graph) is called a x-cluster, and the width of this x-cluster is |'V[v1, vp]|. Without loss of generality,
we can assume the width of the above x-cluster is the shortest among all the x-clusters that are contained in the graph
induced by V[vq, vp].

If there are no chords contained in vgvp, then (a) appears in G, so we assume that there are chords contained in vguvp. If
every chord contained in vgvp is non-crossed, then by Lemma 2, V[vg, vp] is either non-edge or path. If V[vg, vp] is a non-
edge, then vs and vg are two adjacent 2-vertices, a contradiction, so we assume that V[vg, v,] is a path. In this case, we can
use similar arguments as in Case 1.1 to obtain contradictions. Therefore, we shall assume that there is at least one pair of
crossed chords that are contained in C[vg, vp].

We arbitrarily choose one pair of co-crossed chords vy vy and vy vy with i’ < k' < j' < I that are contained in C[vs, vp].
Since both vg and vy, are adjacent to a 2-vertex vs, i’ # 6 and I' # b, because otherwise we would find (e) in G. Due to
the absence of (d), we have min{d(vy), d(vy)} > 5, which implies that there exist s’ # i’, k' and m’ # j, I’ so that vyvy
and vy v,y are chords in G. If I' < s’ < b, then we can assume, without loss of generality, that IC(i’, I', s) is an inner cluster
with the shortest width among all the inner clusters contained in the graph induced by V[vy, vy]. If vy vy is a non-crossed
chord, then we use similar arguments as in the proof of Claim 1 to obtain contradictions. If vyvy is a chord crossed by
one other chord vyvy with ' < @’ < ¢/, then by similar arguments as in the first part of this proof, one can deduce that
ss—d =d -1 = 1,vvy &€ E(G) and vyvy € E(G). This implies that 6 < b’ < 7, because otherwise we would find a
shorter x-cluster, a contradiction to our assumption. Since vy vy has already crossed vyvy in G, b’ < m’ < i'. Without loss
of generality, assume that IC(m’, i’, I') is an inner cluster with the shortest width among all the inner clusters contained in
the graph induced by V[v,y, vy]. If vy v,y is a non-crossed chord, then we use similar arguments as in the proof of Claim 1
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to obtain contradictions. If vy v,y is crossed by one other chord v vy with m’ < ¢’ < 7, then by similar arguments as in the
first part of this proof, one can deduce that m’ — ¢’ = ¢’ — i’ = 1, vovy & E(G) and vov,y € E(G). Since vy vy has already
crossed vyvy in G, b’ < d < m’, which implies a shorter x-cluster that is contained in the graph induced by V[v{, vp], a
contradiction to our assumption. Therefore, for any chord vyvy withs’ £ 7', k', we have 6 < s’ < i’. Similarly, we can prove,
for any chord vy v,y withm’ #j/, I, that ' < m’ < b. Since min{d(vy), d(vy)} > 5, vyvy € E(G), which implies a K4-cluster
derived from vy vy and vy vy. Without loss of generality, assume that the width of this K4-cluster is the shortest among all
the K4-clusters contained in the graph induced by V[v,y, vy], then by similar arguments as in the proof of Claim 1, we can
obtain contradictions. O

It is easy to see that the above two claims are conflicting. Hence, every 2-connected pseudo-outerplanar graphs contains
one of the configurations among (a)—(g). We now assume that G has cut vertices and choose one of its end-blocks. Denote
the chosen end-block by B and the vertices of this end-block that lie in a clockwise sequence by vy, . . ., vjg. Without loss of
generality, assume that v; is the unique cut-vertex of B.

First, assume that there are no crossings in the end-block B. Since B is a 2-connected outerplanar graph, B is Hamiltonian,
which implies that ‘V[vy, vig] is a path. If there is at most one chord in B, then it is easy to see that G contains (a). If there are
two chords v;v; and vsv; in B, then without loss of generality, we can assume that 1 < j < t < s < i, therefore, by similar
arguments as in Subcase 1.1, one can prove that G contains (a).

At last, assume that there is at least one pair of crossed chords v;v; and vy, in B. Without loss of generality, assume that
1 <i <k <j <1< |B| and that v;v; and vy, are a pair of co-crossed chords (so they satisfy (1)). Since (d) is absent from
G, min{dg(v;), dg(v))} > 5.

If there is a vertex vs with [ < s < |B| or s = 1 so that vvs is a non-crossed chord, then by the proof of Claim 1, one can
find one of the configurations (a)-(g) in the graph induced by V[v;, vs], and moreover, v is not the vertex with bounded
degree in the configuration. If there is a vertex v,; with 1 < m < i so that v;v,, is a non-crossed chord, then we can prove
the theorem similarly. Therefore, we have the following.

Claim 3. There do not exist vertex v with | < s < |B| or s = 1 so that vvs is a non-crossed chord or vertex v, with1 < m < i
so that v;vy, is a non-crossed chord. 0O

Suppose that there is a vertex vs; with < s < |B| or s = 1 so that vu;s is a chord crossed by one other chord v,v, with
I < a < s.If the graph induced by v;vk, vk}, vjvi, vV}, Vv, ViVs, UsvUq and vauyp is not a x-cluster, then by the proof of Claim 2,
one can find one of the configurations (a)-(g) in the graph induced by V[v;, vs], and thus in G. If s < b < |B| or b = 1, then
by the proof of Claim 2, one can also find one of the configurations (a)-(g) in the graph induced by V[v;, vp], and moreover,
v is not the vertex with bounded degree in the configuration. Thus, we havea — [ = s —a = 1, vyjvy € E(G), vqvs € E(G)
and 1 < b < i.If b = i, then it is easy to prove that dg(v;) < 4, a contradiction. If b # i, then there is a chord v,,v; with
b < m < i,since dg(v;) > 5 and v,y is crossed by v;vs. By Claim 3, v, v; is a crossed chord, and we assume that it is crossed
by v,ve with m < n < i. Similarly as above, we shall also assume thati —n =n —m = 1, v,v; € E(G) and v,v, € E(G).
If b < t < m, then by similar arguments as in the proof of Claim 2, one can find one of the configurations (a)-(g) in the
graph induced by V[v;, v/], and thus in G. If t = [, then dg(v;) < 4, a contradiction. Therefore, we immediately deduce the
following claim.

