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A graph is pseudo-outerplanar if each of its blocks has an embedding in the plane so that
the vertices lie on a fixed circle and the edges lie inside the disk of this circle with each of
them crossing at most one another. It is proved that every pseudo-outerplanar graph with
maximum degree ∆ ≥ 5 is totally (∆ + 1)-choosable.
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1. Introduction

In this paper, all graphs are finite, simple and undirected. By V (G), E(G), δ(G) and ∆(G), we denote the vertex set, the
edge set, theminimum degree and themaximum degree of a graph G, respectively. By VE(G), we denote the set V (G)∪E(G).
For undefined concepts we refer the readers to [1].

A total coloring of a graph G is an assignment of colors to the vertices and edges of G such that every pair of
adjacent/incident elements receives different colors. A total k-coloring of a graph G is a total coloring of G from a set of k
colors. The minimum positive integer k for which G has a total k-coloring, denoted by χ ′′(G), is the total chromatic number
of G.

Suppose that a set L(x) of colors, called a list of x, is assigned to each element x ∈ VE(G). A total coloring ϕ is called a list
total coloring of G for L, or a total L-coloring, if ϕ(x) ∈ VE(G) for each element x ∈ VE(G). If |L(x)| ≡ k for every x ∈ VE(G),
then a total L-coloring is called a list total k-coloring andwe say thatG is totally k-choosable. Theminimum integer k forwhich
G has a list total k-coloring, denoted by χ ′′

l (G), is the total choosability of G. It is obvious that χ ′′

l (G) ≥ χ ′′(G) ≥ ∆(G) + 1.
In 1997, Borodin, Kostochka and Woodall [2] raised the following conjecture, which is known as list total conjecture

(LTC). In the same paper, they gave an affirmative answer to LTC for planar graphs with maximum degree at least 12.

Conjecture 1. For any graph G, χ ′′

l (G) = χ ′′(G).

Recently, LTC was investigated by many authors including [3–6,8,7,9,11,14]. In particular, Wang and Lih [9] confirmed
LTC for outerplanar graphs with maximum degree at least 4, and this result was generalized to series–parallel graphs by
Zhou, Matsuo and Nishizeki [14] in 2005. However, this ‘‘list total conjecture’’ is still very much open.

In this paper, we investigate the list total colorings of pseudo-outerplanar graphs, another class of graphs (different from
series–parallel graphs) between outerplanar graphs and planar graphs. A graph is pseudo-outerplanar if each of its blocks
has an embedding in the plane so that the vertices lie on a fixed circle and the edges lie inside the disk of this circle with
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each of them crossing at most one another. For example, K2,3 and K4 are both pseudo-outerplanar graphs. The concept of
pseudo-outerplanar graphwas first introduced by Zhang, Liu andWu [13] in 2012. They proved that the class of outerplanar
graphs is the intersection of the classes of pseudo-outerplanar graphs and series–parallel graphs.

The purpose of this paper is to show that LTC holds for pseudo-outerplanar graphs with maximum degree at least 5, and
thus extending one result of [12], where is proved that every pseudo-outerplanar graphs with maximum degree at least 5
is totally (∆ + 1)-colorable.

2. Structural properties of PO-graphs

In what follows, we always assume that every pseudo-outerplanar graph H considered in this paper has been drawn
on the plane so that its pseudo-outerplanarity is satisfied and call such a drawing a pseudo-outerplanar diagram. Let H be
a pseudo-outerplanar diagram and let G be a block of H . Denote by v1, v2, . . . , v|G| the vertices of G that lie in a clockwise
sequence. Let V[vi, vj] = {vi, vi+1, . . . , vj} and V(vi, vj) = V[vi, vj] \ {vi, vj}, where the subscripts are taken modular |G|.
A vertex set V[vi, vj] is a non-edge if j = i + 1 and vivj ∉ E(G), is a path if vkvk+1 ∈ E(G) for all i ≤ k < j, and is a subpath
if j > i + 1 and some edges in the form vkvk+1 for i ≤ k < j are missing. An edge vivj in G is a chord if j − i ≠ 1 or 1 − |G|.
By C[vi, vj], we denote the set of chords xy with x, y ∈ V[vi, vj]. We say that a chord vkvl is contained in a chord vivj if
i ≤ k ≤ l ≤ j.

Lemma 2. Let vi and vj be vertices of a 2-connected pseudo-outerplanar diagram G. If there are no crossed chords in C[vi, vj]

and no edges between V(vi, vj) and V(vj, vi), then V[vi, vj] is either non-edge or path.

Proof. The proof is same to the one of Claim 1 in [13], we refer the readers to [13, p. 2794]. �

Lemma 3 ([10]). Each outerplanar graph G with minimum degree at least 2 contains a 2-vertex that is adjacent to a 4−-vertex.

Theorem 4. Each pseudo-outerplanar graph G with minimum degree at least 2 contains at least one of the following
configurations:

(a) a 2-vertex u adjacent to a 4−-vertex v;
(b) a path v1u1v2u2v3u3v4 with v1v2, v1v3, v2v3, v2v4, v3v4 ∈ E(G), d(u1) = d(u2) = d(u3) = 2 and d(v2) = d(v3) = 5;
(c) a cycle u1u2u3u4 with d(u2) = d(u4) = 2;
(d) a cycle u1u2u3u4 with u2u4 ∈ E(G), d(u2) = d(u4) = 3 and d(u3) ≤ 4;
(e) a cycle u1u2u3u4 with u2u4 ∈ E(G), d(u2) = d(u4) = 3 and u3 being adjacent to a 2-vertex v;
(f) a cycle u1u2u3u4 with u2u4 ∈ E(G), d(u2) = d(u4) = 3 and u3 being adjacent to a 3-vertex v and a vertex x with vx ∈ E(G);
(g) a cycle u1u2u3u4 with u1u3, u2u4 ∈ E(G), d(u2) = d(u4) = 3 and u3 being adjacent to a vertex v with u1v ∈ E(G).

Proof. We first assume that G is a 2-connected pseudo-outerplanar diagram with v1, . . . , v|G| being the vertices of this
diagram that lie in a clockwise sequence. If G contains no crossings, then G is outerplanar, which implies that G contains (a)
by Lemma 3. If G contains a crossing, then we can choose one pair of crossed chords vivj and vkvj such that

(1) vivj crosses vkvl in G;
(2) vi, vk, vj and vl lie in a clockwise sequence;
(3) besides vivj and vkvl, there are no crossed chords in C[vi, vl].

Suppose that this theorem is false. By a same proof of Theorem 4.2 in [13], we can prove that

l − j = j − k = k − i = 1 and vivk, vkvj, vjvl ∈ E(G), (1)

since G does not contain (a), (b) or (c). This pair of crossed chords vivj and vkvj satisfying (1) are called co-crossed chords.
Since the configuration (d) is absent from G,min{d(vi), d(vl)} ≥ 5. This implies that there are at least one chord vlvs

with s ≠ i, k and at least one chord vmvi with m ≠ j, l. We now choose s and m so that there is no chord vlvt contained
in vlvs and no chord vivn contained in vivm. In the following, we call the graph induced by vivj, vkvl, vivk, vkvj, vjvl, vlvs or
by vivj, vkvl, vivk, vkvj, vjvl, vivm an inner cluster of G, denoted by IC(i, l, s) or IC(m, i, l), respectively. The width of the two
inner clusters defined above is |V[vi, vs]| and |V[vm, vl]|, respectively.

Claim 1. If IC(i, l, s) is an inner cluster with the shortest width among all the inner clusters that contained in the graphs induced
by V[vi, vs], then the chord vlvs is crossed.

Proof. Without loss of generality, assume that i = 1 and l = 4. If v4vs is a non-crossed chord, then there are no edges
between V(v4, vs) and V(vs, v4). If there are no chords contained in v4vs, then (a) or (e) would appear in G. If there are
chords contained in v4vs, then we consider two cases.

