List total coloring of pseudo-outerplanar graphs ${ }^{\text {T }}$

Xin Zhang
Department of Mathematics, Xidian University, Xi'an 710071, China

A R TICLE INFO

Article history:

Received 4 February 2013
Received in revised form 6 June 2013
Accepted 9 June 2013
Available online 28 June 2013

Keywords:

Pseudo-outerplanar graph
List total coloring
Structures

Abstract

A graph is pseudo-outerplanar if each of its blocks has an embedding in the plane so that the vertices lie on a fixed circle and the edges lie inside the disk of this circle with each of them crossing at most one another. It is proved that every pseudo-outerplanar graph with maximum degree $\Delta \geq 5$ is totally ($\Delta+1$)-choosable.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs are finite, simple and undirected. By $V(G), E(G), \delta(G)$ and $\Delta(G)$, we denote the vertex set, the edge set, the minimum degree and the maximum degree of a graph G, respectively. By $V E(G)$, we denote the set $V(G) \cup E(G)$. For undefined concepts we refer the readers to [1].

A total coloring of a graph G is an assignment of colors to the vertices and edges of G such that every pair of adjacent/incident elements receives different colors. A total k-coloring of a graph G is a total coloring of G from a set of k colors. The minimum positive integer k for which G has a total k-coloring, denoted by $\chi^{\prime \prime}(G)$, is the total chromatic number of G.

Suppose that a set $L(x)$ of colors, called a list of x, is assigned to each element $x \in V E(G)$. A total coloring φ is called a list total coloring of G for L, or a total L-coloring, if $\varphi(x) \in V E(G)$ for each element $x \in V E(G)$. If $|L(x)| \equiv k$ for every $x \in V E(G)$, then a total L-coloring is called a list total k-coloring and we say that G is totally k-choosable. The minimum integer k for which G has a list total k-coloring, denoted by $\chi_{l}^{\prime \prime}(G)$, is the total choosability of G. It is obvious that $\chi_{l}^{\prime \prime}(G) \geq \chi^{\prime \prime}(G) \geq \Delta(G)+1$.

In 1997, Borodin, Kostochka and Woodall [2] raised the following conjecture, which is known as list total conjecture (LTC). In the same paper, they gave an affirmative answer to LTC for planar graphs with maximum degree at least 12.

Conjecture 1. For any graph $G, \chi_{l}^{\prime \prime}(G)=\chi^{\prime \prime}(G)$.
Recently, LTC was investigated by many authors including [3-6,8,7,9,11,14]. In particular, Wang and Lih [9] confirmed LTC for outerplanar graphs with maximum degree at least 4, and this result was generalized to series-parallel graphs by Zhou, Matsuo and Nishizeki [14] in 2005. However, this "list total conjecture" is still very much open.

In this paper, we investigate the list total colorings of pseudo-outerplanar graphs, another class of graphs (different from series-parallel graphs) between outerplanar graphs and planar graphs. A graph is pseudo-outerplanar if each of its blocks has an embedding in the plane so that the vertices lie on a fixed circle and the edges lie inside the disk of this circle with

[^0]each of them crossing at most one another. For example, $K_{2,3}$ and K_{4} are both pseudo-outerplanar graphs. The concept of pseudo-outerplanar graph was first introduced by Zhang, Liu and Wu [13] in 2012. They proved that the class of outerplanar graphs is the intersection of the classes of pseudo-outerplanar graphs and series-parallel graphs.

The purpose of this paper is to show that LTC holds for pseudo-outerplanar graphs with maximum degree at least 5 , and thus extending one result of [12], where is proved that every pseudo-outerplanar graphs with maximum degree at least 5 is totally $(\Delta+1)$-colorable.

2. Structural properties of PO-graphs

In what follows, we always assume that every pseudo-outerplanar graph H considered in this paper has been drawn on the plane so that its pseudo-outerplanarity is satisfied and call such a drawing a pseudo-outerplanar diagram. Let H be a pseudo-outerplanar diagram and let G be a block of H. Denote by $v_{1}, v_{2}, \ldots, v_{|G|}$ the vertices of G that lie in a clockwise sequence. Let $\mathcal{V}\left[v_{i}, v_{j}\right]=\left\{v_{i}, v_{i+1}, \ldots, v_{j}\right\}$ and $\mathcal{V}\left(v_{i}, v_{j}\right)=\mathcal{V}\left[v_{i}, v_{j}\right] \backslash\left\{v_{i}, v_{j}\right\}$, where the subscripts are taken modular $|G|$. A vertex set $\mathcal{V}\left[v_{i}, v_{j}\right]$ is a non-edge if $j=i+1$ and $v_{i} v_{j} \notin E(G)$, is a path if $v_{k} v_{k+1} \in E(G)$ for all $i \leq k<j$, and is a subpath if $j>i+1$ and some edges in the form $v_{k} v_{k+1}$ for $i \leq k<j$ are missing. An edge $v_{i} v_{j}$ in G is a chord if $j-i \neq 1$ or $1-|G|$. By $\mathcal{C}\left[v_{i}, v_{j}\right]$, we denote the set of chords $x y$ with $x, y \in \mathcal{V}\left[v_{i}, v_{j}\right]$. We say that a chord $v_{k} v_{l}$ is contained in a chord $v_{i} v_{j}$ if $i \leq k \leq l \leq j$.

Lemma 2. Let v_{i} and v_{j} be vertices of a 2-connected pseudo-outerplanar diagram G. If there are no crossed chords in $\mathcal{C}\left[v_{i}, v_{j}\right]$ and no edges between $\mathcal{V}\left(v_{i}, v_{j}\right)$ and $\mathcal{V}\left(v_{j}, v_{i}\right)$, then $\mathcal{V}\left[v_{i}, v_{j}\right]$ is either non-edge or path.
Proof. The proof is same to the one of Claim 1 in [13], we refer the readers to [13, p. 2794].
Lemma 3 ([10]). Each outerplanar graph G with minimum degree at least 2 contains a 2-vertex that is adjacent to a 4^{-}-vertex.
Theorem 4. Each pseudo-outerplanar graph G with minimum degree at least 2 contains at least one of the following configurations:
(a) a 2-vertex u adjacent to a 4^{-}-vertex v;
(b) a path $v_{1} u_{1} v_{2} u_{2} v_{3} u_{3} v_{4}$ with $v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{3}, v_{2} v_{4}, v_{3} v_{4} \in E(G), d\left(u_{1}\right)=d\left(u_{2}\right)=d\left(u_{3}\right)=2$ and $d\left(v_{2}\right)=d\left(v_{3}\right)=5$;
(c) a cycle $u_{1} u_{2} u_{3} u_{4}$ with $d\left(u_{2}\right)=d\left(u_{4}\right)=2$;
(d) a cycle $u_{1} u_{2} u_{3} u_{4}$ with $u_{2} u_{4} \in E(G), d\left(u_{2}\right)=d\left(u_{4}\right)=3$ and $d\left(u_{3}\right) \leq 4$;
(e) a cycle $u_{1} u_{2} u_{3} u_{4}$ with $u_{2} u_{4} \in E(G), d\left(u_{2}\right)=d\left(u_{4}\right)=3$ and u_{3} being adjacent to a 2-vertex v;
(f) a cycle $u_{1} u_{2} u_{3} u_{4}$ with $u_{2} u_{4} \in E(G), d\left(u_{2}\right)=d\left(u_{4}\right)=3$ and u_{3} being adjacent to a 3 -vertex v and a vertex x with $v x \in E(G)$;
(g) a cycle $u_{1} u_{2} u_{3} u_{4}$ with $u_{1} u_{3}, u_{2} u_{4} \in E(G), d\left(u_{2}\right)=d\left(u_{4}\right)=3$ and u_{3} being adjacent to a vertex v with $u_{1} v \in E(G)$.

Proof. We first assume that G is a 2-connected pseudo-outerplanar diagram with $v_{1}, \ldots, v_{|G|}$ being the vertices of this diagram that lie in a clockwise sequence. If G contains no crossings, then G is outerplanar, which implies that G contains (a) by Lemma 3. If G contains a crossing, then we can choose one pair of crossed chords $v_{i} v_{j}$ and $v_{k} v_{j}$ such that
(1) $v_{i} v_{j}$ crosses $v_{k} v_{l}$ in G;
(2) v_{i}, v_{k}, v_{j} and v_{l} lie in a clockwise sequence;
(3) besides $v_{i} v_{j}$ and $v_{k} v_{l}$, there are no crossed chords in $\mathcal{C}\left[v_{i}, v_{l}\right]$.

Suppose that this theorem is false. By a same proof of Theorem 4.2 in [13], we can prove that

$$
\begin{equation*}
l-j=j-k=k-i=1 \quad \text { and } \quad v_{i} v_{k}, v_{k} v_{j}, v_{j} v_{l} \in E(G) \tag{1}
\end{equation*}
$$

since G does not contain (a), (b) or (c). This pair of crossed chords $v_{i} v_{j}$ and $v_{k} v_{j}$ satisfying (1) are called co-crossed chords.
Since the configuration (d) is absent from $G, \min \left\{d\left(v_{i}\right), d\left(v_{l}\right)\right\} \geq 5$. This implies that there are at least one chord $v_{l} v_{s}$ with $s \neq i, k$ and at least one chord $v_{m} v_{i}$ with $m \neq j, l$. We now choose s and m so that there is no chord $v_{l} v_{t}$ contained in $v_{l} v_{s}$ and no chord $v_{i} v_{n}$ contained in $v_{i} v_{m}$. In the following, we call the graph induced by $v_{i} v_{j}, v_{k} v_{l}, v_{i} v_{k}, v_{k} v_{j}, v_{j} v_{l}, v_{l} v_{s}$ or by $v_{i} v_{j}, v_{k} v_{l}, v_{i} v_{k}, v_{k} v_{j}, v_{j} v_{l}, v_{i} v_{m}$ an inner cluster of G, denoted by $I C(i, l, s)$ or $I C(m, i, l)$, respectively. The width of the two inner clusters defined above is $\left|\mathcal{V}\left[v_{i}, v_{s}\right]\right|$ and $\left|\mathcal{V}\left[v_{m}, v_{l}\right]\right|$, respectively.

Claim 1. If IC (i, l, s) is an inner cluster with the shortest width among all the inner clusters that contained in the graphs induced by $\mathcal{V}\left[v_{i}, v_{s}\right]$, then the chord $v_{l} v_{s}$ is crossed.
Proof. Without loss of generality, assume that $i=1$ and $l=4$. If $v_{4} v_{s}$ is a non-crossed chord, then there are no edges between $\mathcal{V}\left(v_{4}, v_{s}\right)$ and $\mathcal{V}\left(v_{s}, v_{4}\right)$. If there are no chords contained in $v_{4} v_{s}$, then (a) or (e) would appear in G. If there are chords contained in $v_{4} v_{s}$, then we consider two cases.

Case 1.1. Every chord contained in $v_{4} v_{s}$ is non-crossed.
If every chord contained in $v_{4} v_{s}$ is non-crossed, then by Lemma $2, \mathcal{V}\left[v_{4}, v_{s}\right]$ is a path. We now claim that there exists a chord in $S:=\mathcal{C}\left[v_{4}, v_{S}\right] \backslash\left\{v_{4} v_{s}\right\}$ that contains at least one other chord. If this proposition does not hold, then we choose one chord $v_{i} v_{j}$ with $4<i<j \leq s$ so that $v_{i} v_{j}$ contains no other chords. If $|j-i| \geq 3$, then we can find two adjacent 2 -vertices in
$\mathcal{V}\left[v_{i}, v_{j}\right]$, a contradiction. If $|j-i|=2$, then $d\left(v_{i+1}\right)=2$ and $d\left(v_{i}\right) \geq 5$. This implies that there are at least two non-crossed chords besides $v_{i} v_{j}$ that are incident with v_{i}. Therefore, we would find two chords in S so that one contains the other in G, a contradiction. Hence, we can choose a chord $v_{i} v_{j}$ in S so that $v_{i} v_{j}$ contains at least one other chord, say $v_{a} v_{b}$, and moreover, every chord contained in $v_{i} v_{j}$ contains no other chords. Without loss of generality, assume that $b \neq j$. If $|b-a| \geq 3$, then we can find two adjacent 2 -vertices in $\mathcal{V}\left[v_{a}, v_{b}\right]$, a contradiction. If $|b-a|=2$, then $d\left(v_{a+1}\right)=2$ and $d\left(v_{b}\right) \geq 5$. This implies that besides $v_{a} v_{b}$, there are at least two non-crossed chords that are incident with v_{b}, therefore, we would find two chords in $\mathcal{C}\left[v_{i}, v_{j}\right] \backslash\left\{v_{i} v_{j}\right\}$ so that one contains the other, a contradiction to our assumption.