Claim 4. There do not exist vertex vs with| < s < |B| or s = 1 so that vjv; is a crossed chord, and similarly, there do not exist
vm With 1 < m < iso that vyv;is a crossed chord. O

Since min{dg(v;), dg(v;)} > 5, by Claims 3 and 4, there exist vertices v; with 1 < s < iand v,, withl < m < |B| so
that vjvs and v;vy, are two chords that cross each other. If there is at least one pair of crossed chords that are contained in
C[vy, vn], then by similar arguments as in Case 1.2, one can obtain contradictions. If every chord contained in C[v;, v, ] is
non-crossed, then by Lemma 2, V[v;, v,,] is either a path or a non-edge. However, if V[v;, vy,] is a path withm — [ > 2, then
by similar arguments as in Case 1.1, one can find (a) or (e) in G; if V[v}, vn,] is a path with m — [ = 1, then (g) occurs in G,
since dg(v;) > 5 implies v;jv; € E(G) and if V[v;, vy,] is a non-edge, then dg(v;) < 4, a contradiction. O

3. List total coloring of PO-graphs

In this section, we present a sufficient condition for a pseudo-outerplanar graph to have a list total coloring and prove
the following theorem.
Theorem 5. Let G be a pseudo-outerplanar graph, and let L be a list of G. If
IL(x)| > max{6, A(G) + 1}
foreach x € VE(G), then G has a total L-coloring.

Before proving Theorem 5, we introduce some necessary notations. Let L be a list of a graph G and let L’ be a list of a graph
G' C Gwith L'(x) = L(x) for each element x € VE(G). Suppose that we have already obtained a total L’-coloring ¢’ of G/, and
that we are to extend ¢’ to a total L-coloring ¢ of G without altering the colors in G'. For each x € VE(G), let L, (x, ¢") be the
available list (the set of all colors in L(x) that are available) for x when ¢’ is extended to a total L-coloring ¢ of G.
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Lemma 6. Suppose that G contains a path P = v1u1v,Us03U3V4 With v1v4, Vo3, V3V4 € E(G) and d(uq) = d(up) = d(us) = 2.
Let ¢’ be a partial total L-coloring of G so that the uncolored elements under ¢’ are uy, u,, us, v,, v3, V103, VU3, U3V4 and the
edges of the path P, where L is a list assignment of G. If

min{|Lyy (U1v1, @), [Lay(Usva, @), [Lay(V1v2, @)1, |Lav(v304, @)} = 2,
min{|Lav(U27 (ﬂ/)|y |Lav(v3, (/)/)|} > 3,
|Lav(U2U3» (/),)| > 4,

and

min{|Lay (4102, @)1, [Lay(U2v2, @)1, ILay(U2v3, )|, |Lay (U303, @)} > 5,
then ¢’ can be extended to a total L-coloring ¢ of G without altering the colors in G'.

Proof. Without loss of generality, we assume that |L,, (u1v1, ¢")| = |La(Usvg, @) = |Lay(v1v2, @) = |Lay(v3v4, @) =
2, [Ly(v2, )| = |Lav(v3, @) = 3, [Lav(v2v3, ¢")| = 4, and |Lyy(u1v2, ¢)| = |Lay(t2v2, @) = |Lav(uzv3, )| =
|Lav(usvs, )| = 5. (otherwise we can shorten some lists that assigned to the elements of VE(G) so that those conditions
are satisfied). We extend ¢’ to a total L-coloring ¢ of G by two stages.

Stage 1. Color u3vs, U3vy, v3v4 and vs so that the resulted partial coloring ¢! satisfies one of the following conditions:

(1) |Lav(vav3, @h)| > 3, .
(2) |Lav(vav3, (/)1)| = 2 and Ly (vpvs, (/)]) # Lav(va, ¢’1) ¥f|Lav(U21 ¢1)| =2,
(3) ILay(v2v3, "] = 2 and Loy (v102, @1) # Lay(v2, @) if [Lay (v2, )| = 2.

We now prove that the coloring ¢! constructed in stage 1 exists. Assume that Ly, (v3v4, ¢’) = {1, 2}. We now color v;
with a color, say 3, from L., (v3, ) \ {1, 2}.

Case 1.2 € Ly (u3vy, ¢') (the case when 1 € Ly (U3vy, ¢') is similar).
Color v3v4 and usv4 with 1 and 2, and then discuss two subcases.

Case 1.1.{1, 2, 3} C Ly (usvs, ¢').

Assume that L,, (u3vs, ') = {1, 2, 3, 4, 5}. Denote the current partial coloring by ¢.

If4 & Ly (vavs, @) \ {1, 3}, then color usvs with 4, and we have {1, 3} C L,y (vov3, ¢’), otherwise ¢q satisfies (1) and
we let ¢! = ¢. Let Loy (vav3, ') = {1, 3, nq, ny}, where {1, 3} N {ny, ny} = @.If Loy (v, ¢') # {3, nq, N2}, then ¢ satisfies
(2) and we let ¢! := ¢, so we assume that L,, (v2, ¢') = {3, ny, np}. Now we erase the color on u3v; and recolor v3v,
and u3v, with 2 and a color ¢ (u3vy) € Loy (usvg, ¢') \ {2}, respectively. If ¢ (u3v4) # 4, then color usvs with 4. Since the
current coloring ¢; satisfies (1) or (2), we let ¢! := ¢1. If ¢ (u3v4) = 4, then Ly, (u3v4, ¢’) = {2, 4}, and color uzv; with 5. If
{ny, np} # {2, 5}, then the current coloring ¢, satisfies (1) or (2), so let ' := ¢.If {ny, n} = {2, 5}, then recolor uzvs; with
3.0f1 & Ly (v3, ')\ {2, 3}, then Lyy (vs3, @) = {2, 3, 5}, otherwise we can recolor vs with a color from Ly, (vs, ¢') \ {2, 3}, and
the resulted partial coloring satisfies (2). In this case, we recolor v3v4, U3v4 and uszvs with 1, 2 and 4. If the current coloring
does not satisfy (3), then L,,(v1v2, ¢’) = {2, 5}, thus we can construct a partial coloring satisfying (3) by recolor v with
5. Therefore, we assume that 1 € Ly, (vs, ¢') \ {2, 3}.1f5 & Ly (vs, ¢') \ {2, 3}, then Ly, (v3, ') = {1, 2, 3}, otherwise we
can recolor v3 with a color from L, (v3, ¢”) \ {1, 2, 3}, and the resulted partial coloring satisfies (2). In this case, we recolor
U3y, U3V, and usvs with 1, 2 and 4, and color v3 with 2. If the current coloring does not satisfy (3), then recolor v with 3 and
one can check that the new coloring satisfies (3). Therefore, 5 € L.y (vs3, )\ {2, 3}, which implies that L,, (vs, ¢’) = {1, 3, 5}.
In this case, we recolor v3vg, U3v4 and usvs with 1, 2 and 4, and color vs with 3. If the current coloring does not satisfy (3),
then recolor v3 with 5 and the new coloring satisfies (3).