Case 1.1. Every chord contained in v4vs is non-crossed.
If every chord contained in v4vs is non-crossed, then by Lemma 2, V[v4, vs] is a path. We now claim that there exists a

chord in S := C[v4, vs] \ {v4vs} that contains at least one other chord. If this proposition does not hold, then we choose one
chord vivj with 4 < i < j ≤ s so that vivj contains no other chords. If |j− i| ≥ 3, then we can find two adjacent 2-vertices in
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V[vi, vj], a contradiction. If |j − i| = 2, then d(vi+1) = 2 and d(vi) ≥ 5. This implies that there are at least two non-crossed
chords besides vivj that are incident with vi. Therefore, we would find two chords in S so that one contains the other in G, a
contradiction. Hence, we can choose a chord vivj in S so that vivj contains at least one other chord, say vavb, and moreover,
every chord contained in vivj contains no other chords. Without loss of generality, assume that b ≠ j. If |b− a| ≥ 3, then we
can find two adjacent 2-vertices in V[va, vb], a contradiction. If |b − a| = 2, then d(va+1) = 2 and d(vb) ≥ 5. This implies
that besides vavb, there are at least two non-crossed chords that are incident with vb, therefore, we would find two chords
in C[vi, vj] \ {vivj} so that one contains the other, a contradiction to our assumption.

Case 1.2. There is at least one pair of crossed chords that are contained in C[v4, vs].
If there is at least one pair of crossed chords that are contained in v4vs, then we choose one pair of co-crossed chords

vavb and vcvd with c − a = b − c = d − b = 1 and vavc, vcvb, vbvd ∈ E(G). Since the configuration (d) is absent from
G,min{d(va), d(vd)} ≥ 5. If a = 4, then it is easy to see that (f) occurs in G. If d = s, then there exists an inner cluster
IC(x, a, d) with 4 ≤ x < a and width |V[vx, vd]| < s, a contradiction. Therefore, we assume that a ≠ 4 and d ≠ s.
Since IC(1, 4, s) is an inner cluster with the shortest width in G, there is no chord in the form vavi with 4 ≤ i < a or in
the form vbvj with d < j ≤ s. Since the configuration (d) is absent from G,min{d(va), d(vd)} ≥ 5. The above two facts
imply that vavd ∈ E(G) and there are a chord vivd with 4 ≤ i < a and a chord vavj with d < j ≤ s. We call the graph
induced by vavb, vavc, vavd, vbvc, vbvd.vcvd, vavi and vdvj a K4-cluster derived from vavb and vcvd, and by |V[vi, vj]|, we
denote the width of this K4-cluster. Without loss of generality, we assume that the width of the above K4-cluster is the
shortest among all the K4-clusters contained in the graph induced by V[v4, vs]. If there are no crossed chords in C[vd, vj],
then by Lemma 2, V[vd, vj] is either a non-edge or a path, because there are no edges between V(vd, vj) and V(vj, vd). Since
d(vd) ≥ 5, V[vd, vj] cannot be a non-edge, thus it is a path. If there are no chords that are contained in V[vd, vj], then either
(a), (e) or (g) would occur in G. If there are chords contained in V[vd, vj], then by similar arguments as in Case 1.1, one can
prove that there are no non-crossed chords contained in V[vd, vj]. If there is at least one pair of co-crossed chords va′vb′

and vc′vd′ with a′ < c ′ < b′ < d′ that are contained in V[vd, vj], then a′
≠ d, because otherwise IC(a, d, b′) would be an

inner cluster shorter than IC(1, 4, s), a contradiction. This implies, by similar arguments as above, that either there is an
inner cluster IC(x, a′, d′) with d ≤ x < a′ and width |V[vx, vd′ ]| < s, or d′

≠ j and there is an inner cluster IC(a′, d′, y) with
d′ < y ≤ j and width |V[va′ , vy]| < s, or d′

≠ j and there is a K4-cluster derived from va′vb′ and vc′vd′ with width no more
than |V[vd, vj]| < |V[vi, vj]|. In either case, we would obtain a contradiction to our assumption.

Hence, the chord v4vs is crossed. �

Claim 2. If IC(i, l, s) is an inner cluster with the shortest width among all the inner clusters that contained in the graphs induced
by V[vi, vs], then the chords vlvs cannot be crossed.

Proof. Without loss of generality, assume that i = 1 and l = 4. Suppose, to the contrary, that vlvs is crossed by one other
chord vavb with 4 < a < s. If there is at least one pair of crossed chords that are contained in C[v4, va] or C[va, vs], then by
similar arguments as in Case 1.2, one can obtain contradictions. Therefore, every chord contained in C[v4, va] or C[va, vs]

is non-crossed. Since there are no edges between V(v4, va) and V(va, v4), or between V(va, vs) and V(vs, va), by Lemma 2,
V[v4, va] or V[va, vs] is either non-edge or path. If V[v4, va] and V[va, vs] are non-edges, then d(va) = 1, a contradiction. If
V[v4, va] andV[va, vs] are paths, then by similar arguments as in Case 1.1, (a) or (f)would appear inG. IfV[v4, va] is path and
V[va, vs] is non-edge, then by similar arguments as in Case 1.1, (a) would appear in G unless a = 5, in which case (e) occurs
in G. Hence, we assume that V[v4, va] is non-edge and C[va, vs] is path in the following. By similar arguments as in Case 1.1,
one can obtain contradictions if s−a ≥ 2, so assume that s−a = 1, that is, a = 5 and s = 6. Since d(va) = 2, b ≠ 1, because
otherwise we would find (e). In the following, the graph induced by v1v2, v2v3, v3v4, v1v3, v2v4.v4v6, v5v6 and v5vb (or a
graph isomorphic to this graph) is called a o-cluster, and thewidth of this o-cluster is |V[v1, vb]|. Without loss of generality,
we can assume the width of the above o-cluster is the shortest among all the o-clusters that are contained in the graph
induced by V[v1, vb].

If there are no chords contained in v6vb, then (a) appears in G, so we assume that there are chords contained in v6vb. If
every chord contained in v6vb is non-crossed, then by Lemma 2, V[v6, vb] is either non-edge or path. If V[v6, vb] is a non-
edge, then v5 and v6 are two adjacent 2-vertices, a contradiction, so we assume that V[v6, vb] is a path. In this case, we can
use similar arguments as in Case 1.1 to obtain contradictions. Therefore, we shall assume that there is at least one pair of
crossed chords that are contained in C[v6, vb].

We arbitrarily choose one pair of co-crossed chords vi′vj′ and vk′vl′ with i′ < k′ < j′ < l′ that are contained in C[v6, vb].
Since both v6 and vb are adjacent to a 2-vertex v5, i′ ≠ 6 and l′ ≠ b, because otherwise we would find (e) in G. Due to
the absence of (d), we have min{d(vi′), d(vl′)} ≥ 5, which implies that there exist s′ ≠ i′, k′ and m′

≠ j′, l′ so that vl′vs′

and vi′vm′ are chords in G. If l′ < s′ ≤ b, then we can assume, without loss of generality, that IC(i′, l′, s′) is an inner cluster
with the shortest width among all the inner clusters contained in the graph induced by V[vi′ , vs′ ]. If vl′vs′ is a non-crossed
chord, then we use similar arguments as in the proof of Claim 1 to obtain contradictions. If vl′vs′ is a chord crossed by
one other chord va′vb′ with l′ < a′ < s′, then by similar arguments as in the first part of this proof, one can deduce that
s′ − a′

= a′
− l′ = 1, vl′va′ ∉ E(G) and va′vs′ ∈ E(G). This implies that 6 ≤ b′ < i′, because otherwise we would find a

shorter o-cluster, a contradiction to our assumption. Since va′vb′ has already crossed vl′vs′ in G, b′
≤ m′ < i′. Without loss

of generality, assume that IC(m′, i′, l′) is an inner cluster with the shortest width among all the inner clusters contained in
the graph induced by V[vm′ , vl′ ]. If vi′vm′ is a non-crossed chord, then we use similar arguments as in the proof of Claim 1
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to obtain contradictions. If vi′vm′ is crossed by one other chord vc′vd′ withm′ < c ′ < i′, then by similar arguments as in the
first part of this proof, one can deduce that m′