Case 1.2. There is at least one pair of crossed chords that are contained in $\mathcal{C}\left[v_{4}, v_{s}\right]$.
If there is at least one pair of crossed chords that are contained in $v_{4} v_{s}$, then we choose one pair of co-crossed chords $v_{a} v_{b}$ and $v_{c} v_{d}$ with $c-a=b-c=d-b=1$ and $v_{a} v_{c}, v_{c} v_{b}, v_{b} v_{d} \in E(G)$. Since the configuration (d) is absent from $G, \min \left\{d\left(v_{a}\right), d\left(v_{d}\right)\right\} \geq 5$. If $a=4$, then it is easy to see that (f) occurs in G. If $d=s$, then there exists an inner cluster $I C(x, a, d)$ with $4 \leq x<a$ and width $\left|\mathcal{V}\left[v_{x}, v_{d}\right]\right|<s$, a contradiction. Therefore, we assume that $a \neq 4$ and $d \neq s$. Since $I C(1,4, s)$ is an inner cluster with the shortest width in G, there is no chord in the form $v_{a} v_{i}$ with $4 \leq i<a$ or in the form $v_{b} v_{j}$ with $d<j \leq s$. Since the configuration (d) is absent from $G, \min \left\{d\left(v_{a}\right), d\left(v_{d}\right)\right\} \geq 5$. The above two facts imply that $v_{a} v_{d} \in E(G)$ and there are a chord $v_{i} v_{d}$ with $4 \leq i<a$ and a chord $v_{a} v_{j}$ with $d<j \leq s$. We call the graph induced by $v_{a} v_{b}, v_{a} v_{c}, v_{a} v_{d}, v_{b} v_{c}, v_{b} v_{d} \cdot v_{c} v_{d}, v_{a} v_{i}$ and $v_{d} v_{j}$ a K_{4}-cluster derived from $v_{a} v_{b}$ and $v_{c} v_{d}$, and by $\left|\mathcal{V}\left[v_{i}, v_{j}\right]\right|$, we denote the width of this K_{4}-cluster. Without loss of generality, we assume that the width of the above K_{4}-cluster is the shortest among all the K_{4}-clusters contained in the graph induced by $\mathcal{V}\left[v_{4}, v_{s}\right]$. If there are no crossed chords in $\mathcal{C}\left[v_{d}, v_{j}\right]$, then by Lemma $2, \mathcal{V}\left[v_{d}, v_{j}\right]$ is either a non-edge or a path, because there are no edges between $\mathcal{V}\left(v_{d}, v_{j}\right)$ and $\mathcal{V}\left(v_{j}\right.$, $\left.v_{d}\right)$. Since $d\left(v_{d}\right) \geq 5, \mathcal{V}\left[v_{d}, v_{j}\right]$ cannot be a non-edge, thus it is a path. If there are no chords that are contained in $\mathcal{V}\left[v_{d}, v_{j}\right]$, then either (a), (e) or (g) would occur in G. If there are chords contained in $\mathcal{V}\left[v_{d}, v_{j}\right]$, then by similar arguments as in Case 1.1, one can prove that there are no non-crossed chords contained in $\mathcal{V}\left[v_{d}, v_{j}\right]$. If there is at least one pair of co-crossed chords $v_{a^{\prime}} v_{b^{\prime}}$ and $v_{c^{\prime}} v_{d^{\prime}}$ with $a^{\prime}<c^{\prime}<b^{\prime}<d^{\prime}$ that are contained in $\mathcal{V}\left[v_{d}, v_{j}\right]$, then $a^{\prime} \neq d$, because otherwise $I C\left(a, d, b^{\prime}\right)$ would be an inner cluster shorter than $\operatorname{IC}(1,4, s)$, a contradiction. This implies, by similar arguments as above, that either there is an inner cluster IC $\left(x, a^{\prime}, d^{\prime}\right)$ with $d \leq x<a^{\prime}$ and width $\left|\mathcal{V}\left[v_{x}, v_{d^{\prime}}\right]\right|<s$, or $d^{\prime} \neq j$ and there is an inner cluster $I C\left(a^{\prime}, d^{\prime}, y\right)$ with $d^{\prime}<y \leq j$ and width $\left|\mathcal{V}\left[v_{a^{\prime}}, v_{y}\right]\right|<s$, or $d^{\prime} \neq j$ and there is a K_{4}-cluster derived from $v_{a^{\prime}} v_{b^{\prime}}$ and $v_{c^{\prime}} v_{d^{\prime}}$ with width no more than $\left|\mathcal{V}\left[v_{d}, v_{j}\right]\right|<\left|\mathcal{V}\left[v_{i}, v_{j}\right]\right|$. In either case, we would obtain a contradiction to our assumption.

Hence, the chord $v_{4} v_{s}$ is crossed.
Claim 2. If IC (i, l, s) is an inner cluster with the shortest width among all the inner clusters that contained in the graphs induced by $\mathcal{V}\left[v_{i}, v_{s}\right]$, then the chords $v_{l} v_{s}$ cannot be crossed.

Proof. Without loss of generality, assume that $i=1$ and $l=4$. Suppose, to the contrary, that $v_{l} v_{s}$ is crossed by one other chord $v_{a} v_{b}$ with $4<a<s$. If there is at least one pair of crossed chords that are contained in $\mathcal{C}\left[v_{4}, v_{a}\right]$ or $\mathcal{C}\left[v_{a}, v_{s}\right]$, then by similar arguments as in Case 1.2, one can obtain contradictions. Therefore, every chord contained in $\mathcal{C}\left[v_{4}, v_{a}\right]$ or $\mathcal{C}\left[v_{a}, v_{s}\right]$ is non-crossed. Since there are no edges between $\mathcal{V}\left(v_{4}, v_{a}\right)$ and $\mathcal{V}\left(v_{a}, v_{4}\right)$, or between $\mathcal{V}\left(v_{a}, v_{s}\right)$ and $\mathcal{V}\left(v_{s}, v_{a}\right)$, by Lemma 2 , $\mathcal{V}\left[v_{4}, v_{a}\right]$ or $\mathcal{V}\left[v_{a}, v_{s}\right]$ is either non-edge or path. If $\mathcal{V}\left[v_{4}, v_{a}\right]$ and $\mathcal{V}\left[v_{a}, v_{s}\right]$ are non-edges, then $d\left(v_{a}\right)=1$, a contradiction. If $\mathcal{V}\left[v_{4}, v_{a}\right]$ and $\mathcal{V}\left[v_{a}, v_{s}\right]$ are paths, then by similar arguments as in Case 1.1 , (a) or (f) would appear in G. If $\mathcal{V}\left[v_{4}, v_{a}\right]$ is path and $\mathcal{V}\left[v_{a}, v_{s}\right]$ is non-edge, then by similar arguments as in Case 1.1 , (a) would appear in G unless $a=5$, in which case (e) occurs in G. Hence, we assume that $\mathcal{V}\left[v_{4}, v_{a}\right]$ is non-edge and $\mathcal{C}\left[v_{a}, v_{s}\right]$ is path in the following. By similar arguments as in Case 1.1, one can obtain contradictions if $s-a \geq 2$, so assume that $s-a=1$, that is, $a=5$ and $s=6$. Since $d\left(v_{a}\right)=2, b \neq 1$, because otherwise we would find (e). In the following, the graph induced by $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{1} v_{3}, v_{2} v_{4} . v_{4} v_{6}, v_{5} v_{6}$ and $v_{5} v_{b}$ (or a graph isomorphic to this graph) is called a \rtimes-cluster, and the width of this \rtimes-cluster is $\left|\mathcal{V}\left[v_{1}, v_{b}\right]\right|$. Without loss of generality, we can assume the width of the above \rtimes-cluster is the shortest among all the \rtimes-clusters that are contained in the graph induced by $\mathcal{V}\left[v_{1}, v_{b}\right]$.

If there are no chords contained in $v_{6} v_{b}$, then (a) appears in G, so we assume that there are chords contained in $v_{6} v_{b}$. If every chord contained in $v_{6} v_{b}$ is non-crossed, then by Lemma $2, \mathcal{V}\left[v_{6}, v_{b}\right]$ is either non-edge or path. If $\mathcal{V}\left[v_{6}, v_{b}\right]$ is a nonedge, then v_{5} and v_{6} are two adjacent 2 -vertices, a contradiction, so we assume that $\mathcal{V}\left[v_{6}, v_{b}\right]$ is a path. In this case, we can use similar arguments as in Case 1.1 to obtain contradictions. Therefore, we shall assume that there is at least one pair of crossed chords that are contained in $\mathcal{C}\left[v_{6}, v_{b}\right]$.

We arbitrarily choose one pair of co-crossed chords $v_{i^{\prime}} v_{j^{\prime}}$ and $v_{k^{\prime}} v_{l^{\prime}}$ with $i^{\prime}<k^{\prime}<j^{\prime}<l^{\prime}$ that are contained in $\mathcal{C}\left[v_{6}, v_{b}\right]$. Since both v_{6} and v_{b} are adjacent to a 2-vertex $v_{5}, i^{\prime} \neq 6$ and $l^{\prime} \neq b$, because otherwise we would find (e) in G. Due to the absence of (d), we have $\min \left\{d\left(v_{i^{\prime}}\right), d\left(v_{l^{\prime}}\right)\right\} \geq 5$, which implies that there exist $s^{\prime} \neq i^{\prime}, k^{\prime}$ and $m^{\prime} \neq j^{\prime}, l^{\prime}$ so that $v_{l^{\prime}} v_{s^{\prime}}$ and $v_{i^{\prime}} v_{m^{\prime}}$ are chords in G. If $l^{\prime}<s^{\prime} \leq b$, then we can assume, without loss of generality, that IC $\left(i^{\prime}, l^{\prime}, s^{\prime}\right)$ is an inner cluster with the shortest width among all the inner clusters contained in the graph induced by $\mathcal{V}\left[v_{i^{\prime}}, v_{s^{\prime}}\right]$. If $v_{l^{\prime}} v_{s^{\prime}}$ is a non-crossed chord, then we use similar arguments as in the proof of Claim 1 to obtain contradictions. If $v_{l^{\prime}} v_{s^{\prime}}$ is a chord crossed by one other chord $v_{a^{\prime}} v_{b^{\prime}}$ with $l^{\prime}<a^{\prime}<s^{\prime}$, then by similar arguments as in the first part of this proof, one can deduce that $s^{\prime}-a^{\prime}=a^{\prime}-l^{\prime}=1, v_{l^{\prime}} v_{a^{\prime}} \notin E(G)$ and $v_{a^{\prime}} v_{s^{\prime}} \in E(G)$. This implies that $6 \leq b^{\prime}<i^{\prime}$, because otherwise we would find a shorter \rtimes-cluster, a contradiction to our assumption. Since $v_{a^{\prime}} v_{b^{\prime}}$ has already crossed $v_{l^{\prime}} v_{s^{\prime}}$ in $G, b^{\prime} \leq m^{\prime}<i^{\prime}$. Without loss of generality, assume that $I C\left(m^{\prime}, i^{\prime}, l^{\prime}\right)$ is an inner cluster with the shortest width among all the inner clusters contained in the graph induced by $\mathcal{V}\left[v_{m^{\prime}}, v_{l^{\prime}}\right]$. If $v_{i^{\prime}} v_{m^{\prime}}$ is a non-crossed chord, then we use similar arguments as in the proof of Claim 1
to obtain contradictions. If $v_{i^{\prime}} v_{m^{\prime}}$ is crossed by one other chord $v_{c^{\prime}} v_{d^{\prime}}$ with $m^{\prime}<c^{\prime}<i^{\prime}$, then by similar arguments as in the first part of this proof, one can deduce that $m^{\prime}-c^{\prime}=c^{\prime}-i^{\prime}=1, v_{c^{\prime}} v_{i^{\prime}} \notin E(G)$ and $v_{c^{\prime}} v_{m^{\prime}} \in E(G)$. Since $v_{a^{\prime}} v_{b^{\prime}}$ has already crossed $v_{l^{\prime}} v_{s^{\prime}}$ in $G, b^{\prime} \leq d^{\prime}<m^{\prime}$, which implies a shorter \rtimes-cluster that is contained in the graph induced by $\mathcal{V}\left[v_{1}, v_{b}\right]$, a contradiction to our assumption. Therefore, for any chord $v_{l^{\prime}} v_{s^{\prime}}$ with $s^{\prime} \neq i^{\prime}, k^{\prime}$, we have $6 \leq s^{\prime}<i^{\prime}$. Similarly, we can prove, for any chord $v_{i^{\prime}} v_{m^{\prime}}$ with $m^{\prime} \neq j^{\prime}, l^{\prime}$, that $l^{\prime}<m^{\prime} \leq b$. Since $\min \left\{d\left(v_{i^{\prime}}\right), d\left(v_{l^{\prime}}\right)\right\} \geq 5, v_{i^{\prime}} v_{l^{\prime}} \in E(G)$, which implies a K_{4}-cluster derived from $v_{i^{\prime}} v_{j^{\prime}}$ and $v_{k^{\prime}} v_{l^{\prime}}$. Without loss of generality, assume that the width of this K_{4}-cluster is the shortest among all the K_{4}-clusters contained in the graph induced by $\mathcal{V}\left[v_{m^{\prime}}, v_{s^{\prime}}\right]$, then by similar arguments as in the proof of Claim 1 , we can obtain contradictions.