If5 ¢ Liy(vavs, @) \ {1,3}, then we can do the similar arguments as above by symmetry, so we assume that
{4,5} C Ly(vavs, ¢'). Assume that Loy (vovs, ') = {4,5, nq, ny}, where {ny,ny} N {4,5} = @.1f {n,nx} # (1,3},
then color usvz with 4. If 5 & L., (v,, ¢'), then it is easy to see that the current partial coloring satisfies (1) or (2). If
5 € Lay(va, ¢'), then recolor usvs with 5 and the resulted partial coloring also satisfies (1) or (2). Therefore, we assume
that Ly, (vovs, ') = {1, 3, 4, 5}. Now we recolor v3vs and uzv, with 2 and a color ¢;(usvs) € Ly (usvg, @) \ {2}, then
color usvs with a color ¢, (usv3) € {4, 5} \ {¢2(u3v4)}. Without loss of generality, assume that ¢, (u3v3) = 4. We now have
Ly (v2, @) = {1, 3, 5}, otherwise ¢, satisfies (2) and let ¢! := ¢,. If ¢, (u3v4) # 5, then recolor uzvs with 5 and the resulted
coloring satisfies (2). If ¢, (u3v4) = 5, then recolor usvs with 1 and the resulted coloring also satisfies (2).

Case 1.2.{1, 2, 3} Z Ly (usvs, ¢').

Since |L,y (u3vs3, )| = 5, we can assume that {4, 5, 6} C L, (u3vs, ¢'). If {4,5} C Loy (vavs, @), then Ly, (vavs, ¢) =
{1, 3, 4, 5}, otherwise we color u3v3; with 6 and get a partial coloring satisfying (1). We now color u3v3 with 6, and deduce that
Lav(va, @) = {3, 4, 5}, otherwise the current partial coloring satisfies (2). In this case, we recolor v3v,, U3v4 and usvs with
2, p3(U3vy) € Lyy(usvg, @)\ {2} and ¢3(usv3) € {4, 5, 6} \ {¢3(u3v4)}. It is easy to check that the partial coloring ¢5 satisfies
(2), so we let ¢’ = ¢3. By symmetry, one can prove the same result if {4, 6} C Ly, (vovs, ¢') or {5, 6} C Ly (vavs, ¢).
Therefore, we assume, without loss of generality, that 5,6 ¢ L., (vavs3, ¢'). We now color usvs with 5, and deduce that
{1, 3} C Ly (vov3, @), otherwise the current partial coloring satisfies (1). Assume that L, (v,vs, ¢') = {1, 3, nq, ny}, where
{ny, n;} N {1, 3} = @. We then have L, (v,, ¢') = {3, ny, n,}, because otherwise the current coloring satisfies (2). In this
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case, we recolor v3vy, U3vg and uzvs with 2, ¢4(usv4) € Lay(Usvg, ¢') \ {2} and ¢4 (u3v3) € {5, 6} \ {¢p4(u3v4)}. One can check
that the resulted partial coloring ¢4 satisfies (2), thus we let ¢ := ¢4.

Case 2.3 € Ly (u3vg, ¢).

We first color usv4 with 3. Assume that {4, 5} C L, (u3vs, ¢').

If {4,5} C Ly (vavs, @), then 1 € Ly (vav3, ¢). Otherwise, we color vsv4 and usvs with 1 and 4. If the current coloring
does not satisfy (2), then recolor usvs with 5 and get a partial coloring satisfying (2). Similarly, 3 € Ly, (vov3, ¢'), so
Ly (vous, ') = {1, 3, 4, 5}. In this case, we color v3v4 and usvs with 2 and 4. If the current does not satisfy (2), then recolor
us3v3 with 5 and the resulted coloring satisfies (2). If {4, 5} Z L., (vav3, ¢), then we assume, without loss of generality, that
4 ¢ Lay(vav3, ¢'). We now color usvs and vsvg with 4 and 1. If {1, 3} Z Lay(vavs, @), then it is easy to see that the current
partial coloring satisfies (1). If L, (vov3, ¢") = {1, 3, ny, np}, where {n{, n,} N {1, 3} = @, then L,y (v, ¢’) = {3, ny, ny},
otherwise the current partial coloring satisfies (2). In this case, we can also get a partial coloring satisfying (2) by recoloring
v3U4 With 2.

Case 3. Ly (usvg, ") N {1, 2,3} = 0.

Without loss of generality, assume that Ly, (usvg, ¢') = {4,5}. We claim that 1 € L.y (vyvs3, ¢'). Otherwise, color
V34, U3V and usvs with 1, 4 and ¢5(usv3) € Ly (usvs, ¢') \ {1, 3, 4}. If the current coloring ¢s does not satisfy (2), then
recolor usv3 with a color ¢g(usvs) € Ly (usvs, @) \ {1, 3, 4, ¢s(usv3)}. It is easy to see that ¢ satisfies (2), thus we let
¢ = ¢. Similarly, 2,3 € Ly (vav3, ¢). Assume that Ly, (vovs, ') = {1, 2, 3, ny}, where n; ¢ {1, 2, 3}. We now color
V34, U3v4 and uszvs with 1, 4 and a color ¢7(usv3) € Ly (usvs, @) \ {1, 2, 3,4}. If n; # ¢7(usv3), then we recolor v3vy,
with 2 if ¢; does not satisfy (2), and the resulted coloring satisfies (2), so n; = ¢ (u3v3). If Loy (usvs, ¢') # {1,2, 3,4, ny},
then recolor usvs with a color from L., (u3vs, ¢') \ {1, 2, 3, 4, n;} and the resulted coloring can be dealt with as above, so
Ly (usvs, ¢) = {1, 2, 3,4, n;} and ny # 4. In this case, we color v3vy, u3v4 and usvs with 1, 5 and 4. If the current partial
coloring does not satisfy (2), then we can construct another partial coloring that satisfies (2) by recoloring v3v4 with 2.

Stage 2. Extend ¢! to a total L-coloring ¢ of G without altering the assigned colors.