− c ′
= c ′

− i′ = 1, vc′vi′ ∉ E(G) and vc′vm′ ∈ E(G). Since va′vb′ has already
crossed vl′vs′ in G, b′

≤ d′ < m′, which implies a shorter o-cluster that is contained in the graph induced by V[v1, vb], a
contradiction to our assumption. Therefore, for any chord vl′vs′ with s′ ≠ i′, k′, we have 6 ≤ s′ < i′. Similarly, we can prove,
for any chord vi′vm′ with m′

≠ j′, l′, that l′ < m′
≤ b. Since min{d(vi′), d(vl′)} ≥ 5, vi′vl′ ∈ E(G), which implies a K4-cluster

derived from vi′vj′ and vk′vl′ . Without loss of generality, assume that the width of this K4-cluster is the shortest among all
the K4-clusters contained in the graph induced by V[vm′ , vs′ ], then by similar arguments as in the proof of Claim 1, we can
obtain contradictions. �

It is easy to see that the above two claims are conflicting. Hence, every 2-connected pseudo-outerplanar graphs contains
one of the configurations among (a)–(g). We now assume that G has cut vertices and choose one of its end-blocks. Denote
the chosen end-block by B and the vertices of this end-block that lie in a clockwise sequence by v1, . . . , v|B|. Without loss of
generality, assume that v1 is the unique cut-vertex of B.

First, assume that there are no crossings in the end-block B. Since B is a 2-connected outerplanar graph, B is Hamiltonian,
which implies that V[v1, v|B|] is a path. If there is at most one chord in B, then it is easy to see that G contains (a). If there are
two chords vivj and vsvt in B, then without loss of generality, we can assume that 1 ≤ j < t < s < i, therefore, by similar
arguments as in Subcase 1.1, one can prove that G contains (a).

At last, assume that there is at least one pair of crossed chords vivj and vkvl in B. Without loss of generality, assume that
1 < i < k < j < l ≤ |B| and that vivj and vkvl are a pair of co-crossed chords (so they satisfy (1)). Since (d) is absent from
G,min{dB(vi), dB(vl)} ≥ 5.

If there is a vertex vs with l < s ≤ |B| or s = 1 so that vlvs is a non-crossed chord, then by the proof of Claim 1, one can
find one of the configurations (a)–(g) in the graph induced by V[vi, vs], and moreover, v1 is not the vertex with bounded
degree in the configuration. If there is a vertex vm with 1 ≤ m < i so that vivm is a non-crossed chord, then we can prove
the theorem similarly. Therefore, we have the following.

Claim 3. There do not exist vertex vs with l < s ≤ |B| or s = 1 so that vlvs is a non-crossed chord or vertex vm with 1 ≤ m < i
so that vivm is a non-crossed chord. �

Suppose that there is a vertex vs with l < s ≤ |B| or s = 1 so that vlvs is a chord crossed by one other chord vavb with
l < a < s. If the graph induced by vivk, vkvj, vjvl, vivj, vkvl, vlvs, vsva and vavb is not ao-cluster, then by the proof of Claim 2,
one can find one of the configurations (a)–(g) in the graph induced by V[vi, vs], and thus in G. If s < b ≤ |B| or b = 1, then
by the proof of Claim 2, one can also find one of the configurations (a)–(g) in the graph induced by V[vi, vb], and moreover,
v1 is not the vertex with bounded degree in the configuration. Thus, we have a − l = s − a = 1, vlva ∉ E(G), vavs ∈ E(G)
and 1 < b ≤ i. If b = i, then it is easy to prove that dB(vl) ≤ 4, a contradiction. If b ≠ i, then there is a chord vmvi with
b ≤ m < i, since dB(vi) ≥ 5 and vavb is crossed by vlvs. By Claim 3, vmvi is a crossed chord, and we assume that it is crossed
by vnvt with m < n < i. Similarly as above, we shall also assume that i − n = n − m = 1, vnvi ∉ E(G) and vmvn ∈ E(G).
If b ≤ t < m, then by similar arguments as in the proof of Claim 2, one can find one of the configurations (a)–(g) in the
graph induced by V[vt , vl], and thus in G. If t = l, then dB(vi) ≤ 4, a contradiction. Therefore, we immediately deduce the
following claim.

Claim 4. There do not exist vertex vs with l < s ≤ |B| or s = 1 so that vlvs is a crossed chord, and similarly, there do not exist
vm with 1 ≤ m < i so that vmvi is a crossed chord. �

Since min{dB(vi), dB(vl)} ≥ 5, by Claims 3 and 4, there exist vertices vs with 1 < s < i and vm with l < m ≤ |B| so
that vlvs and vivm are two chords that cross each other. If there is at least one pair of crossed chords that are contained in
C[vl, vm], then by similar arguments as in Case 1.2, one can obtain contradictions. If every chord contained in C[vl, vm] is
non-crossed, then by Lemma 2, V[vl, vm] is either a path or a non-edge. However, if V[vl, vm] is a path withm− l ≥ 2, then
by similar arguments as in Case 1.1, one can find (a) or (e) in G; if V[vl, vm] is a path with m − l = 1, then (g) occurs in G,
since dB(vl) ≥ 5 implies vivl ∈ E(G) and if V[vl, vm] is a non-edge, then dB(vl) ≤ 4, a contradiction. �

3. List total coloring of PO-graphs

In this section, we present a sufficient condition for a pseudo-outerplanar graph to have a list total coloring and prove
the following theorem.

Theorem 5. Let G be a pseudo-outerplanar graph, and let L be a list of G. If

|L(x)| ≥ max{6, ∆(G) + 1}

for each x ∈ VE(G), then G has a total L-coloring.

Before proving Theorem 5, we introduce some necessary notations. Let L be a list of a graph G and let L′ be a list of a graph
G′

⊂ Gwith L′(x) = L(x) for each element x ∈ VE(G). Suppose that we have already obtained a total L′-coloring ϕ′ of G′, and
that we are to extend ϕ′ to a total L-coloring ϕ of Gwithout altering the colors in G′. For each x ∈ VE(G), let Lav(x, ϕ′) be the
available list (the set of all colors in L(x) that are available) for xwhen ϕ′ is extended to a total L-coloring ϕ of G.
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Lemma 6. Suppose that G contains a path P = v1u1v2u2v3u3v4 with v1v2, v2v3, v3v4 ∈ E(G) and d(u1) = d(u2) = d(u3) = 2.
Let ϕ′ be a partial total L-coloring of G so that the uncolored elements under ϕ′ are u1, u2, u3, v2, v3, v1v2, v2v3, v3v4 and the
edges of the path P, where L is a list assignment of G. If

min{|Lav(u1v1, ϕ
′)|, |Lav(u3v4, ϕ

′)|, |Lav(v1v2, ϕ
′)|, |Lav(v3v4, ϕ

′)|} ≥ 2,
min{|Lav(v2, ϕ

′)|, |Lav(v3, ϕ
′)|} ≥ 3,

|Lav(v2v3, ϕ
′)| ≥ 4,

and

min{|Lav(u1v2, ϕ
′)|, |Lav(u2v2, ϕ

′)|, |Lav(u2v3, ϕ
′)|, |Lav(u3v3, ϕ

′)|} ≥ 5,

then ϕ′ can be extended to a total L-coloring ϕ of G without altering the colors in G′.