It is easy to see that the above two claims are conflicting. Hence, every 2-connected pseudo-outerplanar graphs contains one of the configurations among (a)-(g). We now assume that G has cut vertices and choose one of its end-blocks. Denote the chosen end-block by B and the vertices of this end-block that lie in a clockwise sequence by $v_{1}, \ldots, v_{|B|}$. Without loss of generality, assume that v_{1} is the unique cut-vertex of B.

First, assume that there are no crossings in the end-block B. Since B is a 2 -connected outerplanar graph, B is Hamiltonian, which implies that $\mathcal{V}\left[v_{1}, v_{[B]}\right]$ is a path. If there is at most one chord in B, then it is easy to see that G contains (a). If there are two chords $v_{i} v_{j}$ and $v_{s} v_{t}$ in B, then without loss of generality, we can assume that $1 \leq j<t<s<i$, therefore, by similar arguments as in Subcase 1.1, one can prove that G contains (a).

At last, assume that there is at least one pair of crossed chords $v_{i} v_{j}$ and $v_{k} v_{l}$ in B. Without loss of generality, assume that $1<i<k<j<l \leq|B|$ and that $v_{i} v_{j}$ and $v_{k} v_{l}$ are a pair of co-crossed chords (so they satisfy (1)). Since (d) is absent from $G, \min \left\{d_{B}\left(v_{i}\right), d_{B}\left(v_{l}\right)\right\} \geq 5$.

If there is a vertex v_{s} with $l<s \leq|B|$ or $s=1$ so that $v_{l} v_{s}$ is a non-crossed chord, then by the proof of Claim 1, one can find one of the configurations (a)-(g) in the graph induced by $\mathcal{V}\left[v_{i}, v_{s}\right]$, and moreover, v_{1} is not the vertex with bounded degree in the configuration. If there is a vertex v_{m} with $1 \leq m<i$ so that $v_{i} v_{m}$ is a non-crossed chord, then we can prove the theorem similarly. Therefore, we have the following.

Claim 3. There do not exist vertex v_{s} with $l<s \leq|B|$ or $s=1$ so that $v_{l} v_{s}$ is a non-crossed chord or vertex v_{m} with $1 \leq m<i$ so that $v_{i} v_{m}$ is a non-crossed chord.

Suppose that there is a vertex v_{s} with $l<s \leq|B|$ or $s=1$ so that $v_{l} v_{s}$ is a chord crossed by one other chord $v_{a} v_{b}$ with $l<a<s$. If the graph induced by $v_{i} v_{k}, v_{k} v_{j}, v_{j} v_{l}, v_{i} v_{j}, v_{k} v_{l}, v_{l} v_{s}, v_{s} v_{a}$ and $v_{a} v_{b}$ is not a \rtimes-cluster, then by the proof of Claim 2 , one can find one of the configurations (a)-(g) in the graph induced by $\mathcal{V}\left[v_{i}, v_{s}\right]$, and thus in G. If $s<b \leq|B|$ or $b=1$, then by the proof of Claim 2, one can also find one of the configurations (a)-(g) in the graph induced by $\mathcal{V}\left[v_{i}, v_{b}\right]$, and moreover, v_{1} is not the vertex with bounded degree in the configuration. Thus, we have $a-l=s-a=1, v_{l} v_{a} \notin E(G), v_{a} v_{s} \in E(G)$ and $1<b \leq i$. If $b=i$, then it is easy to prove that $d_{B}\left(v_{l}\right) \leq 4$, a contradiction. If $b \neq i$, then there is a chord $v_{m} v_{i}$ with $b \leq m<i$, since $d_{B}\left(v_{i}\right) \geq 5$ and $v_{a} v_{b}$ is crossed by $v_{l} v_{s}$. By Claim 3, $v_{m} v_{i}$ is a crossed chord, and we assume that it is crossed by $v_{n} v_{t}$ with $m<n<i$. Similarly as above, we shall also assume that $i-n=n-m=1, v_{n} v_{i} \notin E(G)$ and $v_{m} v_{n} \in E(G)$. If $b \leq t<m$, then by similar arguments as in the proof of Claim 2, one can find one of the configurations (a)-(g) in the graph induced by $\mathcal{V}\left[v_{t}, v_{l}\right]$, and thus in G. If $t=l$, then $d_{B}\left(v_{i}\right) \leq 4$, a contradiction. Therefore, we immediately deduce the following claim.

Claim 4. There do not exist vertex v_{s} with $l<s \leq|B|$ or $s=1$ so that $v_{l} v_{s}$ is a crossed chord, and similarly, there do not exist v_{m} with $1 \leq m<i$ so that $v_{m} v_{i}$ is a crossed chord.

Since $\min \left\{d_{B}\left(v_{i}\right), d_{B}\left(v_{l}\right)\right\} \geq 5$, by Claims 3 and 4, there exist vertices v_{s} with $1<s<i$ and v_{m} with $l<m \leq|B|$ so that $v_{l} v_{s}$ and $v_{i} v_{m}$ are two chords that cross each other. If there is at least one pair of crossed chords that are contained in $\mathcal{C}\left[v_{l}, v_{m}\right]$, then by similar arguments as in Case 1.2 , one can obtain contradictions. If every chord contained in $\mathcal{C}\left[v_{l}, v_{m}\right]$ is non-crossed, then by Lemma $2, \mathcal{V}\left[v_{l}, v_{m}\right]$ is either a path or a non-edge. However, if $\mathcal{V}\left[v_{l}, v_{m}\right]$ is a path with $m-l \geq 2$, then by similar arguments as in Case 1.1, one can find (a) or (e) in G; if $\mathcal{V}\left[v_{l}, v_{m}\right]$ is a path with $m-l=1$, then (g) occurs in G, since $d_{B}\left(v_{l}\right) \geq 5$ implies $v_{i} v_{l} \in E(G)$ and if $\mathcal{V}\left[v_{l}, v_{m}\right]$ is a non-edge, then $d_{B}\left(v_{l}\right) \leq 4$, a contradiction.

3. List total coloring of PO-graphs

In this section, we present a sufficient condition for a pseudo-outerplanar graph to have a list total coloring and prove the following theorem.

Theorem 5. Let G be a pseudo-outerplanar graph, and let L be a list of G. If

$$
|L(x)| \geq \max \{6, \Delta(G)+1\}
$$

for each $x \in V E(G)$, then G has a total L-coloring.

Before proving Theorem 5, we introduce some necessary notations. Let L be a list of a graph G and let L^{\prime} be a list of a graph $G^{\prime} \subset G$ with $L^{\prime}(x)=L(x)$ for each element $x \in V E(G)$. Suppose that we have already obtained a total L^{\prime}-coloring φ^{\prime} of G^{\prime}, and that we are to extend φ^{\prime} to a total L-coloring φ of G without altering the colors in G^{\prime}. For each $x \in V E(G)$, let $L_{\mathrm{av}}\left(x, \varphi^{\prime}\right)$ be the available list (the set of all colors in $L(x)$ that are available) for x when φ^{\prime} is extended to a total L-coloring φ of G.

Lemma 6. Suppose that G contains a path $P=v_{1} u_{1} v_{2} u_{2} v_{3} u_{3} v_{4}$ with $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4} \in E(G)$ and $d\left(u_{1}\right)=d\left(u_{2}\right)=d\left(u_{3}\right)=2$. Let φ^{\prime} be a partial total L-coloring of G so that the uncolored elements under φ^{\prime} are $u_{1}, u_{2}, u_{3}, v_{2}, v_{3}, v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}$ and the edges of the path P, where L is a list assignment of G. If

$$
\begin{aligned}
& \min \left\{\left|L_{\mathrm{av}}\left(u_{1} v_{1}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} v_{4}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(v_{3} v_{4}, \varphi^{\prime}\right)\right|\right\} \geq 2, \\
& \min \left\{\left|L_{\mathrm{av}}\left(v_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(v_{3}, \varphi^{\prime}\right)\right|\right\} \geq 3 \\
& \left|L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)\right| \geq 4,
\end{aligned}
$$

and

$$
\min \left\{\left|L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} v_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime}\right)\right|\right\} \geq 5
$$

then φ^{\prime} can be extended to a total L-coloring φ of G without altering the colors in G^{\prime}.
Proof. Without loss of generality, we assume that $\left|L_{\mathrm{av}}\left(u_{1} v_{1}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{3} v_{4}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(v_{3} v_{4}, \varphi^{\prime}\right)\right|=$ $2,\left|L_{\mathrm{av}}\left(v_{2}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(v_{3}, \varphi^{\prime}\right)\right|=3,\left|L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)\right|=4$, and $\left|L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{2} v_{2}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{\prime}\right)\right|=$ $\left|L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime}\right)\right|=5$. (otherwise we can shorten some lists that assigned to the elements of $V E(G)$ so that those conditions are satisfied). We extend φ^{\prime} to a total L-coloring φ of G by two stages.
Stage 1. Color $u_{3} v_{3}, u_{3} v_{4}, v_{3} v_{4}$ and v_{3} so that the resulted partial coloring φ^{1} satisfies one of the following conditions:
(1) $\left|L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{1}\right)\right| \geq 3$,
(2) $\left|L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{1}\right)\right|=2$ and $L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{1}\right) \neq L_{\mathrm{av}}\left(v_{2}, \varphi^{1}\right)$ if $\left|L_{\mathrm{av}}\left(v_{2}, \varphi^{1}\right)\right|=2$,
(3) $\left|L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{1}\right)\right|=2$ and $L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right) \neq L_{\mathrm{av}}\left(v_{2}, \varphi^{1}\right)$ if $\left|L_{\mathrm{av}}\left(v_{2}, \varphi^{1}\right)\right|=2$.