Note that ¢! satisfies |Lyy (U101, V)| = |[Lay(v1v2, V)| = 2, |Lav (U102, @1)| = |Lav(U2v2, @1)| = 5 by the choice of ¢/,
and |Lay (U202, @11, [Lay (v203, 911, [Lay(v2, 91)| > 2, and moreover, either Ly (v2v3, 91) # Lay(v2, ¢1) or Ly (v102, @) #
Lay(v2, @) if |Lyy (v2, @1)| = 2, by the choice of ¢! in Stage 1.

Without loss of generality, we assume that |Ly, (U202, 1) = |Lay(v2v3, )| = |[Lay(v2, @1)| = 2 and Ly, (vav3, ') #
Ly (v2, @) = {1, 2} in the following arguments.

If Lyy(viva, oY) N Ly(upvs, @') # @, then color viv, and uyvs with pw(vivy) = u(upvs) € Ly(vivg, @) N
Lay(uzvs, @1). Since Ly, (vav3, 1) # Lay(va2, @), we can color v, and vovs with w(vy) € Ly (va, oY) \ {u(vivy)} and
w(upvs) € Loy(upvs, @) \ {n(uav3)}) so that w(vy) # u(upvs). We then color ujvq, v, and uyvy with p(uqvy) €
Lav(uivr, @) \ {(viv)}, n(vz) € Lay(uiva, 1) \ {p(uqve), n(viva), w(v2), u(vavs)} and pu(uava) € Lay(uzva, 91) \
{(uzvs3), w(vavs), u(vy), w(uqvy)}, respectively. Since uq, u; and us are 2-vertices, they can be easily colored at the last
stage. Therefore, we have a total L-coloring y of G. In what follows, we assume that L,y (v1v2, @) N Ly (uzv3, @) = 0.

Case 1. Ly, (vov3, 1) = {1, 3}.

If1 e Ly(ujvy, @") and Ly (vivy, @) # {1,2}, then color uqv; and vyvs with 1, and color vy, v1vy, U3, UyVy
and uqv, with 2, u1(viv2) € Lay(uiva, @) \ {12}, wi(uavs) € La(Uavs, @) \ {1}, p1(u2v2) € Lyy(uzva, @) \
{1,2, n1(v1v2), w1 (uzv3)} and pq(U1vz) € Lay(uiva, @) \ {1, 2, w1(v1v2), 1 (u2v2)}, respectively. If 1 € Ly (uqvy, @)
and Ly, (v1v2, @1) = {1, 2}, then color u;v; and v, with 1, and color v,v3, V1v2, Us V3, Ux v, and uqv, with 3, 2, iy (uzv3) €
Lav(u2v3’ gol) \ {3}5 M](Uzvz) € Lav(u2v27 gol) \ {19 2,3, M](U2U3)} and H](ulUZ) € Lav(ulvzs (p1) \ {1! 2,3, /'Ll(uzvz)}'
respectively. In each case, we can extend u; to the 2-vertices uy, u, and us and get a total L-coloring of G. Therefore,
1 ¢ Ly (uyvq, @b). Similarly, 2, 3 & Ly, (uqv1, ¢'). We assume, without loss of generality, that L, (uqv1, ¢') = {4, 5}.

If4 & Ly (ujv2, @), then color u;v; and vyv, with 4 and o (v1v2) € Loy(v1v2, @) \ {4). If ua(viv2) # 2, then color
V2, V203, Upv3, Upvz and uqv; With 2, o (vav3) € {1, 3} )\ {12 (v1v2)}, p2(Uzv3) € Lay(uzvs, 1) \ {2 (v2v3)}, p2(u2v2) €
Lo (uav2, @1 \ {2, 2 (v1v2), pa(v2v3), pa(zvs)} and wa(urvz) € Lay(Uiva, 1) \ {2, m2(v1v2), 2 (v203), pa(Uav2)}.
If /,Lz('l)lvz) = 2, then color VU2, VU3, Up V3, UpV) and uqvy with 1, 3, /,Lz(llzv3) (S] LaV(U2U3,(/)1) \ {3},#2(1121}2) (S]
Lay(uava, o) \ {1, 2, 3, ua(uav3)} and 2 (ugv) € Ly (uiva, 1) \ {1, 2, 3, 2(uzv2)}. In each case, we can extend j, to
the 2-vertices uq, u, and u3 and get a total L-coloring of G. Therefore, 4 € Ly, (ujv2, @'). Similarly, we have 1,2,3,5 €
Ly (u1vz, @), so Ly (u1vy, ') = {1, 2, 3, 4, 5}. By similar arguments as above, we can also prove that Ly, (u;v,, ') =
{1,2,3, 4,5}, Ly(viv2, ") € {1,2,3,4,5}and Lo, (upv3, @) C {1, 2, 3,4, 5}.

If 1 € Lyy(v1v2, @), then color vyvy, vy, V2v3, U171, U1V and uyv, with 1,2, 3, 4, 5 and 4. If Ly, (uyv3, ') # {3, 4}, then
color uyv3 with a color in Ly, (u3v3, @)\ {3, 4}. If Loy (uav3, @) = {3, 4}, then recolor uq vy, u1v; and upv, with 5,4 and 5, and
color uyv3 with 4. In each case, we can extend the current coloring to the 2-vertices u1, u, and u3 and get a total L-coloring
of G. By similar arguments as above, we can complete the proof of this lemma if 2 € Ly, (vivo, ') or 3 € Lyy(vivz, @).
Therefore, we assume that L,, (v1v2, ¢') = {4, 5}. In this case, we color v{vy, vy, V2V3, U1 V1, U1V, and Uy v, with 4, 1, 3, 5, 2
and 5. Since Ly, (v1v2, @1) N Ly (uav3, @) = 9,5 & Loy (upv3, ). Hence, we color u,vs with a color from Ly, (u3v3, @) \ {3}
and then extend the coloring at this stage to u, u; and us to obtain a total L-coloring of G.

Case 2'. Lyy(vov3, ') = {3, 4}.