Proof. Without loss of generality, we assume that |Lav(u1v1, ϕ
′)| = |Lav(u3v4, ϕ

′)| = |Lav(v1v2, ϕ
′)| = |Lav(v3v4, ϕ

′)| =

2, |Lav(v2, ϕ
′)| = |Lav(v3, ϕ

′)| = 3, |Lav(v2v3, ϕ
′)| = 4, and |Lav(u1v2, ϕ

′)| = |Lav(u2v2, ϕ
′)| = |Lav(u2v3, ϕ

′)| =

|Lav(u3v3, ϕ
′)| = 5. (otherwise we can shorten some lists that assigned to the elements of VE(G) so that those conditions

are satisfied). We extend ϕ′ to a total L-coloring ϕ of G by two stages.
Stage 1. Color u3v3, u3v4, v3v4 and v3 so that the resulted partial coloring ϕ1 satisfies one of the following conditions:

(1) |Lav(v2v3, ϕ
1)| ≥ 3,

(2) |Lav(v2v3, ϕ
1)| = 2 and Lav(v2v3, ϕ

1) ≠ Lav(v2, ϕ
1) if |Lav(v2, ϕ

1)| = 2,
(3) |Lav(v2v3, ϕ

1)| = 2 and Lav(v1v2, ϕ
1) ≠ Lav(v2, ϕ

1) if |Lav(v2, ϕ
1)| = 2.

We now prove that the coloring ϕ1 constructed in stage 1 exists. Assume that Lav(v3v4, ϕ
′) = {1, 2}. We now color v3

with a color, say 3, from Lav(v3, ϕ
′) \ {1, 2}.

Case 1. 2 ∈ Lav(u3v4, ϕ
′) (the case when 1 ∈ Lav(u3v4, ϕ

′) is similar).
Color v3v4 and u3v4 with 1 and 2, and then discuss two subcases.

Case 1.1. {1, 2, 3} ⊆ Lav(u3v3, ϕ
′).

Assume that Lav(u3v3, ϕ
′) = {1, 2, 3, 4, 5}. Denote the current partial coloring by φ0.

If 4 ∉ Lav(v2v3, ϕ
′) \ {1, 3}, then color u3v3 with 4, and we have {1, 3} ⊆ Lav(v2v3, ϕ

′), otherwise φ0 satisfies (1) and
we let ϕ1

:= φ0. Let Lav(v2v3, ϕ
′) = {1, 3, n1, n2}, where {1, 3} ∩ {n1, n2} = ∅. If Lav(v2, ϕ

′) ≠ {3, n1, n2}, then φ0 satisfies
(2) and we let ϕ1

:= φ0, so we assume that Lav(v2, ϕ
′) = {3, n1, n2}. Now we erase the color on u3v3 and recolor v3v4

and u3v4 with 2 and a color φ1(u3v4) ∈ Lav(u3v4, ϕ
′) \ {2}, respectively. If φ1(u3v4) ≠ 4, then color u3v3 with 4. Since the

current coloring φ1 satisfies (1) or (2), we let ϕ1
:= φ1. If φ1(u3v4) = 4, then Lav(u3v4, ϕ

′) = {2, 4}, and color u3v3 with 5. If
{n1, n2} ≠ {2, 5}, then the current coloring φ1 satisfies (1) or (2), so let ϕ1

:= φ1. If {n1, n2} = {2, 5}, then recolor u3v3 with
3. If 1 ∉ Lav(v3, ϕ

′)\{2, 3}, then Lav(v3, ϕ
′) = {2, 3, 5}, otherwisewe can recolor v3 with a color from Lav(v3, ϕ

′)\{2, 3}, and
the resulted partial coloring satisfies (2). In this case, we recolor v3v4, u3v4 and u3v3 with 1, 2 and 4. If the current coloring
does not satisfy (3), then Lav(v1v2, ϕ

′) = {2, 5}, thus we can construct a partial coloring satisfying (3) by recolor v3 with
5. Therefore, we assume that 1 ∈ Lav(v3, ϕ

′) \ {2, 3}. If 5 ∉ Lav(v3, ϕ
′) \ {2, 3}, then Lav(v3, ϕ

′) = {1, 2, 3}, otherwise we
can recolor v3 with a color from Lav(v3, ϕ

′) \ {1, 2, 3}, and the resulted partial coloring satisfies (2). In this case, we recolor
v3v4, u3v4 and u3v3 with 1, 2 and 4, and color v3 with 2. If the current coloring does not satisfy (3), then recolor v3 with 3 and
one can check that the new coloring satisfies (3). Therefore, 5 ∈ Lav(v3, ϕ

′)\{2, 3}, which implies that Lav(v3, ϕ
′) = {1, 3, 5}.

In this case, we recolor v3v4, u3v4 and u3v3 with 1, 2 and 4, and color v3 with 3. If the current coloring does not satisfy (3),
then recolor v3 with 5 and the new coloring satisfies (3).

If 5 ∉ Lav(v2v3, ϕ
′) \ {1, 3}, then we can do the similar arguments as above by symmetry, so we assume that

{4, 5} ⊆ Lav(v2v3, ϕ
′). Assume that Lav(v2v3, ϕ

′) = {4, 5, n1, n2}, where {n1, n2} ∩ {4, 5} = ∅. If {n1, n2} ≠ {1, 3},
then color u3v3 with 4. If 5 ∉ Lav(v2, ϕ

′), then it is easy to see that the current partial coloring satisfies (1) or (2). If
5 ∈ Lav(v2, ϕ

′), then recolor u3v3 with 5 and the resulted partial coloring also satisfies (1) or (2). Therefore, we assume
that Lav(v2v3, ϕ

′) = {1, 3, 4, 5}. Now we recolor v3v4 and u3v4 with 2 and a color φ2(u3v4) ∈ Lav(u3v4, ϕ
′) \ {2}, then

color u3v3 with a color φ2(u3v3) ∈ {4, 5} \ {φ2(u3v4)}. Without loss of generality, assume that φ2(u3v3) = 4. We now have
Lav(v2, ϕ

′) = {1, 3, 5}, otherwise φ2 satisfies (2) and let ϕ1
:= φ2. If φ2(u3v4) ≠ 5, then recolor u3v3 with 5 and the resulted

coloring satisfies (2). If φ2(u3v4) = 5, then recolor u3v3 with 1 and the resulted coloring also satisfies (2).
Case 1.2. {1, 2, 3} ⊈ Lav(u3v3, ϕ

′).
Since |Lav(u3v3, ϕ

′)| = 5, we can assume that {4, 5, 6} ⊆ Lav(u3v3, ϕ
′). If {4, 5} ⊆ Lav(v2v3, ϕ

′), then Lav(v2v3, ϕ
′) =

{1, 3, 4, 5}, otherwisewe coloru3v3 with 6 and get a partial coloring satisfying (1).Wenowcoloru3v3 with 6, anddeduce that
Lav(v2, ϕ

′) = {3, 4, 5}, otherwise the current partial coloring satisfies (2). In this case, we recolor v3v4, u3v4 and u3v3 with
2, φ3(u3v4) ∈ Lav(u3v4, ϕ

′)\ {2} and φ3(u3v3) ∈ {4, 5, 6} \ {φ3(u3v4)}. It is easy to check that the partial coloring φ3 satisfies
(2), so we let ϕ′

:= φ3. By symmetry, one can prove the same result if {4, 6} ⊆ Lav(v2v3, ϕ
′) or {5, 6} ⊆ Lav(v2v3, ϕ

′).
Therefore, we assume, without loss of generality, that 5, 6 ∉ Lav(v2v3, ϕ

′). We now color u3v3 with 5, and deduce that
{1, 3} ⊆ Lav(v2v3, ϕ

′), otherwise the current partial coloring satisfies (1). Assume that Lav(v2v3, ϕ
′) = {1, 3, n1, n2}, where

{n1, n2} ∩ {1, 3} = ∅. We then have Lav(v2, ϕ
′) = {3, n1, n2}, because otherwise the current coloring satisfies (2). In this
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case, we recolor v3v4, u3v4 and u3v3 with 2, φ4(u3v4) ∈ Lav(u3v4, ϕ
′)\{2} and φ4(u3v3) ∈ {5, 6}\{φ4(u3v4)}. One can check

that the resulted partial coloring φ4 satisfies (2), thus we let ϕ′
:= φ4.

Case 2. 3 ∈ Lav(u3v4, ϕ
′).

We first color u3v4 with 3. Assume that {4, 5} ⊆ Lav(u3v3, ϕ
′).