We now prove that the coloring φ^{1} constructed in stage 1 exists. Assume that $L_{\mathrm{av}}\left(v_{3} v_{4}, \varphi^{\prime}\right)=\{1,2\}$. We now color v_{3} with a color, say 3 , from $L_{\mathrm{av}}\left(v_{3}, \varphi^{\prime}\right) \backslash\{1,2\}$.
Case $1.2 \in L_{\mathrm{av}}\left(u_{3} v_{4}, \varphi^{\prime}\right)$ (the case when $1 \in L_{\mathrm{av}}\left(u_{3} v_{4}, \varphi^{\prime}\right)$ is similar).
Color $v_{3} v_{4}$ and $u_{3} v_{4}$ with 1 and 2 , and then discuss two subcases.
Case 1.1. $\{1,2,3\} \subseteq L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime}\right)$.
Assume that $L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime}\right)=\{1,2,3,4,5\}$. Denote the current partial coloring by ϕ_{0}.
If $4 \notin L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right) \backslash\{1,3\}$, then color $u_{3} v_{3}$ with 4 , and we have $\{1,3\} \subseteq L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$, otherwise ϕ_{0} satisfies (1) and we let $\varphi^{1}:=\phi_{0}$. Let $L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)=\left\{1,3, n_{1}, n_{2}\right\}$, where $\{1,3\} \cap\left\{n_{1}, n_{2}\right\}=\emptyset$. If $L_{\mathrm{av}}\left(v_{2}, \varphi^{\prime}\right) \neq\left\{3, n_{1}, n_{2}\right\}$, then ϕ_{0} satisfies (2) and we let $\varphi^{1}:=\phi_{0}$, so we assume that $L_{\mathrm{av}}\left(v_{2}, \varphi^{\prime}\right)=\left\{3, n_{1}, n_{2}\right\}$. Now we erase the color on $u_{3} v_{3}$ and recolor $v_{3} v_{4}$ and $u_{3} v_{4}$ with 2 and a color $\phi_{1}\left(u_{3} v_{4}\right) \in L_{\mathrm{av}}\left(u_{3} v_{4}, \varphi^{\prime}\right) \backslash\{2\}$, respectively. If $\phi_{1}\left(u_{3} v_{4}\right) \neq 4$, then color $u_{3} v_{3}$ with 4 . Since the current coloring ϕ_{1} satisfies (1) or (2), we let $\varphi^{1}:=\phi_{1}$. If $\phi_{1}\left(u_{3} v_{4}\right)=4$, then $L_{\mathrm{av}}\left(u_{3} v_{4}, \varphi^{\prime}\right)=\{2,4\}$, and color $u_{3} v_{3}$ with 5 . If $\left\{n_{1}, n_{2}\right\} \neq\{2,5\}$, then the current coloring ϕ_{1} satisfies (1) or (2), so let $\varphi^{1}:=\phi_{1}$. If $\left\{n_{1}, n_{2}\right\}=\{2,5\}$, then recolor $u_{3} v_{3}$ with 3. If $1 \notin L_{\mathrm{av}}\left(v_{3}, \varphi^{\prime}\right) \backslash\{2,3\}$, then $L_{\mathrm{av}}\left(v_{3}, \varphi^{\prime}\right)=\{2,3,5\}$, otherwise we can recolor v_{3} with a color from $L_{\mathrm{av}}\left(v_{3}, \varphi^{\prime}\right) \backslash\{2,3\}$, and the resulted partial coloring satisfies (2). In this case, we recolor $v_{3} v_{4}, u_{3} v_{4}$ and $u_{3} v_{3}$ with 1,2 and 4 . If the current coloring does not satisfy (3), then $L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{\prime}\right)=\{2,5\}$, thus we can construct a partial coloring satisfying (3) by recolor v_{3} with 5. Therefore, we assume that $1 \in L_{\mathrm{av}}\left(v_{3}, \varphi^{\prime}\right) \backslash\{2,3\}$. If $5 \notin L_{\mathrm{av}}\left(v_{3}, \varphi^{\prime}\right) \backslash\{2,3\}$, then $L_{\mathrm{av}}\left(v_{3}, \varphi^{\prime}\right)=\{1,2$, 3$\}$, otherwise we can recolor v_{3} with a color from $L_{\mathrm{av}}\left(v_{3}, \varphi^{\prime}\right) \backslash\{1,2,3\}$, and the resulted partial coloring satisfies (2). In this case, we recolor $v_{3} v_{4}, u_{3} v_{4}$ and $u_{3} v_{3}$ with 1,2 and 4 , and color v_{3} with 2 . If the current coloring does not satisfy (3), then recolor v_{3} with 3 and one can check that the new coloring satisfies (3). Therefore, $5 \in L_{\mathrm{av}}\left(v_{3}, \varphi^{\prime}\right) \backslash\{2,3\}$, which implies that $L_{\mathrm{av}}\left(v_{3}, \varphi^{\prime}\right)=\{1,3,5\}$. In this case, we recolor $v_{3} v_{4}, u_{3} v_{4}$ and $u_{3} v_{3}$ with 1,2 and 4 , and color v_{3} with 3 . If the current coloring does not satisfy (3), then recolor v_{3} with 5 and the new coloring satisfies (3).

If $5 \notin L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right) \backslash\{1,3\}$, then we can do the similar arguments as above by symmetry, so we assume that $\{4,5\} \subseteq L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$. Assume that $L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)=\left\{4,5, n_{1}, n_{2}\right\}$, where $\left\{n_{1}, n_{2}\right\} \cap\{4,5\}=\emptyset$. If $\left\{n_{1}, n_{2}\right\} \neq\{1,3\}$, then color $u_{3} v_{3}$ with 4 . If $5 \notin L_{\mathrm{av}}\left(v_{2}, \varphi^{\prime}\right)$, then it is easy to see that the current partial coloring satisfies (1) or (2). If $5 \in L_{\mathrm{av}}\left(v_{2}, \varphi^{\prime}\right)$, then recolor $u_{3} v_{3}$ with 5 and the resulted partial coloring also satisfies (1) or (2). Therefore, we assume that $L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)=\{1,3,4,5\}$. Now we recolor $v_{3} v_{4}$ and $u_{3} v_{4}$ with 2 and a color $\phi_{2}\left(u_{3} v_{4}\right) \in L_{\mathrm{av}}\left(u_{3} v_{4}, \varphi^{\prime}\right) \backslash\{2\}$, then color $u_{3} v_{3}$ with a color $\phi_{2}\left(u_{3} v_{3}\right) \in\{4,5\} \backslash\left\{\phi_{2}\left(u_{3} v_{4}\right)\right\}$. Without loss of generality, assume that $\phi_{2}\left(u_{3} v_{3}\right)=4$. We now have $L_{\mathrm{av}}\left(v_{2}, \varphi^{\prime}\right)=\{1,3,5\}$, otherwise ϕ_{2} satisfies (2) and let $\varphi^{1}:=\phi_{2}$. If $\phi_{2}\left(u_{3} v_{4}\right) \neq 5$, then recolor $u_{3} v_{3}$ with 5 and the resulted coloring satisfies (2). If $\phi_{2}\left(u_{3} v_{4}\right)=5$, then recolor $u_{3} v_{3}$ with 1 and the resulted coloring also satisfies (2).
Case 1.2. $\{1,2,3\} \nsubseteq L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime}\right)$.
Since $\left|L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime}\right)\right|=5$, we can assume that $\{4,5,6\} \subseteq L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime}\right)$. If $\{4,5\} \subseteq L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$, then $L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)=$ $\{1,3,4,5\}$, otherwise we color $u_{3} v_{3}$ with 6 and get a partial coloring satisfying (1). We now color $u_{3} v_{3}$ with 6 , and deduce that $L_{\mathrm{av}}\left(v_{2}, \varphi^{\prime}\right)=\{3,4,5\}$, otherwise the current partial coloring satisfies (2). In this case, we recolor $v_{3} v_{4}, u_{3} v_{4}$ and $u_{3} v_{3}$ with $2, \phi_{3}\left(u_{3} v_{4}\right) \in L_{\mathrm{av}}\left(u_{3} v_{4}, \varphi^{\prime}\right) \backslash\{2\}$ and $\phi_{3}\left(u_{3} v_{3}\right) \in\{4,5,6\} \backslash\left\{\phi_{3}\left(u_{3} v_{4}\right)\right\}$. It is easy to check that the partial coloring ϕ_{3} satisfies (2), so we let $\varphi^{\prime}:=\phi_{3}$. By symmetry, one can prove the same result if $\{4,6\} \subseteq L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$ or $\{5,6\} \subseteq L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$. Therefore, we assume, without loss of generality, that $5,6 \notin L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$. We now color $u_{3} v_{3}$ with 5 , and deduce that $\{1,3\} \subseteq L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$, otherwise the current partial coloring satisfies (1). Assume that $L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)=\left\{1,3, n_{1}, n_{2}\right\}$, where $\left\{n_{1}, n_{2}\right\} \cap\{1,3\}=\emptyset$. We then have $L_{\mathrm{av}}\left(v_{2}, \varphi^{\prime}\right)=\left\{3, n_{1}, n_{2}\right\}$, because otherwise the current coloring satisfies (2). In this
case, we recolor $v_{3} v_{4}, u_{3} v_{4}$ and $u_{3} v_{3}$ with $2, \phi_{4}\left(u_{3} v_{4}\right) \in L_{\mathrm{av}}\left(u_{3} v_{4}, \varphi^{\prime}\right) \backslash\{2\}$ and $\phi_{4}\left(u_{3} v_{3}\right) \in\{5,6\} \backslash\left\{\phi_{4}\left(u_{3} v_{4}\right)\right\}$. One can check that the resulted partial coloring ϕ_{4} satisfies (2), thus we let $\varphi^{\prime}:=\phi_{4}$.
Case $2.3 \in L_{\mathrm{av}}\left(u_{3} v_{4}, \varphi^{\prime}\right)$.
We first color $u_{3} v_{4}$ with 3 . Assume that $\{4,5\} \subseteq L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime}\right)$.
If $\{4,5\} \subseteq L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$, then $1 \in L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$. Otherwise, we color $v_{3} v_{4}$ and $u_{3} v_{3}$ with 1 and 4 . If the current coloring does not satisfy (2), then recolor $u_{3} v_{3}$ with 5 and get a partial coloring satisfying (2). Similarly, $3 \in L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$, so $L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)=\{1,3,4,5\}$. In this case, we color $v_{3} v_{4}$ and $u_{3} v_{3}$ with 2 and 4 . If the current does not satisfy (2), then recolor $u_{3} v_{3}$ with 5 and the resulted coloring satisfies (2). If $\{4,5\} \nsubseteq L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$, then we assume, without loss of generality, that $4 \notin L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$. We now color $u_{3} v_{3}$ and $v_{3} v_{4}$ with 4 and 1 . If $\{1,3\} \nsubseteq L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$, then it is easy to see that the current partial coloring satisfies (1). If $L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)=\left\{1,3, n_{1}, n_{2}\right\}$, where $\left\{n_{1}, n_{2}\right\} \cap\{1,3\}=\emptyset$, then $L_{\mathrm{av}}\left(v_{2}, \varphi^{\prime}\right)=\left\{3, n_{1}, n_{2}\right\}$, otherwise the current partial coloring satisfies (2). In this case, we can also get a partial coloring satisfying (2) by recoloring $v_{3} v_{4}$ with 2.
Case 3. $L_{\mathrm{av}}\left(u_{3} v_{4}, \varphi^{\prime}\right) \cap\{1,2,3\}=\emptyset$.
Without loss of generality, assume that $L_{\mathrm{av}}\left(u_{3} v_{4}, \varphi^{\prime}\right)=\{4,5\}$. We claim that $1 \in L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$. Otherwise, color $v_{3} v_{4}, u_{3} v_{4}$ and $u_{3} v_{3}$ with 1,4 and $\phi_{5}\left(u_{3} v_{3}\right) \in L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime}\right) \backslash\{1,3,4\}$. If the current coloring ϕ_{5} does not satisfy (2), then recolor $u_{3} v_{3}$ with a color $\phi_{6}\left(u_{3} v_{3}\right) \in L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime}\right) \backslash\left\{1,3,4, \phi_{5}\left(u_{3} v_{3}\right)\right\}$. It is easy to see that ϕ_{6} satisfies (2), thus we let $\varphi^{\prime}:=\phi_{6}$. Similarly, $2,3 \in L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)$. Assume that $L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime}\right)=\left\{1,2,3, n_{1}\right\}$, where $n_{1} \notin\{1,2$, 3$\}$. We now color $v_{3} v_{4}, u_{3} v_{4}$ and $u_{3} v_{3}$ with 1,4 and a color $\phi_{7}\left(u_{3} v_{3}\right) \in L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime}\right) \backslash\{1,2,3,4\}$. If $n_{1} \neq \phi_{7}\left(u_{3} v_{3}\right)$, then we recolor $v_{3} v_{4}$ with 2 if ϕ_{7} does not satisfy (2), and the resulted coloring satisfies (2), so $n_{1}=\phi_{7}\left(u_{3} v_{3}\right)$. If $L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime}\right) \neq\left\{1,2,3,4, n_{1}\right\}$, then recolor $u_{3} v_{3}$ with a color from $L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime}\right) \backslash\left\{1,2,3,4, n_{1}\right\}$ and the resulted coloring can be dealt with as above, so $L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime}\right)=\left\{1,2,3,4, n_{1}\right\}$ and $n_{1} \neq 4$. In this case, we color $v_{3} v_{4}, u_{3} v_{4}$ and $u_{3} v_{3}$ with 1,5 and 4 . If the current partial coloring does not satisfy (2), then we can construct another partial coloring that satisfies (2) by recoloring $v_{3} v_{4}$ with 2 .
Stage 2. Extend φ^{1} to a total L-coloring φ of G without altering the assigned colors.
Note that φ^{1} satisfies $\left|L_{\mathrm{av}}\left(u_{1} v_{1}, \varphi^{1}\right)\right|=\left|L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right)\right|=2,\left|L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right)\right|=\left|L_{\mathrm{av}}\left(u_{2} v_{2}, \varphi^{1}\right)\right|=5$ by the choice of φ^{\prime}, and $\left|L_{\mathrm{av}}\left(u_{2} v_{2}, \varphi^{1}\right)\right|,\left|L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{1}\right)\right|,\left|L_{\mathrm{av}}\left(v_{2}, \varphi^{1}\right)\right| \geq 2$, and moreover, either $L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{1}\right) \neq L_{\mathrm{av}}\left(v_{2}, \varphi^{1}\right)$ or $L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right) \neq$ $L_{\mathrm{av}}\left(v_{2}, \varphi^{1}\right)$ if $\left|L_{\mathrm{av}}\left(v_{2}, \varphi^{1}\right)\right|=2$, by the choice of φ^{1} in Stage 1 .