By similar arguments as in the first part of Case 1/, one can prove that Ly, (uqv1, ¢') N {1, 2, 3,4} = #, so we assume

that Ly, (uqv1, ') = {5, 6}. Since |Ly, (ujv0, @) = 5,1{1,2,3,4,5,6} \ Ly(uvz, ') # @. Without loss of generality,



X. Zhang / Discrete Mathematics 313 (2013) 2297-2306 2303

assume that 1 ¢ Ly (uqvs, @') and color vy with 1. If Ly (viva, @') = {1, 3}, then color vyvs, v1vy, U3V, UpV3, Uz Dy
and uyv; with 4, 3, 5, u3(Uv3) € Lay(Uavs, ') \ {4}, 3 (Uav2) € Lay(avz, ') \ (1,3, 4, u3(uzv3)} and ps(ugvy) €
La(uiva, @1 \ {3.4,5, us(uava)}. If Lay(viva, @) # {1, 3}, then color vyvs, v1v;, Ugvy, Upvs, Upvy and ujvy with 3,
w3(1v2) € Lay(v1v2, ") \ {1, 3}, 5, 3(U2v3) € Lay(Uzv3, ") \ {3}, i3(Uz02) € Lay(tavz, ") \ {1, 3, i3(v102), p3(uzv3)}
and p3(u1v2) € Ly (uiva, @)\ {3, 5, ua(v1v2), na(uzv,)}, respectively. In each case, we can extend the partial coloring ji3
to the 2-vertices uy, u, and uz and get a total L-coloring of G. O

Lemma 7. Suppose that G contains a cycle ujuyusuy with uyuy € E(G) and d(uy) = d(uy) = 3 and that G’ = G — {uy, u4} has
a total L'-coloring ¢’ so that L' (x) = L(x) for each x € VE(G'), where L s a list assignment of G. If

|Lay (tatia, ¢')| > 6,

min{|Lay (U2, ¢')|, |Lay (s, 9")[} > 4,

min{|Lay (u1tiz, @)1, [Lay (tatiz, @)1, [Lay(usta, @)1, Lay(t1ug, )|} > 2
and

Lay(uitiz, ¢) # Lay(upus, ') when |Lay (Ui, ¢)| = |Lay(Upus, ¢)| = 2
then ¢’ can be extended to a total L-coloring ¢ of G without altering the colors in G'.

Proof. Without loss of generality, we assume that |L,, (Usty, ¢')| = 6, |Lay(Uz, @')| = |Lav(Ug, ¢)| = 4and |Lyy (Ui, )| =
|Lav(Uuausz, @")| = |Lay(usty, ¢')| = |Lay(U1uyg, ¢")] = 2 (otherwise we can shorten some lists that assigned to the elements
of VE(G) so that those conditions are satisfied), and then split the proofs into the following two cases.

Case 1. Ly, (uqua, ¢") = {1, 2} and Ly (uaus, ¢') = {3, 4}.

If Lyy(uqug, ') = {1,2}, then color uju; and ujuy with 1 and 2, usuy with ¢”(usuy) € Lay(usug, @) \ {2}
and upus with ¢”(upu3) € {3,4} \ {¢”(usuy)}. Denote the extended partial coloring by ¢”. One can see that
|Lav(uz, @), ILay(Ua, "), |Lay(uatia, ") = 2.1f Ly (U2, ¢") = Lay(us, ¢”) = Lay(uaug, ¢”), then recolor uju; and ujuy
with 2 and 1 when ¢” (usuy) # 1, or recolor u,us with the color in {3, 4} \ {¢” (upus)} when ¢” (usuy) = 1. We still denote
current coloring by ¢” but now we do not have Ly, (U3, ¢”) = Ly (us, ¢”) = Loy (Uaug, ¢”). Therefore, we can easily extend
¢” to a total L-coloring ¢ of G by coloring u;, u4 and u,uy4 properly.

If Ly(uiug, @) N Lay(upus, ¢') # @, then color upus and uquy with ¢”(uus) = ¢"(Uuy) € Lay(uiug, ¢') N
Lav(uaus, @), uyuy with @ (uquz) € Loy (uquz, ¢) \ {9 (uus)}, usuy with ¢ (usus) € Ly (usug, @) \ {¢” (u2u3)} and denote
the extended coloring by ¢”. One can see that |L,, (U2, ¢”)|, |Lay(Us, ¢”)| > 2 and |Lay(uzu4, ¢”)| > 3. Therefore, ¢” can be
easily extended to a total L-coloring ¢ of G by coloring u;u,, u;, Uy, and uy properly.

If Loy (Uqug, @) N Ly (uaus, @) = @ and Ly, (u1uy, @) # {1, 2}, then color ujuy with ¢” (uquy) € L(uqug, ¢') \ {1, 2}, usty
with ¢” (usuy) € L(usug, @) \ {¢” (U1uy)}, upus with " (uzus) € L(upus, ¢') \ {¢” (usuy)} and denote the extended coloring
by ¢”. One can see that |L,, (u1uz, ¢”)|, |Lav(ta, )| > 2 and |Lay (U3, @), |Lav(Ualis, ¢")| > 3. Therefore, ¢ can be easily
extended to a total L-coloring ¢ of G by coloring 45, u,, uyu, and uy properly.

Case 2. Ly (u1ua, ') = {1, 2} and Ly (upus, ¢') = {1, 3}.

By similar arguments as in the second part of Case 1, one can show that L, (ujuy, ¢") N Ly(upus, ¢') = @ and
Loy (uqtz, @) N Ly (U, ') = 0.

If 2 € Ly(ujug, ¢'), then we assume that Ly, (uiug, ¢') = {2,4}. If Ly (usug, ¢') # {3, 4}, then color upus and
ujug with 3 and 4, usuy with ¢”(usuy) € Ly (usug, ¢') \ {3, 4} and denote the extended coloring by ¢”. One can
see that |Ly (uqlz, @), |Lay(ug, )| = 2 and |Lay(uz, @), |Lav(Uas, ¢”)| > 3. Therefore, ¢” can be easily extended
to a total L-coloring ¢ of G by coloring uqu,, uy, usty and uy properly. If Ly, (usug, ¢') = {3, 4}, then we first color
Uy, Upus, ustly and uquy with 1, 3, 4 and 2, respectively, and denote the extended coloring by ¢”. It is easy to see that
|Lav (U2, @), ILay(ua, @)1, |Lay(Uaug, ¢”)| > 2. If the three sets La, (U2, ¢”), Lay(Ua, "), Lav(U2Us, ¢”) are not the same or
Lav(uz, @) = Lay(ug, ¢") = Lay(Upuy, ¢) and |Lyy (uz, ¢”)| > 3, then ¢” can be easily extended to a total L-coloring ¢ of
G.If Loy (up, ¢”) = Lay(ug, ¢”) = Lay(Upuy, ¢”) = {5, 6}, then we revise the coloring ¢” by recoloring u;u,, u,us, usty and
U4ty by 2, 1, 3 and 4. We then have L, (13, ¢”) = {3, 5, 6}, Lay(ug, ¢”) = {2, 5, 6} and Ly, (uyuy, ¢”) = {5, 6}, so we extend
¢” to a total L-coloring of G by coloring u,, u4 and uyus with 3,2 and 5.