If {4, 5} ⊆ Lav(v2v3, ϕ
′), then 1 ∈ Lav(v2v3, ϕ

′). Otherwise, we color v3v4 and u3v3 with 1 and 4. If the current coloring
does not satisfy (2), then recolor u3v3 with 5 and get a partial coloring satisfying (2). Similarly, 3 ∈ Lav(v2v3, ϕ

′), so
Lav(v2v3, ϕ

′) = {1, 3, 4, 5}. In this case, we color v3v4 and u3v3 with 2 and 4. If the current does not satisfy (2), then recolor
u3v3 with 5 and the resulted coloring satisfies (2). If {4, 5} ⊈ Lav(v2v3, ϕ

′), then we assume, without loss of generality, that
4 ∉ Lav(v2v3, ϕ

′). We now color u3v3 and v3v4 with 4 and 1. If {1, 3} ⊈ Lav(v2v3, ϕ
′), then it is easy to see that the current

partial coloring satisfies (1). If Lav(v2v3, ϕ
′) = {1, 3, n1, n2}, where {n1, n2} ∩ {1, 3} = ∅, then Lav(v2, ϕ

′) = {3, n1, n2},
otherwise the current partial coloring satisfies (2). In this case, we can also get a partial coloring satisfying (2) by recoloring
v3v4 with 2.
Case 3. Lav(u3v4, ϕ

′) ∩ {1, 2, 3} = ∅.
Without loss of generality, assume that Lav(u3v4, ϕ

′) = {4, 5}. We claim that 1 ∈ Lav(v2v3, ϕ
′). Otherwise, color

v3v4, u3v4 and u3v3 with 1, 4 and φ5(u3v3) ∈ Lav(u3v3, ϕ
′) \ {1, 3, 4}. If the current coloring φ5 does not satisfy (2), then

recolor u3v3 with a color φ6(u3v3) ∈ Lav(u3v3, ϕ
′) \ {1, 3, 4, φ5(u3v3)}. It is easy to see that φ6 satisfies (2), thus we let

ϕ′
:= φ6. Similarly, 2, 3 ∈ Lav(v2v3, ϕ

′). Assume that Lav(v2v3, ϕ
′) = {1, 2, 3, n1}, where n1 ∉ {1, 2, 3}. We now color

v3v4, u3v4 and u3v3 with 1, 4 and a color φ7(u3v3) ∈ Lav(u3v3, ϕ
′) \ {1, 2, 3, 4}. If n1 ≠ φ7(u3v3), then we recolor v3v4

with 2 if φ7 does not satisfy (2), and the resulted coloring satisfies (2), so n1 = φ7(u3v3). If Lav(u3v3, ϕ
′) ≠ {1, 2, 3, 4, n1},

then recolor u3v3 with a color from Lav(u3v3, ϕ
′) \ {1, 2, 3, 4, n1} and the resulted coloring can be dealt with as above, so

Lav(u3v3, ϕ
′) = {1, 2, 3, 4, n1} and n1 ≠ 4. In this case, we color v3v4, u3v4 and u3v3 with 1, 5 and 4. If the current partial

coloring does not satisfy (2), then we can construct another partial coloring that satisfies (2) by recoloring v3v4 with 2.
Stage 2. Extend ϕ1 to a total L-coloring ϕ of G without altering the assigned colors.

Note that ϕ1 satisfies |Lav(u1v1, ϕ
1)| = |Lav(v1v2, ϕ

1)| = 2, |Lav(u1v2, ϕ
1)| = |Lav(u2v2, ϕ

1)| = 5 by the choice of ϕ′,
and |Lav(u2v2, ϕ

1)|, |Lav(v2v3, ϕ
1)|, |Lav(v2, ϕ

1)| ≥ 2, and moreover, either Lav(v2v3, ϕ
1) ≠ Lav(v2, ϕ

1) or Lav(v1v2, ϕ
1) ≠

Lav(v2, ϕ
1) if |Lav(v2, ϕ

1)| = 2, by the choice of ϕ1 in Stage 1.
Without loss of generality, we assume that |Lav(u2v2, ϕ

1)| = |Lav(v2v3, ϕ
1)| = |Lav(v2, ϕ

1)| = 2 and Lav(v2v3, ϕ
1) ≠

Lav(v2, ϕ
1) = {1, 2} in the following arguments.

If Lav(v1v2, ϕ
1) ∩ Lav(u2v3, ϕ

1) ≠ ∅, then color v1v2 and u2v3 with µ(v1v2) = µ(u2v3) ∈ Lav(v1v2, ϕ
1) ∩

Lav(u2v3, ϕ
1). Since Lav(v2v3, ϕ

1) ≠ Lav(v2, ϕ
1), we can color v2 and v2v3 with µ(v2) ∈ Lav(v2, ϕ

1) \ {µ(v1v2)} and
µ(u2v3) ∈ Lav(u2v3, ϕ

1) \ {µ(u2v3)} so that µ(v2) ≠ µ(u2v3). We then color u1v1, u1v2 and u2v2 with µ(u1v1) ∈

Lav(u1v1, ϕ
1) \ {µ(v1v2)}, µ(u1v2) ∈ Lav(u1v2, ϕ

1) \ {µ(u1v1), µ(v1v2), µ(v2), µ(v2v3)} and µ(u2v2) ∈ Lav(u2v2, ϕ
1) \

{µ(u2v3), µ(v2v3), µ(v2), µ(u1v2)}, respectively. Since u1, u2 and u3 are 2-vertices, they can be easily colored at the last
stage. Therefore, we have a total L-coloring µ of G. In what follows, we assume that Lav(v1v2, ϕ

1) ∩ Lav(u2v3, ϕ
1) = ∅.

Case 1′. Lav(v2v3, ϕ
1) = {1, 3}.

If 1 ∈ Lav(u1v1, ϕ
1) and Lav(v1v2, ϕ

1) ≠ {1, 2}, then color u1v1 and v2v3 with 1, and color v2, v1v2, u2v3, u2v2
and u1v2 with 2, µ1(v1v2) ∈ Lav(v1v2, ϕ

1) \ {1, 2}, µ1(u2v3) ∈ Lav(u2v3, ϕ
1) \ {1}, µ1(u2v2) ∈ Lav(u2v2, ϕ

1) \

{1, 2, µ1(v1v2), µ1(u2v3)} and µ1(u1v2) ∈ Lav(u1v2, ϕ
1) \ {1, 2, µ1(v1v2), µ1(u2v2)}, respectively. If 1 ∈ Lav(u1v1, ϕ

1)
and Lav(v1v2, ϕ

1) = {1, 2}, then color u1v1 and v2 with 1, and color v2v3, v1v2, u2v3, u2v2 and u1v2 with 3, 2, µ1(u2v3) ∈

Lav(u2v3, ϕ
1) \ {3}, µ1(u2v2) ∈ Lav(u2v2, ϕ

1) \ {1, 2, 3, µ1(u2v3)} and µ1(u1v2) ∈ Lav(u1v2, ϕ
1) \ {1, 2, 3, µ1(u2v2)},

respectively. In each case, we can extend µ1 to the 2-vertices u1, u2 and u3 and get a total L-coloring of G. Therefore,
1 ∉ Lav(u1v1, ϕ

1). Similarly, 2, 3 ∉ Lav(u1v1, ϕ
1). We assume, without loss of generality, that Lav(u1v1, ϕ

1) = {4, 5}.
If 4 ∉ Lav(u1v2, ϕ

1), then color u1v1 and v1v2 with 4 and µ2(v1v2) ∈ Lav(v1v2, ϕ
1) \ {4}. If µ2(v1v2) ≠ 2, then color

v2, v2v3, u2v3, u2v2 and u1v2 with 2, µ2(v2v3) ∈ {1, 3} \ {µ2(v1v2)}, µ2(u2v3) ∈ Lav(u2v3, ϕ
1) \ {µ2(v2v3)}, µ2(u2v2) ∈