Without loss of generality, we assume that $\left|L_{\mathrm{av}}\left(u_{2} v_{2}, \varphi^{1}\right)\right|=\left|L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{1}\right)\right|=\left|L_{\mathrm{av}}\left(v_{2}, \varphi^{1}\right)\right|=2$ and $L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{1}\right) \neq$ $L_{\mathrm{av}}\left(v_{2}, \varphi^{1}\right)=\{1,2\}$ in the following arguments.

If $L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right) \cap L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right) \neq \emptyset$, then color $v_{1} v_{2}$ and $u_{2} v_{3}$ with $\mu\left(v_{1} v_{2}\right)=\mu\left(u_{2} v_{3}\right) \in L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right) \cap$ $L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right)$. Since $L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{1}\right) \neq L_{\mathrm{av}}\left(v_{2}, \varphi^{1}\right)$, we can color v_{2} and $v_{2} v_{3}$ with $\mu\left(v_{2}\right) \in L_{\mathrm{av}}\left(v_{2}, \varphi^{1}\right) \backslash\left\{\mu\left(v_{1} v_{2}\right)\right\}$ and $\mu\left(u_{2} v_{3}\right) \in L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right) \backslash\left\{\mu\left(u_{2} v_{3}\right)\right\}$ so that $\mu\left(v_{2}\right) \neq \mu\left(u_{2} v_{3}\right)$. We then color $u_{1} v_{1}, u_{1} v_{2}$ and $u_{2} v_{2}$ with $\mu\left(u_{1} v_{1}\right) \in$ $L_{\mathrm{av}}\left(u_{1} v_{1}, \varphi^{1}\right) \backslash\left\{\mu\left(v_{1} v_{2}\right)\right\}, \mu\left(u_{1} v_{2}\right) \in L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right) \backslash\left\{\mu\left(u_{1} v_{1}\right), \mu\left(v_{1} v_{2}\right), \mu\left(v_{2}\right), \mu\left(v_{2} v_{3}\right)\right\}$ and $\mu\left(u_{2} v_{2}\right) \in L_{\mathrm{av}}\left(u_{2} v_{2}, \varphi^{1}\right) \backslash$ $\left\{\mu\left(u_{2} v_{3}\right), \mu\left(v_{2} v_{3}\right), \mu\left(v_{2}\right), \mu\left(u_{1} v_{2}\right)\right\}$, respectively. Since u_{1}, u_{2} and u_{3} are 2 -vertices, they can be easily colored at the last stage. Therefore, we have a total L-coloring μ of G. In what follows, we assume that $L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right) \cap L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right)=\emptyset$.
Case $1^{\prime} . L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{1}\right)=\{1,3\}$.
If $1 \in L_{\mathrm{av}}\left(u_{1} v_{1}, \varphi^{1}\right)$ and $L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right) \neq\{1,2\}$, then color $u_{1} v_{1}$ and $v_{2} v_{3}$ with 1 , and color $v_{2}, v_{1} v_{2}, u_{2} v_{3}, u_{2} v_{2}$ and $u_{1} v_{2}$ with $2, \mu_{1}\left(v_{1} v_{2}\right) \in L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right) \backslash\{1,2\}, \mu_{1}\left(u_{2} v_{3}\right) \in L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right) \backslash\{1\}, \mu_{1}\left(u_{2} v_{2}\right) \in L_{\mathrm{av}}\left(u_{2} v_{2}, \varphi^{1}\right) \backslash$ $\left\{1,2, \mu_{1}\left(v_{1} v_{2}\right), \mu_{1}\left(u_{2} v_{3}\right)\right\}$ and $\mu_{1}\left(u_{1} v_{2}\right) \in L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right) \backslash\left\{1,2, \mu_{1}\left(v_{1} v_{2}\right), \mu_{1}\left(u_{2} v_{2}\right)\right\}$, respectively. If $1 \in L_{\mathrm{av}}\left(u_{1} v_{1}, \varphi^{1}\right)$ and $L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right)=\{1,2\}$, then color $u_{1} v_{1}$ and v_{2} with 1 , and color $v_{2} v_{3}, v_{1} v_{2}, u_{2} v_{3}, u_{2} v_{2}$ and $u_{1} v_{2}$ with $3,2, \mu_{1}\left(u_{2} v_{3}\right) \in$ $L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right) \backslash\{3\}, \mu_{1}\left(u_{2} v_{2}\right) \in L_{\mathrm{av}}\left(u_{2} v_{2}, \varphi^{1}\right) \backslash\left\{1,2,3, \mu_{1}\left(u_{2} v_{3}\right)\right\}$ and $\mu_{1}\left(u_{1} v_{2}\right) \in L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right) \backslash\left\{1,2,3, \mu_{1}\left(u_{2} v_{2}\right)\right\}$, respectively. In each case, we can extend μ_{1} to the 2 -vertices u_{1}, u_{2} and u_{3} and get a total L-coloring of G. Therefore, $1 \notin L_{\mathrm{av}}\left(u_{1} v_{1}, \varphi^{1}\right)$. Similarly, $2,3 \notin L_{\mathrm{av}}\left(u_{1} v_{1}, \varphi^{1}\right)$. We assume, without loss of generality, that $L_{\mathrm{av}}\left(u_{1} v_{1}, \varphi^{1}\right)=\{4,5\}$.

If $4 \notin L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right)$, then color $u_{1} v_{1}$ and $v_{1} v_{2}$ with 4 and $\mu_{2}\left(v_{1} v_{2}\right) \in L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right) \backslash\{4\}$. If $\mu_{2}\left(v_{1} v_{2}\right) \neq 2$, then color $v_{2}, v_{2} v_{3}, u_{2} v_{3}, u_{2} v_{2}$ and $u_{1} v_{2}$ with $2, \mu_{2}\left(v_{2} v_{3}\right) \in\{1,3\} \backslash\left\{\mu_{2}\left(v_{1} v_{2}\right)\right\}, \mu_{2}\left(u_{2} v_{3}\right) \in L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right) \backslash\left\{\mu_{2}\left(v_{2} v_{3}\right)\right\}, \mu_{2}\left(u_{2} v_{2}\right) \in$ $L_{\mathrm{av}}\left(u_{2} v_{2}, \varphi^{1}\right) \backslash\left\{2, \mu_{2}\left(v_{1} v_{2}\right), \mu_{2}\left(v_{2} v_{3}\right), \mu_{2}\left(u_{2} v_{3}\right)\right\}$ and $\mu_{2}\left(u_{1} v_{2}\right) \in L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right) \backslash\left\{2, \mu_{2}\left(v_{1} v_{2}\right), \mu_{2}\left(v_{2} v_{3}\right), \mu_{2}\left(u_{2} v_{2}\right)\right\}$. If $\mu_{2}\left(v_{1} v_{2}\right)=2$, then color $v_{2}, v_{2} v_{3}, u_{2} v_{3}, u_{2} v_{2}$ and $u_{1} v_{2}$ with $1,3, \mu_{2}\left(u_{2} v_{3}\right) \in L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right) \backslash\{3\}, \mu_{2}\left(u_{2} v_{2}\right) \in$ $L_{\mathrm{av}}\left(u_{2} v_{2}, \varphi^{1}\right) \backslash\left\{1,2,3, \mu_{2}\left(u_{2} v_{3}\right)\right\}$ and $\mu_{2}\left(u_{1} v_{2}\right) \in L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right) \backslash\left\{1,2,3, \mu_{2}\left(u_{2} v_{2}\right)\right\}$. In each case, we can extend μ_{2} to the 2 -vertices u_{1}, u_{2} and u_{3} and get a total L-coloring of G. Therefore, $4 \in L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right)$. Similarly, we have $1,2,3,5 \in$ $L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right)$, so $L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right)=\{1,2,3,4,5\}$. By similar arguments as above, we can also prove that $L_{\mathrm{av}}\left(u_{2} v_{2}, \varphi^{1}\right)=$ $\{1,2,3,4,5\}, L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right) \subseteq\{1,2,3,4,5\}$ and $L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right) \subseteq\{1,2,3,4,5\}$.

If $1 \in L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right)$, then color $v_{1} v_{2}, v_{2}, v_{2} v_{3}, u_{1} v_{1}, u_{1} v_{2}$ and $u_{2} v_{2}$ with $1,2,3,4,5$ and 4 . If $L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right) \neq\{3,4\}$, then color $u_{2} v_{3}$ with a color in $L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right) \backslash\{3,4\}$. If $L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right)=\{3,4\}$, then recolor $u_{1} v_{1}, u_{1} v_{2}$ and $u_{2} v_{2}$ with 5,4 and 5 , and color $u_{2} v_{3}$ with 4 . In each case, we can extend the current coloring to the 2 -vertices u_{1}, u_{2} and u_{3} and get a total L-coloring of G. By similar arguments as above, we can complete the proof of this lemma if $2 \in L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right)$ or $3 \in L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right)$. Therefore, we assume that $L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right)=\{4,5\}$. In this case, we color $v_{1} v_{2}, v_{2}, v_{2} v_{3}, u_{1} v_{1}, u_{1} v_{2}$ and $u_{2} v_{2}$ with $4,1,3,5,2$ and 5. Since $L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right) \cap L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right)=\emptyset, 5 \notin L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right)$. Hence, we color $u_{2} v_{3}$ with a color from $L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right) \backslash\{3\}$ and then extend the coloring at this stage to u_{1}, u_{2} and u_{3} to obtain a total L-coloring of G.
Case $2^{\prime} . L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{1}\right)=\{3,4\}$.
By similar arguments as in the first part of Case 1^{\prime}, one can prove that $L_{\mathrm{av}}\left(u_{1} v_{1}, \varphi^{1}\right) \cap\{1,2,3,4\}=\emptyset$, so we assume that $L_{\mathrm{av}}\left(u_{1} v_{1}, \varphi^{1}\right)=\{5,6\}$. Since $\left|L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right)\right|=5,\{1,2,3,4,5,6\} \backslash L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right) \neq \emptyset$. Without loss of generality,
assume that $1 \notin L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right)$ and color v_{2} with 1 . If $L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right)=\{1,3\}$, then color $v_{2} v_{3}, v_{1} v_{2}, u_{1} v_{1}, u_{2} v_{3}, u_{2} v_{2}$ and $u_{1} v_{2}$ with $4,3,5, \mu_{3}\left(u_{2} v_{3}\right) \in L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right) \backslash\{4\}, \mu_{3}\left(u_{2} v_{2}\right) \in L_{\mathrm{av}}\left(u_{2} v_{2}, \varphi^{1}\right) \backslash\left\{1,3,4, \mu_{3}\left(u_{2} v_{3}\right)\right\}$ and $\mu_{3}\left(u_{1} v_{2}\right) \in$ $L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right) \backslash\left\{3,4,5, \mu_{3}\left(u_{2} v_{2}\right)\right\}$. If $L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right) \neq\{1,3\}$, then color $v_{2} v_{3}, v_{1} v_{2}, u_{1} v_{1}, u_{2} v_{3}, u_{2} v_{2}$ and $u_{1} v_{2}$ with 3 , $\mu_{3}\left(v_{1} v_{2}\right) \in L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{1}\right) \backslash\{1,3\}, 5, \mu_{3}\left(u_{2} v_{3}\right) \in L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{1}\right) \backslash\{3\}, \mu_{3}\left(u_{2} v_{2}\right) \in L_{\mathrm{av}}\left(u_{2} v_{2}, \varphi^{1}\right) \backslash\left\{1,3, \mu_{3}\left(v_{1} v_{2}\right), \mu_{3}\left(u_{2} v_{3}\right)\right\}$ and $\mu_{3}\left(u_{1} v_{2}\right) \in L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{1}\right) \backslash\left\{3,5, \mu_{3}\left(v_{1} v_{2}\right), \mu_{3}\left(u_{2} v_{2}\right)\right\}$, respectively. In each case, we can extend the partial coloring μ_{3} to the 2 -vertices u_{1}, u_{2} and u_{3} and get a total L-coloring of G.