If 2 & Ly (ujug, ), then we assume that Ly, (uqus, ¢’) = {4,5}. We now color uyus with 3, uzuy with ¢”(usuy) €
Lay(ustg, @) \ {3}, ujuy with ¢”(uquy) € Lay(uiug, ¢”) \ {¢” (usuy)} and denote the extended coloring by ¢”. It is easy to
see that |Ly (uitz, @), |Lay(Ug, ¢”)| > 2 and |Ly (uz, ¢”)|, |Lay(tats, ¢”)| > 3. Therefore, ¢” can be easily extended to a
total L-coloring ¢ of G by coloring uqu;, u,, uyuy and uy properly. 0O

Lemma 8. Suppose that G contains a cycle u uyusug with uyuy € E(G), d(uy) = d(uy) = 3 and us being adjacent to a vertex v.
Let ¢’ be a partial total L-coloring of G so that the uncolored elements under ¢’ are uquy, Uy, Uslly, Ujlly, Uplly, U3V, Uy, U3, Uy
and v, where L is a list assignment of G. If

|Lay (UpUig, §0/)| > 6,

min{|Lay (2, @), |Lay (U, 9"} = 5,
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min{|L,y (uzus, @), |Lay(ustis, ¢)|} > 4
min{| Ly (U1tlz, @)1, |Lav(U1tia, @), [Lav(Uusv, @), |Lay (U3, @)1, |Lav(v, ¢)[} > 2

and

at least two of Ly, (u3v, ¢'), Lay(u3, @), Lay(v, @) are distinct when
|Lay (usv, (P/)| = |Lay(us, (/)/)| = |Lay(v, ¢,)| =2,
then ¢’ can be extended to a total L-coloring ¢ of G without altering the assigned colors.

Proof. Without loss of generality, we assume that |L,, (tauyg, ¢')| = 6, |Lay(Uz, @) = |Lay(ug, ¢")| = 5, |Lay(Uaus, ¢')| =
|Lav(ustig, ¢)] = 4 and |Lay (u1tz, )| = |Lay(U1ty, @")| = [Lav(U3v, @")] = |Lay(u3, @) = Ly (v, )] = 2.

If Ly (usv, ¢') = La(us, ¢') = {1, 2}, then we color u; and uzv with 1 and 2, and then color v with a color from
L.y (v, @) that is different from 1 and 2. Denote the current partial coloring still by ¢’. We then have |L,, (uyug4, ¢')| =
6, |Lay(urtiz, ") = |Lay(uius, ') = 2, |Lay (U2, @), [Lav(us, ') = 4 and |Lay (uzus, "], |Lay(ustis, ") > 2. Without loss
of generality, assume that |L,,(t2, ¢')| = |Lav(Ug, ¢")| = 4 and |L, (uaus, ¢")| = |Lay(usuy, ¢’)| = 2. Since every 4-cycle is
2-choosable, we color each edge of the cycle u u,usu, from its available list and denote the coloring at this stage by ¢”. It
is easy to see that |Lyy (U2, )|, |Lay(Ua, @), |Lay(Uatig, ¢”)| > 2.1f at least two of Lay (uz, ¢”), Lay(Uug, ¢”) and Lay (U tly, ¢”)
are distinct or max{|L,, (U2, ©”)|, |Lay(Ua, )|, |Lav(tatig, ”)|} > 3, then ¢” can be easily extended to a total L-coloring of
G.If Ly (uz, ¢") = Ly(ug, ¢”) = Lay(Uauy, ¢”) = 2, then exchange the colors on u3 and usv and denote this coloring by ¢”’.
This operation does not disturb the properness of the colors on the edges of the cycle u;u,usuy, but implies that at least two
of Lay (uz, ¢), Lay(us, ¢”") and Ly, (U4, ™) are distinct if |Ly (uz, ¢™)| = |Lay(ug, ¢")| = |Lay(uaa, ¢)| = 2. Therefore,
¢"" can be extended to a total L-coloring ¢ of G.

If Loy (usv, ¢') = {1, 2} and L, (us, ¢’) = {1, 3}, then there are two ways to color u3 and u3v so that v can be colored from
its available list so that the color assigned to v is different with the colors assigned to u3 and uzv. Without loss of generality,
assume the above two ways of coloring are as follows: color us and usv with 1 and 3, or with 2 and 1. We now color us
and uzv with 1 and 3, and then color v properly. Denote the current coloring by ¢”. Suppose that L,, (u1u3, ¢") = {a, b}.
If Ly (upus, ') # {1, 3, a, b} or {a, b} N {1, 3} # @, then Ly, (uquy, ¢”) # Ly (upus, @), therefore, by Lemma 7, ¢” can be
extended to a total L-coloring of G. If L, (upus, ¢") = {1, 3, a, b} and {a, b} N {1, 3} = @, then recolor v3 and v by 2 and 1,
and recolor v properly. Denote this coloring by ¢”’. We then have Ly, (uyus, ¢”') = {3, a, b} \ {2} # {a, b} = Ly (u1uz, @),
so by Lemma 7, ¢”” can be extended to a total L-coloring of G.

If Loy (usv, ¢') = {1, 2} and Ly, (u3, ¢') = {3, 4}, then there are two ways to color u3 and usv so that v can be colored
from its available list so that the color assigned to v is different with the colors assigned to u3 and u3v. Therefore, we can do
similar arguments as above to complete the proof. O

Lemma 9. Suppose that G contains a cycle uquyusuy with uqus, uyus € E(G) and d(uy) = d(ugs) = 3. Let ¢’ be a partial total
L-coloring of G so that the uncolored elements under ¢’ are uquy, UyUs, Uslly, Ujlly, Uplly, Uils, Uq, Uy, Uz and Uy, where L is a
list assignment of G. If

min{|Lay (2, 9|, |Lav(ta, "), |Lav(uzug, ¢)[} > 6,
min{|Lay (U1, @), |Lay (a3, @), |Lay(Ustia, @), [Lay(U1tia, )|} > 4
min{|Ly (us, 90/)|: |Lay (us, ¢,)|v |Lay (uqus, (/)/)|} >2

and

at least two of Ly (u1, @), Loy (us, @), Lo (uqus, ) are distinct when
|Lay (ug, 90/)| = |Lav(us, (P/)| = |Lay(uqus, §0/)| =2,
then ¢’ can be extended to a total L-coloring ¢ of G without altering the assigned colors.