Lav(u2v2, ϕ
1) \ {2, µ2(v1v2), µ2(v2v3), µ2(u2v3)} and µ2(u1v2) ∈ Lav(u1v2, ϕ

1) \ {2, µ2(v1v2), µ2(v2v3), µ2(u2v2)}.
If µ2(v1v2) = 2, then color v2, v2v3, u2v3, u2v2 and u1v2 with 1, 3, µ2(u2v3) ∈ Lav(u2v3, ϕ

1) \ {3}, µ2(u2v2) ∈

Lav(u2v2, ϕ
1) \ {1, 2, 3, µ2(u2v3)} and µ2(u1v2) ∈ Lav(u1v2, ϕ

1) \ {1, 2, 3, µ2(u2v2)}. In each case, we can extend µ2 to
the 2-vertices u1, u2 and u3 and get a total L-coloring of G. Therefore, 4 ∈ Lav(u1v2, ϕ

1). Similarly, we have 1, 2, 3, 5 ∈

Lav(u1v2, ϕ
1), so Lav(u1v2, ϕ

1) = {1, 2, 3, 4, 5}. By similar arguments as above, we can also prove that Lav(u2v2, ϕ
1) =

{1, 2, 3, 4, 5}, Lav(v1v2, ϕ
1) ⊆ {1, 2, 3, 4, 5} and Lav(u2v3, ϕ

1) ⊆ {1, 2, 3, 4, 5}.
If 1 ∈ Lav(v1v2, ϕ

1), then color v1v2, v2, v2v3, u1v1, u1v2 and u2v2 with 1, 2, 3, 4, 5 and 4. If Lav(u2v3, ϕ
1) ≠ {3, 4}, then

color u2v3 with a color in Lav(u2v3, ϕ
1)\{3, 4}. If Lav(u2v3, ϕ

1) = {3, 4}, then recolor u1v1, u1v2 and u2v2 with 5, 4 and 5, and
color u2v3 with 4. In each case, we can extend the current coloring to the 2-vertices u1, u2 and u3 and get a total L-coloring
of G. By similar arguments as above, we can complete the proof of this lemma if 2 ∈ Lav(v1v2, ϕ

1) or 3 ∈ Lav(v1v2, ϕ
1).

Therefore, we assume that Lav(v1v2, ϕ
1) = {4, 5}. In this case, we color v1v2, v2, v2v3, u1v1, u1v2 and u2v2 with 4, 1, 3, 5, 2

and 5. Since Lav(v1v2, ϕ
1) ∩ Lav(u2v3, ϕ

1) = ∅, 5 ∉ Lav(u2v3, ϕ
1). Hence, we color u2v3 with a color from Lav(u2v3, ϕ

1) \ {3}
and then extend the coloring at this stage to u1, u2 and u3 to obtain a total L-coloring of G.
Case 2′. Lav(v2v3, ϕ

1) = {3, 4}.
By similar arguments as in the first part of Case 1′, one can prove that Lav(u1v1, ϕ

1) ∩ {1, 2, 3, 4} = ∅, so we assume
that Lav(u1v1, ϕ

1) = {5, 6}. Since |Lav(u1v2, ϕ
1)| = 5, {1, 2, 3, 4, 5, 6} \ Lav(u1v2, ϕ

1) ≠ ∅. Without loss of generality,
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assume that 1 ∉ Lav(u1v2, ϕ
1) and color v2 with 1. If Lav(v1v2, ϕ

1) = {1, 3}, then color v2v3, v1v2, u1v1, u2v3, u2v2
and u1v2 with 4, 3, 5, µ3(u2v3) ∈ Lav(u2v3, ϕ

1) \ {4}, µ3(u2v2) ∈ Lav(u2v2, ϕ
1) \ {1, 3, 4, µ3(u2v3)} and µ3(u1v2) ∈

Lav(u1v2, ϕ
1) \ {3, 4, 5, µ3(u2v2)}. If Lav(v1v2, ϕ

1) ≠ {1, 3}, then color v2v3, v1v2, u1v1, u2v3, u2v2 and u1v2 with 3,
µ3(v1v2) ∈ Lav(v1v2, ϕ

1) \ {1, 3}, 5, µ3(u2v3) ∈ Lav(u2v3, ϕ
1) \ {3}, µ3(u2v2) ∈ Lav(u2v2, ϕ

1) \ {1, 3, µ3(v1v2), µ3(u2v3)}
and µ3(u1v2) ∈ Lav(u1v2, ϕ

1) \ {3, 5, µ3(v1v2), µ3(u2v2)}, respectively. In each case, we can extend the partial coloring µ3
to the 2-vertices u1, u2 and u3 and get a total L-coloring of G. �

Lemma 7. Suppose that G contains a cycle u1u2u3u4 with u2u4 ∈ E(G) and d(u2) = d(u4) = 3 and that G′
= G − {u2, u4} has

a total L′-coloring ϕ′ so that L′(x) = L(x) for each x ∈ VE(G′), where L is a list assignment of G. If

|Lav(u2u4, ϕ
′)| ≥ 6,

min{|Lav(u2, ϕ
′)|, |Lav(u4, ϕ

′)|} ≥ 4,
min{|Lav(u1u2, ϕ

′)|, |Lav(u2u3, ϕ
′)|, |Lav(u3u4, ϕ

′)|, |Lav(u1u4, ϕ
′)|} ≥ 2

and

Lav(u1u2, ϕ
′) ≠ Lav(u2u3, ϕ

′) when |Lav(u1u2, ϕ
′)| = |Lav(u2u3, ϕ

′)| = 2

then ϕ′ can be extended to a total L-coloring ϕ of G without altering the colors in G′.

Proof. Without loss of generality, we assume that |Lav(u2u4, ϕ
′)| = 6, |Lav(u2, ϕ

′)| = |Lav(u4, ϕ
′)| = 4 and |Lav(u1u2, ϕ

′)| =

|Lav(u2u3, ϕ
′)| = |Lav(u3u4, ϕ

′)| = |Lav(u1u4, ϕ
′)| = 2 (otherwise we can shorten some lists that assigned to the elements

of VE(G) so that those conditions are satisfied), and then split the proofs into the following two cases.
Case 1. Lav(u1u2, ϕ

′) = {1, 2} and Lav(u2u3, ϕ
′) = {3, 4}.

If Lav(u1u4, ϕ
′) = {1, 2}, then color u1u2 and u1u4 with 1 and 2, u3u4 with ϕ′′(u3u4) ∈ Lav(u3u4, ϕ

′) \ {2}
and u2u3 with ϕ′′(u2u3) ∈ {3, 4} \ {ϕ′′(u3u4)}. Denote the extended partial coloring by ϕ′′. One can see that
|Lav(u2, ϕ

′′)|, |Lav(u4, ϕ
′′)|, |Lav(u2u4, ϕ

′′)| ≥ 2. If Lav(u2, ϕ
′′) = Lav(u4, ϕ

′′) = Lav(u2u4, ϕ
′′), then recolor u1u2 and u1u4

with 2 and 1 when ϕ′′(u3u4) ≠ 1, or recolor u2u3 with the color in {3, 4} \ {ϕ′′(u2u3)} when ϕ′′(u3u4) = 1. We still denote
current coloring by ϕ′′ but now we do not have Lav(u2, ϕ

′′) = Lav(u4, ϕ
′′) = Lav(u2u4, ϕ

′′). Therefore, we can easily extend
ϕ′′ to a total L-coloring ϕ of G by coloring u2, u4 and u2u4 properly.