Lemma 7. Suppose that G contains a cycle $u_{1} u_{2} u_{3} u_{4}$ with $u_{2} u_{4} \in E(G)$ and $d\left(u_{2}\right)=d\left(u_{4}\right)=3$ and that $G^{\prime}=G-\left\{u_{2}, u_{4}\right\}$ has a total L^{\prime}-coloring φ^{\prime} so that $L^{\prime}(x)=L(x)$ for each $x \in V E\left(G^{\prime}\right)$, where L is a list assignment of G. If

$$
\begin{aligned}
& \left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime}\right)\right| \geq 6, \\
& \min \left\{\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime}\right)\right|\right\} \geq 4, \\
& \min \left\{\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right)\right|\right\} \geq 2
\end{aligned}
$$

and

$$
L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right) \neq L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right) \quad \text { when }\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)\right|=2
$$

then φ^{\prime} can be extended to a total L-coloring φ of G without altering the colors in G^{\prime}.
Proof. Without loss of generality, we assume that $\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime}\right)\right|=6,\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime}\right)\right|=4$ and $\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)\right|=$ $\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right)\right|=2$ (otherwise we can shorten some lists that assigned to the elements of $V E(G)$ so that those conditions are satisfied), and then split the proofs into the following two cases.
Case 1. $L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)=\{1,2\}$ and $L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)=\{3,4\}$.
If $L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right)=\{1,2\}$, then color $u_{1} u_{2}$ and $u_{1} u_{4}$ with 1 and $2, u_{3} u_{4}$ with $\varphi^{\prime \prime}\left(u_{3} u_{4}\right) \in L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right) \backslash\{2\}$ and $u_{2} u_{3}$ with $\varphi^{\prime \prime}\left(u_{2} u_{3}\right) \in\{3,4\} \backslash\left\{\varphi^{\prime \prime}\left(u_{3} u_{4}\right)\right\}$. Denote the extended partial coloring by $\varphi^{\prime \prime}$. One can see that $\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)\right| \geq 2$. If $L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)=L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)=L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)$, then recolor $u_{1} u_{2}$ and $u_{1} u_{4}$ with 2 and 1 when $\varphi^{\prime \prime}\left(u_{3} u_{4}\right) \neq 1$, or recolor $u_{2} u_{3}$ with the color in $\{3,4\} \backslash\left\{\varphi^{\prime \prime}\left(u_{2} u_{3}\right)\right\}$ when $\varphi^{\prime \prime}\left(u_{3} u_{4}\right)=1$. We still denote current coloring by $\varphi^{\prime \prime}$ but now we do not have $L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)=L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)=L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)$. Therefore, we can easily extend $\varphi^{\prime \prime}$ to a total L-coloring φ of G by coloring u_{2}, u_{4} and $u_{2} u_{4}$ properly.

If $L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right) \cap L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right) \neq \emptyset$, then color $u_{2} u_{3}$ and $u_{1} u_{4}$ with $\varphi^{\prime \prime}\left(u_{2} u_{3}\right)=\varphi^{\prime \prime}\left(u_{1} u_{4}\right) \in L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right) \cap$ $L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right), u_{1} u_{2}$ with $\varphi^{\prime \prime}\left(u_{1} u_{2}\right) \in L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right) \backslash\left\{\varphi^{\prime \prime}\left(u_{2} u_{3}\right)\right\}, u_{3} u_{4}$ with $\varphi^{\prime \prime}\left(u_{3} u_{4}\right) \in L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right) \backslash\left\{\varphi^{\prime \prime}\left(u_{2} u_{3}\right)\right\}$ and denote the extended coloring by $\varphi^{\prime \prime}$. One can see that $\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)\right| \geq 2$ and $\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)\right| \geq 3$. Therefore, $\varphi^{\prime \prime}$ can be easily extended to a total L-coloring φ of G by coloring $u_{1} u_{2}, u_{2}, u_{2} u_{4}$ and u_{4} properly.

If $L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right) \cap L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)=\emptyset$ and $L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right) \neq\{1,2\}$, then color $u_{1} u_{4}$ with $\varphi^{\prime \prime}\left(u_{1} u_{4}\right) \in L\left(u_{1} u_{4}, \varphi^{\prime}\right) \backslash\{1,2\}, u_{3} u_{4}$ with $\varphi^{\prime \prime}\left(u_{3} u_{4}\right) \in L\left(u_{3} u_{4}, \varphi^{\prime}\right) \backslash\left\{\varphi^{\prime \prime}\left(u_{1} u_{4}\right)\right\}$, $u_{2} u_{3}$ with $\varphi^{\prime \prime}\left(u_{2} u_{3}\right) \in L\left(u_{2} u_{3}, \varphi^{\prime}\right) \backslash\left\{\varphi^{\prime \prime}\left(u_{3} u_{4}\right)\right\}$ and denote the extended coloring by $\varphi^{\prime \prime}$. One can see that $\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)\right| \geq 2$ and $\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)\right| \geq 3$. Therefore, $\varphi^{\prime \prime}$ can be easily extended to a total L-coloring φ of G by coloring $u_{1} u_{2}, u_{2}, u_{2} u_{4}$ and u_{4} properly.
Case 2. $L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)=\{1,2\}$ and $L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)=\{1,3\}$.
By similar arguments as in the second part of Case 1 , one can show that $L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right) \cap L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)=\emptyset$ and $L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right) \cap L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right)=\emptyset$.

If $2 \in L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right)$, then we assume that $L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right)=\{2,4\}$. If $L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right) \neq\{3,4\}$, then color $u_{2} u_{3}$ and $u_{1} u_{4}$ with 3 and $4, u_{3} u_{4}$ with $\varphi^{\prime \prime}\left(u_{3} u_{4}\right) \in L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right) \backslash\{3,4\}$ and denote the extended coloring by $\varphi^{\prime \prime}$. One can see that $\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)\right| \geq 2$ and $\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)\right| \geq 3$. Therefore, $\varphi^{\prime \prime}$ can be easily extended to a total L-coloring φ of G by coloring $u_{1} u_{2}, u_{2}, u_{2} u_{4}$ and u_{4} properly. If $L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right)=\{3,4\}$, then we first color $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}$ and $u_{1} u_{4}$ with $1,3,4$ and 2 , respectively, and denote the extended coloring by $\varphi^{\prime \prime}$. It is easy to see that $\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)\right| \geq 2$. If the three sets $L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right), L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right), L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)$ are not the same or $L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)=L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)=L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)$ and $\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)\right| \geq 3$, then $\varphi^{\prime \prime}$ can be easily extended to a total L-coloring φ of G. If $L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)=L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)=L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)=\{5,6\}$, then we revise the coloring $\varphi^{\prime \prime}$ by recoloring $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}$ and $u_{4} u_{1}$ by $2,1,3$ and 4 . We then have $L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)=\{3,5,6\}, L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)=\{2,5,6\}$ and $L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)=\{5,6\}$, so we extend $\varphi^{\prime \prime}$ to a total L-coloring of G by coloring u_{2}, u_{4} and $u_{2} u_{4}$ with 3,2 and 5 .

If $2 \notin L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right)$, then we assume that $L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right)=\{4,5\}$. We now color $u_{2} u_{3}$ with $3, u_{3} u_{4}$ with $\varphi^{\prime \prime}\left(u_{3} u_{4}\right) \in$ $L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime \prime}\right) \backslash\{3\}, u_{1} u_{4}$ with $\varphi^{\prime \prime}\left(u_{1} u_{4}\right) \in L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime \prime}\right) \backslash\left\{\varphi^{\prime \prime}\left(u_{3} u_{4}\right)\right\}$ and denote the extended coloring by $\varphi^{\prime \prime}$. It is easy to see that $\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)\right| \geq 2$ and $\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)\right| \geq 3$. Therefore, $\varphi^{\prime \prime}$ can be easily extended to a total L-coloring φ of G by coloring $u_{1} u_{2}, u_{2}, u_{2} u_{4}$ and u_{4} properly.

Lemma 8. Suppose that G contains a cycle $u_{1} u_{2} u_{3} u_{4}$ with $u_{2} u_{4} \in E(G), d\left(u_{2}\right)=d\left(u_{4}\right)=3$ and u_{3} being adjacent to a vertex v. Let φ^{\prime} be a partial total L-coloring of G so that the uncolored elements under φ^{\prime} are $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}, u_{1} u_{4}, u_{2} u_{4}, u_{3} v, u_{2}, u_{3}, u_{4}$ and v, where L is a list assignment of G. If

$$
\begin{aligned}
& \left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime}\right)\right| \geq 6, \\
& \min \left\{\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime}\right)\right|\right\} \geq 5,
\end{aligned}
$$

$\min \left\{\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right)\right|\right\} \geq 4$
$\min \left\{\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} v, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(v, \varphi^{\prime}\right)\right|\right\} \geq 2$
and
at least two of $L_{\mathrm{av}}\left(u_{3} v, \varphi^{\prime}\right), L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right), L_{\mathrm{av}}\left(v, \varphi^{\prime}\right)$ are distinct when

$$
\left|L_{\mathrm{av}}\left(u_{3} v, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(v, \varphi^{\prime}\right)\right|=2
$$

then φ^{\prime} can be extended to a total L-coloring φ of G without altering the assigned colors.
Proof. Without loss of generality, we assume that $\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime}\right)\right|=6,\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime}\right)\right|=5,\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)\right|=$ $\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right)\right|=4$ and $\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{3} v, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(v, \varphi^{\prime}\right)\right|=2$.

If $L_{\mathrm{av}}\left(u_{3} v, \varphi^{\prime}\right)=L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right)=\{1,2\}$, then we color u_{3} and $u_{3} v$ with 1 and 2 , and then color v with a color from $L_{\mathrm{av}}\left(v, \varphi^{\prime}\right)$ that is different from 1 and 2 . Denote the current partial coloring still by φ^{\prime}. We then have $\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime}\right)\right|=$ $6,\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right)\right|=2,\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime}\right)\right| \geq 4$ and $\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right)\right| \geq 2$. Without loss of generality, assume that $\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime}\right)\right|=4$ and $\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right)\right|=2$. Since every 4-cycle is 2-choosable, we color each edge of the cycle $u_{1} u_{2} u_{3} u_{4}$ from its available list and denote the coloring at this stage by $\varphi^{\prime \prime}$. It is easy to see that $\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)\right| \geq 2$. If at least two of $L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right), L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)$ and $L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)$ are distinct or $\max \left\{\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)\right|\right\} \geq 3$, then $\varphi^{\prime \prime}$ can be easily extended to a total L-coloring of G. If $L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)=L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)=L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)=2$, then exchange the colors on u_{3} and $u_{3} v$ and denote this coloring by $\varphi^{\prime \prime \prime}$. This operation does not disturb the properness of the colors on the edges of the cycle $u_{1} u_{2} u_{3} u_{4}$, but implies that at least two of $L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime \prime}\right), L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime \prime}\right)$ and $L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime \prime}\right)$ are distinct if $\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime \prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime \prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime \prime}\right)\right|=2$. Therefore, $\varphi^{\prime \prime \prime}$ can be extended to a total L-coloring φ of G.