Proof. Without loss of generality, we assume that |L,,(tz, ¢')| = |Lav(ug, ¢)| = |Lav(Uatig, )| = 6, |Ly(uila, ¢')| =
|Lav(uztis, @) = |Lay(ustia, @")| = |Lay(uits, ") = 4 and |Lay (u1, ¢")| = |Lay(u3, ¢)| = |Lav(uqus, ¢)] = 2.

If Ly (ugus, ') = Ly (us, ¢') = {1, 2}, then color u3 and ujus with 1 and 2, uq with ¢”(uq) € Lay(uq, ¢") \ {1,2} # @
and denote the current coloring by ¢”. Without loss of generality, assume that ¢”(u;) = 3. It is easy to see that
|Lav(uatia, ") = 6, |Lay(uz, "), |Lav(ua, @) > 4 and |Lay(uiuz, @)1, |Lay(Uaus, @), |Lay(usg, @), |Lay(uiug, ¢")| > 2.
If{17 2} JQ_ LaV(U2U3, (p,)v Or{za 3} g Lav(u1u27 (p/)v OrLaV(UZU3, (p/)\{15 2} # Lav(ulu27 (p/)\{zv 3}vthen by Lemma?7, QD// canbe
extended to a total L-coloring of G. If L, (u1u3, ¢") = {2, 3, a, b}, Lyy(uaus, ¢') = {1, 2, a, b} and {a, b} N {1, 2, 3} # @, then
exchange the colors on u3 and u;us3, and denote this coloring by ¢”’. Since |Lyy (Uzlg, ¢”)| = 6, |Lay(Uz, @), |Lay(Ua, ¢”)| >
4, Ly (uquy, @) > 3 and |Lay (ustg, ¢”)|, |Lay(Uits, "), |Lav(Uaus, ¢”")| > 2, by Lemma 7, ¢”” can be extended to a total
L-coloring ¢ of G.

If Loy (uqus, ') = {1, 3} and L, (us, ¢’) = {1, 2}, then we shall assume that L,,(u1, ¢’) # {1, 3} (otherwise we come
back to the above case). If Ly, (u1, ¢") \ {1, 2, 3} # @, then color u; with a color in Ly, (uq, ¢’) \ {1, 2, 3}, say 4, and color
us and uquz with 1 and 3. Denote the current coloring by ¢”. If {1,3} & L., (upus, ¢'), or {3,4} & L (ujuy, ¢’), or
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Lay(uausz, ") \ {1, 3} # Ly(uiua, @) \ {3, 4}, then by Lemma 7 and similar arguments as before, ¢” can be extended to
a total L-coloring of G. If L, (u1uy, ¢') = {3, 4, a, b}, Lyy(uaus, ¢') = {1, 3, a, b} and {a, b} N {1, 3, 4} # ¥, then recolor us
with 2 and denote the current coloring by ¢””. By Lemma 7 and similar arguments as before, one can prove that ¢” can be
extended to a total L-coloring of G. If L,,(uq, ¢’) = {1, 2}, then color us, ujus and u; with 1, 3 and 2. Denote this partial
coloring of G by ¢”. By similar arguments as above, one can prove that either ¢” can be extended to a total L-coloring of G
by Lemma 7, or we can construct a new partial coloring ¢’ by exchanging the colors on u; and u3 that can be extended to
a total L-coloring of G by Lemma 7. If L, (uq, ¢") = {2, 3}, then color us, uqus and u; with 1, 3 and 2 and denote this partial
coloring of G by ¢”. One can also prove that either ¢” can be extended to a total L-coloring of G by Lemma 7, or we can
construct a new partial coloring ¢”” that can be extended to a total L-coloring of G by Lemma 7 via recoloring us, u us and
uq with 2, 1 and 3.

If Ly (uqus, @) = {3, 4} and Ly (u3, ¢") = {1, 2}, then we shall assume that L., (uq, ¢") N {3, 4} = @. (otherwise we
come back to the above case). We now color u; with ¢”(u1) € Ly (U, ¢'), uqus with ¢” (uqu3) € Ly (ujus, @) \ {¢” (ur)},
and us with ¢”(u3) € Lay(us, ) \ {¢”(u1)}. Denote this coloring by ¢”. By Lemma 7 and similar arguments as before, ¢”
can be extended to a total L-coloring of G if {¢p”(uju3), ¢”(Uu3)} € La(uaus, @), or {¢"(uju3), " (1)} € Lay(uiuy, @),
or Ly (upus, @) \ {9"(uus), " (us)} # La(uitz, @) \ {¢”(u1us), ¢”(u1)}. Therefore, we assume that Ly, (upus, ¢') =
{¢//(U1U3)7 ¢/,(U3), a, b} and Lav(u1u25 ‘P/) = {(p“(uﬂlg), (ﬂ//(U]), a, b}v where {a7 b} N {(ﬂ”(uﬂlg'), Qﬂ//(u]), ¢//(U3)} = 0.If
¢”(u;) ¢ {1,2}, then we can construct a new partial coloring ¢”” that can be extended to a total L-coloring of G by
Lemma 7 via recoloring us with a color from L,y (us, ¢') \ {¢”(u3)}. Thus, we assume, without loss of generality, that
¢’ (u) =1, ¢"(u3) = 2and ¢” (uqu3) = 3.1f Loy (uy, ¢’) # {1, 2}, then recolor u; with a color from Ly, (u1, ¢") \ {1, 2, 3, 4},
which is a non-empty set since Ly, (11, ¢') N {3, 4} = @.1f Ly (uq, ¢') = {1, 2}, then exchange the colors on u; and us. In
each case, the resulted coloring can be extended to a total L-coloring of G by Lemma 7. O

We are now ready to give a proof of Theorem 5.

Proof of Theorem 5. Suppose that G is a counterexample to this theorem with the smallest value of |V (G)| + |E(G)|. Itis
easy to see that §(G) > 2 and every 2-vertex in G is adjacent only to A(G)-vertices, so by Lemma 3, G contains one of the
configurations among (b)-(g).