If Lav(u1u4, ϕ
′) ∩ Lav(u2u3, ϕ

′) ≠ ∅, then color u2u3 and u1u4 with ϕ′′(u2u3) = ϕ′′(u1u4) ∈ Lav(u1u4, ϕ
′) ∩

Lav(u2u3, ϕ
′), u1u2 with ϕ′′(u1u2) ∈ Lav(u1u2, ϕ

′) \ {ϕ′′(u2u3)}, u3u4 with ϕ′′(u3u4) ∈ Lav(u3u4, ϕ
′) \ {ϕ′′(u2u3)} and denote

the extended coloring by ϕ′′. One can see that |Lav(u2, ϕ
′′)|, |Lav(u4, ϕ

′′)| ≥ 2 and |Lav(u2u4, ϕ
′′)| ≥ 3. Therefore, ϕ′′ can be

easily extended to a total L-coloring ϕ of G by coloring u1u2, u2, u2u4 and u4 properly.
If Lav(u1u4, ϕ

′) ∩ Lav(u2u3, ϕ
′) = ∅ and Lav(u1u4, ϕ

′) ≠ {1, 2}, then color u1u4 with ϕ′′(u1u4) ∈ L(u1u4, ϕ
′) \ {1, 2}, u3u4

with ϕ′′(u3u4) ∈ L(u3u4, ϕ
′) \ {ϕ′′(u1u4)}, u2u3 with ϕ′′(u2u3) ∈ L(u2u3, ϕ

′) \ {ϕ′′(u3u4)} and denote the extended coloring
by ϕ′′. One can see that |Lav(u1u2, ϕ

′′)|, |Lav(u4, ϕ
′′)| ≥ 2 and |Lav(u2, ϕ

′′)|, |Lav(u2u4, ϕ
′′)| ≥ 3. Therefore, ϕ′′ can be easily

extended to a total L-coloring ϕ of G by coloring u1u2, u2, u2u4 and u4 properly.
Case 2. Lav(u1u2, ϕ

′) = {1, 2} and Lav(u2u3, ϕ
′) = {1, 3}.

By similar arguments as in the second part of Case 1, one can show that Lav(u1u4, ϕ
′) ∩ Lav(u2u3, ϕ

′) = ∅ and
Lav(u1u2, ϕ

′) ∩ Lav(u3u4, ϕ
′) = ∅.

If 2 ∈ Lav(u1u4, ϕ
′), then we assume that Lav(u1u4, ϕ

′) = {2, 4}. If Lav(u3u4, ϕ
′) ≠ {3, 4}, then color u2u3 and

u1u4 with 3 and 4, u3u4 with ϕ′′(u3u4) ∈ Lav(u3u4, ϕ
′) \ {3, 4} and denote the extended coloring by ϕ′′. One can

see that |Lav(u1u2, ϕ
′′)|, |Lav(u4, ϕ

′′)| ≥ 2 and |Lav(u2, ϕ
′′)|, |Lav(u2u4, ϕ

′′)| ≥ 3. Therefore, ϕ′′ can be easily extended
to a total L-coloring ϕ of G by coloring u1u2, u2, u2u4 and u4 properly. If Lav(u3u4, ϕ

′) = {3, 4}, then we first color
u1u2, u2u3, u3u4 and u1u4 with 1, 3, 4 and 2, respectively, and denote the extended coloring by ϕ′′. It is easy to see that
|Lav(u2, ϕ

′′)|, |Lav(u4, ϕ
′′)|, |Lav(u2u4, ϕ

′′)| ≥ 2. If the three sets Lav(u2, ϕ
′′), Lav(u4, ϕ

′′), Lav(u2u4, ϕ
′′) are not the same or

Lav(u2, ϕ
′′) = Lav(u4, ϕ

′′) = Lav(u2u4, ϕ
′′) and |Lav(u2, ϕ

′′)| ≥ 3, then ϕ′′ can be easily extended to a total L-coloring ϕ of
G. If Lav(u2, ϕ

′′) = Lav(u4, ϕ
′′) = Lav(u2u4, ϕ

′′) = {5, 6}, then we revise the coloring ϕ′′ by recoloring u1u2, u2u3, u3u4 and
u4u1 by 2, 1, 3 and 4. We then have Lav(u2, ϕ

′′) = {3, 5, 6}, Lav(u4, ϕ
′′) = {2, 5, 6} and Lav(u2u4, ϕ

′′) = {5, 6}, so we extend
ϕ′′ to a total L-coloring of G by coloring u2, u4 and u2u4 with 3, 2 and 5.

If 2 ∉ Lav(u1u4, ϕ
′), then we assume that Lav(u1u4, ϕ

′) = {4, 5}. We now color u2u3 with 3, u3u4 with ϕ′′(u3u4) ∈

Lav(u3u4, ϕ
′′) \ {3}, u1u4 with ϕ′′(u1u4) ∈ Lav(u1u4, ϕ

′′) \ {ϕ′′(u3u4)} and denote the extended coloring by ϕ′′. It is easy to
see that |Lav(u1u2, ϕ

′′)|, |Lav(u4, ϕ
′′)| ≥ 2 and |Lav(u2, ϕ

′′)|, |Lav(u2u4, ϕ
′′)| ≥ 3. Therefore, ϕ′′ can be easily extended to a

total L-coloring ϕ of G by coloring u1u2, u2, u2u4 and u4 properly. �

Lemma 8. Suppose that G contains a cycle u1u2u3u4 with u2u4 ∈ E(G), d(u2) = d(u4) = 3 and u3 being adjacent to a vertex v.
Let ϕ′ be a partial total L-coloring of G so that the uncolored elements under ϕ′ are u1u2, u2u3, u3u4, u1u4, u2u4, u3v, u2, u3, u4
and v, where L is a list assignment of G. If

|Lav(u2u4, ϕ
′)| ≥ 6,

min{|Lav(u2, ϕ
′)|, |Lav(u4, ϕ

′)|} ≥ 5,
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min{|Lav(u2u3, ϕ
′)|, |Lav(u3u4, ϕ

′)|} ≥ 4
min{|Lav(u1u2, ϕ

′)|, |Lav(u1u4, ϕ
′)|, |Lav(u3v, ϕ′)|, |Lav(u3, ϕ

′)|, |Lav(v, ϕ′)|} ≥ 2

and

at least two of Lav(u3v, ϕ′), Lav(u3, ϕ
′), Lav(v, ϕ′) are distinct when

|Lav(u3v, ϕ′)| = |Lav(u3, ϕ
′)| = |Lav(v, ϕ′)| = 2,

then ϕ′ can be extended to a total L-coloring ϕ of G without altering the assigned colors.

Proof. Without loss of generality, we assume that |Lav(u2u4, ϕ
′)| = 6, |Lav(u2, ϕ

′)| = |Lav(u4, ϕ
′)| = 5, |Lav(u2u3, ϕ

′)| =

|Lav(u3u4, ϕ
′)| = 4 and |Lav(u1u2, ϕ

′)| = |Lav(u1u4, ϕ
′)| = |Lav(u3v, ϕ′)| = |Lav(u3, ϕ

′)| = |Lav(v, ϕ′)| = 2.
If Lav(u3v, ϕ′) = Lav(u3, ϕ

′) = {1, 2}, then we color u3 and u3v with 1 and 2, and then color v with a color from
Lav(v, ϕ′) that is different from 1 and 2. Denote the current partial coloring still by ϕ′. We then have |Lav(u2u4, ϕ

′)| =

6, |Lav(u1u2, ϕ
′)| = |Lav(u1u4, ϕ

′)| = 2, |Lav(u2, ϕ
′)|, |Lav(u4, ϕ

′)| ≥ 4 and |Lav(u2u3, ϕ
′)|, |Lav(u3u4, ϕ

′)| ≥ 2. Without loss
of generality, assume that |Lav(u2, ϕ

′)| = |Lav(u4, ϕ
′)| = 4 and |Lav(u2u3, ϕ

′)| = |Lav(u3u4, ϕ
′)| = 2. Since every 4-cycle is

2-choosable, we color each edge of the cycle u1u2u3u4 from its available list and denote the coloring at this stage by ϕ′′. It
is easy to see that |Lav(u2, ϕ

′′)|, |Lav(u4, ϕ
′′)|, |Lav(u2u4, ϕ

′′)| ≥ 2. If at least two of Lav(u2, ϕ
′′), Lav(u4, ϕ

′′) and Lav(u2u4, ϕ
′′)

are distinct or max{|Lav(u2, ϕ
′′)|, |Lav(u4, ϕ

′′)|, |Lav(u2u4, ϕ
′′)|} ≥ 3, then ϕ′′ can be easily extended to a total L-coloring of

G. If Lav(u2, ϕ
′′) = Lav(u4, ϕ

′′) = Lav(u2u4, ϕ
′′) = 2, then exchange the colors on u3 and u3v and denote this coloring by ϕ′′′.