If $L_{\mathrm{av}}\left(u_{3} v, \varphi^{\prime}\right)=\{1,2\}$ and $L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right)=\{1,3\}$, then there are two ways to color u_{3} and $u_{3} v$ so that v can be colored from its available list so that the color assigned to v is different with the colors assigned to u_{3} and $u_{3} v$. Without loss of generality, assume the above two ways of coloring are as follows: color u_{3} and $u_{3} v$ with 1 and 3 , or with 2 and 1 . We now color u_{3} and $u_{3} v$ with 1 and 3 , and then color v properly. Denote the current coloring by $\varphi^{\prime \prime}$. Suppose that $L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)=\{a, b\}$. If $L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right) \neq\{1,3, a, b\}$ or $\{a, b\} \cap\{1,3\} \neq \emptyset$, then $L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime \prime}\right) \neq L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime \prime}\right)$, therefore, by Lemma $7, \varphi^{\prime \prime}$ can be extended to a total L-coloring of G. If $L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)=\{1,3, a, b\}$ and $\{a, b\} \cap\{1,3\}=\emptyset$, then recolor v_{3} and v by 2 and 1 , and recolor v properly. Denote this coloring by $\varphi^{\prime \prime \prime}$. We then have $L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime \prime \prime}\right)=\{3, a, b\} \backslash\{2\} \neq\{a, b\}=L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime \prime \prime}\right)$, so by Lemma 7, $\varphi^{\prime \prime \prime}$ can be extended to a total L-coloring of G.

If $L_{\mathrm{av}}\left(u_{3} v, \varphi^{\prime}\right)=\{1,2\}$ and $L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right)=\{3,4\}$, then there are two ways to color u_{3} and $u_{3} v$ so that v can be colored from its available list so that the color assigned to v is different with the colors assigned to u_{3} and $u_{3} v$. Therefore, we can do similar arguments as above to complete the proof.

Lemma 9. Suppose that G contains a cycle $u_{1} u_{2} u_{3} u_{4}$ with $u_{1} u_{3}, u_{2} u_{4} \in E(G)$ and $d\left(u_{2}\right)=d\left(u_{4}\right)=3$. Let φ^{\prime} be a partial total L-coloring of G so that the uncolored elements under φ^{\prime} are $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}, u_{1} u_{4}, u_{2} u_{4}, u_{1} u_{3}, u_{1}, u_{2}, u_{3}$ and u_{4}, where L is a list assignment of G. If

$$
\begin{aligned}
& \min \left\{\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime}\right)\right|\right\} \geq 6, \\
& \min \left\{\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right)\right|\right\} \geq 4 \\
& \min \left\{\left|L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{1} u_{3}, \varphi^{\prime}\right)\right|\right\} \geq 2
\end{aligned}
$$

and
at least two of $L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right), L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right), L_{\mathrm{av}}\left(u_{1} u_{3}, \varphi^{\prime}\right)$ are distinct when

$$
\left|L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{1} u_{3}, \varphi^{\prime}\right)\right|=2
$$

then φ^{\prime} can be extended to a total L-coloring φ of G without altering the assigned colors.
Proof. Without loss of generality, we assume that $\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime}\right)\right|=6,\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)\right|=$ $\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right)\right|=4$ and $\left|L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{1} u_{3}, \varphi^{\prime}\right)\right|=2$.

If $L_{\mathrm{av}}\left(u_{1} u_{3}, \varphi^{\prime}\right)=L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right)=\{1,2\}$, then color u_{3} and $u_{1} u_{3}$ with 1 and $2, u_{1}$ with $\varphi^{\prime \prime}\left(u_{1}\right) \in L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right) \backslash\{1,2\} \neq \emptyset$ and denote the current coloring by $\varphi^{\prime \prime}$. Without loss of generality, assume that $\varphi^{\prime \prime}\left(u_{1}\right)=3$. It is easy to see that $\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)\right|=6,\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)\right| \geq 4$ and $\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime \prime}\right)\right| \geq 2$. If $\{1,2\} \nsubseteq L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)$, or $\{2,3\} \nsubseteq L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)$, or $L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right) \backslash\{1,2\} \neq L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right) \backslash\{2,3\}$, then by Lemma $7, \varphi^{\prime \prime}$ can be extended to a total L-coloring of G. If $L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)=\{2,3, a, b\}, L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)=\{1,2, a, b\}$ and $\{a, b\} \cap\{1,2,3\} \neq \emptyset$, then exchange the colors on u_{3} and $u_{1} u_{3}$, and denote this coloring by $\varphi^{\prime \prime \prime}$. Since $\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime \prime}\right)\right|=6,\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime \prime}\right)\right| \geq$ 4 , $\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime \prime \prime}\right)\right| \geq 3$ and $\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime \prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime \prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime \prime \prime}\right)\right| \geq 2$, by Lemma 7, $\varphi^{\prime \prime \prime}$ can be extended to a total L-coloring φ of G.

If $L_{\mathrm{av}}\left(u_{1} u_{3}, \varphi^{\prime}\right)=\{1,3\}$ and $L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right)=\{1,2\}$, then we shall assume that $L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right) \neq\{1,3\}$ (otherwise we come back to the above case). If $L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right) \backslash\{1,2,3\} \neq \emptyset$, then color u_{1} with a color in $L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right) \backslash\{1,2,3\}$, say 4 , and color u_{3} and $u_{1} u_{3}$ with 1 and 3 . Denote the current coloring by $\varphi^{\prime \prime}$. If $\{1,3\} \nsubseteq L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)$, or $\{3,4\} \nsubseteq L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)$, or
$L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right) \backslash\{1,3\} \neq L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right) \backslash\{3,4\}$, then by Lemma 7 and similar arguments as before, $\varphi^{\prime \prime}$ can be extended to a total L-coloring of G. If $L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)=\{3,4, a, b\}, L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)=\{1,3, a, b\}$ and $\{a, b\} \cap\{1,3,4\} \neq \emptyset$, then recolor u_{3} with 2 and denote the current coloring by $\varphi^{\prime \prime \prime}$. By Lemma 7 and similar arguments as before, one can prove that $\varphi^{\prime \prime \prime}$ can be extended to a total L-coloring of G. If $L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right)=\{1,2\}$, then color $u_{3}, u_{1} u_{3}$ and u_{1} with 1,3 and 2 . Denote this partial coloring of G by $\varphi^{\prime \prime}$. By similar arguments as above, one can prove that either $\varphi^{\prime \prime}$ can be extended to a total L-coloring of G by Lemma 7 , or we can construct a new partial coloring $\varphi^{\prime \prime \prime}$ by exchanging the colors on u_{1} and u_{3} that can be extended to a total L-coloring of G by Lemma 7. If $L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right)=\{2,3\}$, then color $u_{3}, u_{1} u_{3}$ and u_{1} with 1,3 and 2 and denote this partial coloring of G by $\varphi^{\prime \prime}$. One can also prove that either $\varphi^{\prime \prime}$ can be extended to a total L-coloring of G by Lemma 7 , or we can construct a new partial coloring $\varphi^{\prime \prime \prime}$ that can be extended to a total L-coloring of G by Lemma 7 via recoloring $u_{3}, u_{1} u_{3}$ and u_{1} with 2,1 and 3 .

If $L_{\mathrm{av}}\left(u_{1} u_{3}, \varphi^{\prime}\right)=\{3,4\}$ and $L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right)=\{1,2\}$, then we shall assume that $L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right) \cap\{3,4\}=\emptyset$. (otherwise we come back to the above case). We now color u_{1} with $\varphi^{\prime \prime}\left(u_{1}\right) \in L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right), u_{1} u_{3}$ with $\varphi^{\prime \prime}\left(u_{1} u_{3}\right) \in L_{\mathrm{av}}\left(u_{1} u_{3}, \varphi^{\prime}\right) \backslash\left\{\varphi^{\prime \prime}\left(u_{1}\right)\right\}$, and u_{3} with $\varphi^{\prime \prime}\left(u_{3}\right) \in L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right) \backslash\left\{\varphi^{\prime \prime}\left(u_{1}\right)\right\}$. Denote this coloring by $\varphi^{\prime \prime}$. By Lemma 7 and similar arguments as before, $\varphi^{\prime \prime}$ can be extended to a total L-coloring of G if $\left\{\varphi^{\prime \prime}\left(u_{1} u_{3}\right), \varphi^{\prime \prime}\left(u_{3}\right)\right\} \nsubseteq L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)$, or $\left\{\varphi^{\prime \prime}\left(u_{1} u_{3}\right), \varphi^{\prime \prime}\left(u_{1}\right)\right\} \nsubseteq L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)$, or $L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right) \backslash\left\{\varphi^{\prime \prime}\left(u_{1} u_{3}\right), \varphi^{\prime \prime}\left(u_{3}\right)\right\} \neq L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right) \backslash\left\{\varphi^{\prime \prime}\left(u_{1} u_{3}\right), \varphi^{\prime \prime}\left(u_{1}\right)\right\}$. Therefore, we assume that $L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)=$ $\left\{\varphi^{\prime \prime}\left(u_{1} u_{3}\right), \varphi^{\prime \prime}\left(u_{3}\right), a, b\right\}$ and $L_{\text {av }}\left(u_{1} u_{2}, \varphi^{\prime}\right)=\left\{\varphi^{\prime \prime}\left(u_{1} u_{3}\right), \varphi^{\prime \prime}\left(u_{1}\right), a, b\right\}$, where $\{a, b\} \cap\left\{\varphi^{\prime \prime}\left(u_{1} u_{3}\right), \varphi^{\prime \prime}\left(u_{1}\right), \varphi^{\prime \prime}\left(u_{3}\right)\right\}=\emptyset$. If $\varphi^{\prime \prime}\left(u_{1}\right) \notin\{1,2\}$, then we can construct a new partial coloring $\varphi^{\prime \prime \prime}$ that can be extended to a total L-coloring of G by Lemma 7 via recoloring u_{3} with a color from $L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime}\right) \backslash\left\{\varphi^{\prime \prime}\left(u_{3}\right)\right\}$. Thus, we assume, without loss of generality, that $\varphi^{\prime \prime}\left(u_{1}\right)=1, \varphi^{\prime \prime}\left(u_{3}\right)=2$ and $\varphi^{\prime \prime}\left(u_{1} u_{3}\right)=3$. If $L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right) \neq\{1,2\}$, then recolor u_{1} with a color from $L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right) \backslash\{1,2,3,4\}$, which is a non-empty set since $L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right) \cap\{3,4\}=\emptyset$. If $L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime}\right)=\{1,2\}$, then exchange the colors on u_{1} and u_{3}. In each case, the resulted coloring can be extended to a total L-coloring of G by Lemma 7.

We are now ready to give a proof of Theorem 5.
Proof of Theorem 5. Suppose that G is a counterexample to this theorem with the smallest value of $|V(G)|+|E(G)|$. It is easy to see that $\delta(G) \geq 2$ and every 2 -vertex in G is adjacent only to $\Delta(G)$-vertices, so by Lemma $3, G$ contains one of the configurations among (b)-(g).