If G contains (b), then G’ = G — {uy, uy, us, vy, v3} has a total L’-coloring ¢’ so that L' (x) = L(x) for each x € VE(G'). One
can see that |Lav(vlv27 (/)/)L |Lav(vl Us, 90’)|» |Lav(v2 Vg, (P,)|, |Lav(v3v4’ ¢/)| = 3. lfLav(Ul U3, 90/) ﬂLav(UzUm 90/) 7é Q- then color
v1v3 and vyv4 with a same color from Ly, (v1v3, @) N Lay (V2v4, @). If Loy (V1v3, ") N Ly (vav4, @) = @, then we can extend ¢’
to another partial coloring ¢” of G by coloring v{vs and vov4 with ¢” (vv3) € Ly (vvs, @) and ¢” (vv4) € Ly (vav4, @) SO
that |Lyy (v1v2, @) \ {¢” (V1v3), 9" (v2v4)}] > 2 and |Lay (v3v4, @) \ {@” (v1V3), @” (v2v4)}] > 2.1In either case, we can extend
¢’ to another partial coloring ¢” of G by coloring v{vs and v,v4 from their available lists, and moreover, ¢” satisfies

Lay (101, @)1, [Lav(U3vs, @), [Lay(V102, "), [Lav(v304, @")] = 2,
Lav(v2, "), [Lay (v3, @) = 3,
|Lay (V203, ¢//)| > 4,

and

|Lay (U102, <,0”)|, |Lay (uzv3, (0”)|7 |Lay (Uzv3, (/)H)L |Lay (u3v3, (PH)| >5.

Therefore, by Lemma 6, ¢” can be extended to a total L-coloring ¢ of G without altering the assigned colors.

If G contains (c), then G’ = G — {uy, u4} has a total L'-coloring ¢’ so that L'(x) = L(x) for each x € VE(G'). Since there
are at least two available colors for each edge of the cycle uqu,usuy and every 4-cycle is 2-edge-choosable, we can color
uqly, Uyls, Usiy and uyuq from their available lists so that the extended coloring is proper. At last, we color u, and uy4 from
their available lists to obtain a total L-coloring ¢ of G. This can be easily done since u; or uy is incident with four colored
elements right row.

If G contains (d), then ¢ = G — {uy, uy} has a total L'-coloring ¢’ so that L'(x) = L(x) for each x € VE(G).
One can check that |L, (uxug, @) > 6, |[Lay(uitz, @), [Lav(Uits, ") > 2, |Ly(uauz, @), [Lav(usug, ¢')] > 3 and
[Lav (U2, @), |Lav(ua, ¢')| > 4. By Lemma 7, ¢’ can be extended to a total L-coloring ¢ of G without altering the colors
inG.

If G contains (e), then G = G — {uj,, uy, usv} has a total L'-coloring ¢’ so that L'(xX) = L(x) for each x € VE(G').
We now erase the color on v and still denote the current coloring by ¢’. It is easy to check that |L.,(upug, ¢)| >
6, [Lav(uquy, (/)/)|, |Lav(uius, @')| = 2, |Lay(upus, (/)/)|, |Lav (usug, ¢")| = 3, |Lay(uz, (/)/)|, |Lav(us, @) = 4, |Lay(usv, (/)/)| > 2
and |L, (v, ¢')| > 3. We now color usv with ¢” (usv) € Ly (u3v, ¢’) and v with ¢”(v) € Ly (v, @) \ {¢”(u3v)} so that the
extended partial coloring ¢” satisfies

(1) |Lav(uzug, )| = 6, [Lay(uz, @), ILay(Ug, ") = 4, Loy (Ui, @), [Lay(Uzu3, ™), |Lay (Ustia, @), [Lay(Urus, ¢”)| = 2
(2) Lay(uiti, ") # Lay(uauis, ") if |Lay (uitz, )| = |Lav(Uaus, )| = 2.

This can be done since |L,, (usv, ¢’)| > 2. Therefore, ¢’ can be extended to a total L-coloring ¢ of G without altering the
colors in G’ by Lemma 7.
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If G contains (f), then G = G — {u,, us} has a total L’'-coloring ¢’ so that L' (x) = L(x) for each x € VE(G'). We now erase
the colors on us, usv and v and denote the current coloring by ¢”. It is easy to see that

|Lav(Uaia, ¢”)| > 6,
|Lay (U2, (/)H)L |Lay (Ug, ‘/)”)| > 5,
|Lav (uzusz, @)1, |Lay(ustis, ¢”)| > 4,

and

Lay (Utt2, @)1, |Lay (U1ta, @), ILav(Usv, )1, ILav(u3, @), [Lav(v, ¢™)| > 2.

Since ¢” is a partial coloring of ¢’, at least two of Ly, (usv, ¢”), Lay(u3, ¢”), Low(v, ) are distinct if |Ly (usv, ¢”)| =
|Lav (U3, )| = |Lav(v, ¢”)| = 2. Therefore, by Lemma 8, ¢” can be extended to a total L-coloring ¢ of G without altering the
colorsin G'.

If G contains (g), then G’ = G — {u,, u4} has a total L’-coloring ¢’ so that L' (x) = L(x) for each x € VE(G'). We now erase
the colors on uy, us and u;u3 and denote the current coloring by ¢”. One can see that

|Lav (2, @), |Lav(us, @)1, |Lav(Uatis, 9")| = 6,
Lay (Uti2, @)1, |Lay (Uats, @), |Lav(Ustia, @), |Lay(Urug, )| > 4,

and

|Lav (U1, @), [Lav(us, @)1, |Lav(uqus, ¢”)| > 2.

Since ¢” is a partial coloring of ¢’, at least two of L., (uqus, ¢”), Ly (U1, ¢”), Lay(us, ¢”) are distinct if |L,, (uq, ¢”)] =
|Lav(u3, )| = |Lay(uqus, ¢")| = 2. Therefore, ¢” can be extended to a total L-coloring ¢ of G without altering the colors in
G'bylemma9. O

Remark. Theorem 5 implies that every pseudo-outerplanar graphs with maximum degree at least 5 is totally (A + 1)-
choosable. In fact, the bound 5 for the maximum degree in this result cannot be improved to 3 since there exists a pseudo-
outerplanar graph with maximum degree 3 and total chromatic number 5 (see Fig. 1 of the Ref. [12]). In another coming
paper, we have proved that every pseudo-outerplanar graph with maximum degree 4 is totally 5-colorable. However, we
still do not know whether every pseudo-outerplanar graph with maximum degree 4 is totally 5-choosable, thus we leave it
as an open problem here.
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