If G contains (b), then $G^{\prime}=G-\left\{u_{1}, u_{2}, u_{3}, v_{2}, v_{3}\right\}$ has a total L^{\prime}-coloring φ^{\prime} so that $L^{\prime}(x)=L(x)$ for each $x \in V E\left(G^{\prime}\right)$. One can see that $\left|L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(v_{1} v_{3}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(v_{2} v_{4}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(v_{3} v_{4}, \varphi^{\prime}\right)\right| \geq 3$. If $L_{\mathrm{av}}\left(v_{1} v_{3}, \varphi^{\prime}\right) \cap L_{\mathrm{av}}\left(v_{2} v_{4}, \varphi^{\prime}\right) \neq \emptyset$, then color $v_{1} v_{3}$ and $v_{2} v_{4}$ with a same color from $L_{\mathrm{av}}\left(v_{1} v_{3}, \varphi^{\prime}\right) \cap L_{\mathrm{av}}\left(v_{2} v_{4}, \varphi^{\prime}\right)$. If $L_{\mathrm{av}}\left(v_{1} v_{3}, \varphi^{\prime}\right) \cap L_{\mathrm{av}}\left(v_{2} v_{4}, \varphi^{\prime}\right)=\emptyset$, then we can extend φ^{\prime} to another partial coloring $\varphi^{\prime \prime}$ of G by coloring $v_{1} v_{3}$ and $v_{2} v_{4}$ with $\varphi^{\prime \prime}\left(v_{1} v_{3}\right) \in L_{\mathrm{av}}\left(v_{1} v_{3}, \varphi^{\prime}\right)$ and $\varphi^{\prime \prime}\left(v_{2} v_{4}\right) \in L_{\mathrm{av}}\left(v_{2} v_{4}, \varphi^{\prime}\right)$ so that $\left|L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{\prime}\right) \backslash\left\{\varphi^{\prime \prime}\left(v_{1} v_{3}\right), \varphi^{\prime \prime}\left(v_{2} v_{4}\right)\right\}\right| \geq 2$ and $\left|L_{\mathrm{av}}\left(v_{3} v_{4}, \varphi^{\prime}\right) \backslash\left\{\varphi^{\prime \prime}\left(v_{1} v_{3}\right), \varphi^{\prime \prime}\left(v_{2} v_{4}\right)\right\}\right| \geq 2$. In either case, we can extend φ^{\prime} to another partial coloring $\varphi^{\prime \prime}$ of G by coloring $v_{1} v_{3}$ and $v_{2} v_{4}$ from their available lists, and moreover, $\varphi^{\prime \prime}$ satisfies

$$
\begin{aligned}
& \left|L_{\mathrm{av}}\left(u_{1} v_{1}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} v_{4}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(v_{1} v_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(v_{3} v_{4}, \varphi^{\prime \prime}\right)\right| \geq 2, \\
& \left|L_{\mathrm{av}}\left(v_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(v_{3}, \varphi^{\prime}\right)\right| \geq 3 \\
& \left|L_{\mathrm{av}}\left(v_{2} v_{3}, \varphi^{\prime \prime}\right)\right| \geq 4,
\end{aligned}
$$

and

$$
\left|L_{\mathrm{av}}\left(u_{1} v_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} v_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} v_{3}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} v_{3}, \varphi^{\prime \prime}\right)\right| \geq 5
$$

Therefore, by Lemma 6, $\varphi^{\prime \prime}$ can be extended to a total L-coloring φ of G without altering the assigned colors.
If G contains (c), then $G^{\prime}=G-\left\{u_{2}, u_{4}\right\}$ has a total L^{\prime}-coloring φ^{\prime} so that $L^{\prime}(x)=L(x)$ for each $x \in V E\left(G^{\prime}\right)$. Since there are at least two available colors for each edge of the cycle $u_{1} u_{2} u_{3} u_{4}$ and every 4 -cycle is 2-edge-choosable, we can color $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}$ and $u_{4} u_{1}$ from their available lists so that the extended coloring is proper. At last, we color u_{2} and u_{4} from their available lists to obtain a total L-coloring φ of G. This can be easily done since u_{2} or u_{4} is incident with four colored elements right row.

If G contains (d), then $G^{\prime}=G-\left\{u_{2}, u_{4}\right\}$ has a total L^{\prime}-coloring φ^{\prime} so that $L^{\prime}(x)=L(x)$ for each $x \in V E\left(G^{\prime}\right)$. One can check that $\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime}\right)\right| \geq 6,\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right)\right| \geq 2$, $\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right)\right| \geq 3$ and $\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime}\right)\right| \geq 4$. By Lemma $7, \varphi^{\prime}$ can be extended to a total L-coloring φ of G without altering the colors in G^{\prime}.

If G contains (e), then $G^{\prime}=G-\left\{u_{2}, u_{4}, u_{3} v\right\}$ has a total L^{\prime}-coloring φ^{\prime} so that $L^{\prime}(x)=L(x)$ for each $x \in V E\left(G^{\prime}\right)$. We now erase the color on v and still denote the current coloring by φ^{\prime}. It is easy to check that $\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime}\right)\right| \geq$ $6,\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime}\right)\right| \geq 2,\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime}\right)\right| \geq 3,\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime}\right)\right| \geq 4,\left|L_{\mathrm{av}}\left(u_{3} v, \varphi^{\prime}\right)\right| \geq 2$ and $\left|L_{\mathrm{av}}\left(v, \varphi^{\prime}\right)\right| \geq 3$. We now color $u_{3} v$ with $\varphi^{\prime \prime}\left(u_{3} v\right) \in L_{\mathrm{av}}\left(u_{3} v, \varphi^{\prime}\right)$ and v with $\varphi^{\prime \prime}(v) \in L_{\mathrm{av}}\left(v, \varphi^{\prime}\right) \backslash\left\{\varphi^{\prime \prime}\left(u_{3} v\right)\right\}$ so that the extended partial coloring $\varphi^{\prime \prime}$ satisfies
(1) $\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)\right| \geq 6$, $\left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)\right| \geq 4,\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime \prime}\right)\right| \geq 2$
(2) $L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime \prime}\right) \neq L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime \prime}\right)$ if $\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime \prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime \prime}\right)\right|=2$.

This can be done since $\left|L_{\mathrm{av}}\left(u_{3} v, \varphi^{\prime}\right)\right| \geq 2$. Therefore, φ^{\prime} can be extended to a total L-coloring φ of G without altering the colors in G^{\prime} by Lemma 7.

If G contains (f), then $G^{\prime}=G-\left\{u_{2}, u_{4}\right\}$ has a total L^{\prime}-coloring φ^{\prime} so that $L^{\prime}(x)=L(x)$ for each $x \in V E\left(G^{\prime}\right)$. We now erase the colors on $u_{3}, u_{3} v$ and v and denote the current coloring by $\varphi^{\prime \prime}$. It is easy to see that

$$
\begin{aligned}
& \left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)\right| \geq 6, \\
& \left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)\right| \geq 5, \\
& \left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime \prime}\right)\right| \geq 4,
\end{aligned}
$$

and

$$
\left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} v, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(v, \varphi^{\prime \prime}\right)\right| \geq 2 .
$$

Since $\varphi^{\prime \prime}$ is a partial coloring of φ^{\prime}, at least two of $L_{\mathrm{av}}\left(u_{3} v, \varphi^{\prime \prime}\right), L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime \prime}\right), L_{\mathrm{av}}\left(v, \varphi^{\prime \prime}\right)$ are distinct if $\left|L_{\mathrm{av}}\left(u_{3} v, \varphi^{\prime \prime}\right)\right|=$ $\left|L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime \prime}\right)\right|=\left|L_{\mathrm{av}}\left(v, \varphi^{\prime \prime}\right)\right|=2$. Therefore, by Lemma $8, \varphi^{\prime \prime}$ can be extended to a total L-coloring φ of G without altering the colors in G^{\prime}.

If G contains (g), then $G^{\prime}=G-\left\{u_{2}, u_{4}\right\}$ has a total L^{\prime}-coloring φ^{\prime} so that $L^{\prime}(x)=L(x)$ for each $x \in V E\left(G^{\prime}\right)$. We now erase the colors on u_{1}, u_{3} and $u_{1} u_{3}$ and denote the current coloring by $\varphi^{\prime \prime}$. One can see that

$$
\begin{aligned}
& \left|L_{\mathrm{av}}\left(u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{4}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{4}, \varphi^{\prime \prime}\right)\right| \geq 6, \\
& \left|L_{\mathrm{av}}\left(u_{1} u_{2}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{2} u_{3}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3} u_{4}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{1} u_{4}, \varphi^{\prime \prime}\right)\right| \geq 4,
\end{aligned}
$$

and

$$
\left|L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime \prime}\right)\right|,\left|L_{\mathrm{av}}\left(u_{1} u_{3}, \varphi^{\prime \prime}\right)\right| \geq 2 .
$$

Since $\varphi^{\prime \prime}$ is a partial coloring of φ^{\prime}, at least two of $L_{\mathrm{av}}\left(u_{1} u_{3}, \varphi^{\prime \prime}\right), L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime \prime}\right), L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime \prime}\right)$ are distinct if $\left|L_{\mathrm{av}}\left(u_{1}, \varphi^{\prime \prime}\right)\right|=$ $\left|L_{\mathrm{av}}\left(u_{3}, \varphi^{\prime \prime}\right)\right|=\left|L_{\mathrm{av}}\left(u_{1} u_{3}, \varphi^{\prime \prime}\right)\right|=2$. Therefore, $\varphi^{\prime \prime}$ can be extended to a total L-coloring φ of G without altering the colors in G^{\prime} by Lemma 9 .

Remark. Theorem 5 implies that every pseudo-outerplanar graphs with maximum degree at least 5 is totally $(\Delta+1)$ choosable. In fact, the bound 5 for the maximum degree in this result cannot be improved to 3 since there exists a pseudoouterplanar graph with maximum degree 3 and total chromatic number 5 (see Fig. 1 of the Ref. [12]). In another coming paper, we have proved that every pseudo-outerplanar graph with maximum degree 4 is totally 5 -colorable. However, we still do not know whether every pseudo-outerplanar graph with maximum degree 4 is totally 5 -choosable, thus we leave it as an open problem here.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[2] O.V. Borodin, A.V. Kostochka, D.R. Woodall, List edge and list total colourings of multigraphs, Journal of Combinatorial Theory, Series B 71 (1997) 184-204.
[3] J. Hou, G. Liu, J. Cai, List edge and list total colorings of planar graphs without 4-cycles, Theoretical Computer Science 369 (2006) $250-255$.
[4] J. Hou, G. Liu, J.-L. Wu, Some results on list total colorings of planar graphs, Lecture Notes in Computer Science 4489 (2007) 320-328.
[5] M. Juvan, B. Mohar, R. Skrekovski, List total colourings of graphs, Combinatorics, Probability \& Computing 7 (2) (1998) 181-188.
[6] B. Liu, J. Hou, G. Liu, List edge and list total colorings of planar graphs without short cycles, Information Processing Letters 108 (2008) 347-351.
[7] B. Liu, J. Hou, G. Liu, List total colorings of planar graphs without triangles at small distance, Acta Mathematica Sinica, English Series 27 (2011) 2437-2444.
[8] B. Liu, J. Hou, J.-L. Wu, Total colorings and list total colorings of planar graphs without intersecting 4-cycles, Discrete Mathematics 309 (2009) 6035-6043.
[9] W. Wang, K.-W. Lih, Choosability, edge-choosability and total choosability of outerplane graphs, European Journal of Combinatorics 22 (2001) $71-78$.
[10] W. Wang, K. Zhang, Δ-matchings and edge-face chromatic numbers, Acta Mathematicae Applicatae Sinica 22 (1999) 236 -242.
[11] J.-L. Wu, P. Wang, List-edge and list-total colorings of graphs embedded on hyperbolic surfaces, Discrete Mathematics 308 (2008) $6210-6215$.
[12] X. Zhang, G. Liu, Total coloring of pseudo-outerplanar graphs. arXiv:1108.5009.
[13] X. Zhang, G. Liu, J.L. Wu, Edge covering pseudo-outerplanar graphs with forests, Discrete Mathematics 312 (2012) 2788 -2799.
[14] X. Zhou, Y. Matsuo, T. Nishizeki, List total colorings of series-parallel graphs, Journal of Discrete Algorithms 3 (2005) 47-60.

[^0]: Supported by the Fundamental Research Funds for the Central Universities (No. K5051370003), the National Natural Science Foundation of China (No. 11101243, 11201440) and the Natural Science Basic Research Plan in Shaanxi Province of China (project name: On the structural properties and colorings of some classes of topological graphs).

 E-mail addresses: xzhang@xidian.edu.cn, xdu.zhang@gmail.com.