This operation does not disturb the properness of the colors on the edges of the cycle u1u2u3u4, but implies that at least two
of Lav(u2, ϕ

′′′), Lav(u4, ϕ
′′′) and Lav(u2u4, ϕ

′′′) are distinct if |Lav(u2, ϕ
′′′)| = |Lav(u4, ϕ

′′′)| = |Lav(u2u4, ϕ
′′′)| = 2. Therefore,

ϕ′′′ can be extended to a total L-coloring ϕ of G.
If Lav(u3v, ϕ′) = {1, 2} and Lav(u3, ϕ

′) = {1, 3}, then there are twoways to color u3 and u3v so that v can be colored from
its available list so that the color assigned to v is different with the colors assigned to u3 and u3v. Without loss of generality,
assume the above two ways of coloring are as follows: color u3 and u3v with 1 and 3, or with 2 and 1. We now color u3
and u3v with 1 and 3, and then color v properly. Denote the current coloring by ϕ′′. Suppose that Lav(u1u2, ϕ

′) = {a, b}.
If Lav(u2u3, ϕ

′) ≠ {1, 3, a, b} or {a, b} ∩ {1, 3} ≠ ∅, then Lav(u1u2, ϕ
′′) ≠ Lav(u2u3, ϕ

′′), therefore, by Lemma 7, ϕ′′ can be
extended to a total L-coloring of G. If Lav(u2u3, ϕ

′) = {1, 3, a, b} and {a, b} ∩ {1, 3} = ∅, then recolor v3 and v by 2 and 1,
and recolor v properly. Denote this coloring by ϕ′′′. We then have Lav(u2u3, ϕ

′′′) = {3, a, b} \ {2} ≠ {a, b} = Lav(u1u2, ϕ
′′′),

so by Lemma 7, ϕ′′′ can be extended to a total L-coloring of G.
If Lav(u3v, ϕ′) = {1, 2} and Lav(u3, ϕ

′) = {3, 4}, then there are two ways to color u3 and u3v so that v can be colored
from its available list so that the color assigned to v is different with the colors assigned to u3 and u3v. Therefore, we can do
similar arguments as above to complete the proof. �

Lemma 9. Suppose that G contains a cycle u1u2u3u4 with u1u3, u2u4 ∈ E(G) and d(u2) = d(u4) = 3. Let ϕ′ be a partial total
L-coloring of G so that the uncolored elements under ϕ′ are u1u2, u2u3, u3u4, u1u4, u2u4, u1u3, u1, u2, u3 and u4, where L is a
list assignment of G. If

min{|Lav(u2, ϕ
′)|, |Lav(u4, ϕ

′)|, |Lav(u2u4, ϕ
′)|} ≥ 6,

min{|Lav(u1u2, ϕ
′)|, |Lav(u2u3, ϕ

′)|, |Lav(u3u4, ϕ
′)|, |Lav(u1u4, ϕ

′)|} ≥ 4
min{|Lav(u1, ϕ

′)|, |Lav(u3, ϕ
′)|, |Lav(u1u3, ϕ

′)|} ≥ 2

and

at least two of Lav(u1, ϕ
′), Lav(u3, ϕ

′), Lav(u1u3, ϕ
′) are distinct when

|Lav(u1, ϕ
′)| = |Lav(u3, ϕ

′)| = |Lav(u1u3, ϕ
′)| = 2,

then ϕ′ can be extended to a total L-coloring ϕ of G without altering the assigned colors.

Proof. Without loss of generality, we assume that |Lav(u2, ϕ
′)| = |Lav(u4, ϕ

′)| = |Lav(u2u4, ϕ
′)| = 6, |Lav(u1u2, ϕ

′)| =

|Lav(u2u3, ϕ
′)| = |Lav(u3u4, ϕ

′)| = |Lav(u1u4, ϕ
′)| = 4 and |Lav(u1, ϕ

′)| = |Lav(u3, ϕ
′)| = |Lav(u1u3, ϕ

′)| = 2.
If Lav(u1u3, ϕ

′) = Lav(u3, ϕ
′) = {1, 2}, then color u3 and u1u3 with 1 and 2, u1 with ϕ′′(u1) ∈ Lav(u1, ϕ

′) \ {1, 2} ≠ ∅

and denote the current coloring by ϕ′′. Without loss of generality, assume that ϕ′′(u1) = 3. It is easy to see that
|Lav(u2u4, ϕ

′′)| = 6, |Lav(u2, ϕ
′′)|, |Lav(u4, ϕ

′′)| ≥ 4 and |Lav(u1u2, ϕ
′′)|, |Lav(u2u3, ϕ

′′)|, |Lav(u3u4, ϕ
′′)|, |Lav(u1u4, ϕ

′′)| ≥ 2.
If {1, 2} ⊈ Lav(u2u3, ϕ

′), or {2, 3} ⊈ Lav(u1u2, ϕ
′), or Lav(u2u3, ϕ

′)\{1, 2} ≠ Lav(u1u2, ϕ
′)\{2, 3}, then by Lemma7,ϕ′′ can be

extended to a total L-coloring of G. If Lav(u1u2, ϕ
′) = {2, 3, a, b}, Lav(u2u3, ϕ

′) = {1, 2, a, b} and {a, b} ∩ {1, 2, 3} ≠ ∅, then
exchange the colors on u3 and u1u3, and denote this coloring byϕ′′′. Since |Lav(u2u4, ϕ

′′′)| = 6, |Lav(u2, ϕ
′′′)|, |Lav(u4, ϕ

′′′)| ≥

4, |Lav(u1u2, ϕ
′′′)| ≥ 3 and |Lav(u3u4, ϕ

′′′)|, |Lav(u1u4, ϕ
′′′)|, |Lav(u2u3, ϕ

′′′)| ≥ 2, by Lemma 7, ϕ′′′ can be extended to a total
L-coloring ϕ of G.

If Lav(u1u3, ϕ
′) = {1, 3} and Lav(u3, ϕ

′) = {1, 2}, then we shall assume that Lav(u1, ϕ
′) ≠ {1, 3} (otherwise we come

back to the above case). If Lav(u1, ϕ
′) \ {1, 2, 3} ≠ ∅, then color u1 with a color in Lav(u1, ϕ

′) \ {1, 2, 3}, say 4, and color
u3 and u1u3 with 1 and 3. Denote the current coloring by ϕ′′. If {1, 3} ⊈ Lav(u2u3, ϕ

′), or {3, 4} ⊈ Lav(u1u2, ϕ
′), or
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Lav(u2u3, ϕ
′) \ {1, 3} ≠ Lav(u1u2, ϕ

′) \ {3, 4}, then by Lemma 7 and similar arguments as before, ϕ′′ can be extended to
a total L-coloring of G. If Lav(u1u2, ϕ

′) = {3, 4, a, b}, Lav(u2u3, ϕ
′) = {1, 3, a, b} and {a, b} ∩ {1, 3, 4} ≠ ∅, then recolor u3

with 2 and denote the current coloring by ϕ′′′. By Lemma 7 and similar arguments as before, one can prove that ϕ′′′ can be
extended to a total L-coloring of G. If Lav(u1, ϕ

′) = {1, 2}, then color u3, u1u3 and u1 with 1, 3 and 2. Denote this partial
coloring of G by ϕ′′. By similar arguments as above, one can prove that either ϕ′′ can be extended to a total L-coloring of G
by Lemma 7, or we can construct a new partial coloring ϕ′′′ by exchanging the colors on u1 and u3 that can be extended to
a total L-coloring of G by Lemma 7. If Lav(u1, ϕ

′) = {2, 3}, then color u3, u1u3 and u1 with 1, 3 and 2 and denote this partial
coloring of G by ϕ′′. One can also prove that either ϕ′′ can be extended to a total L-coloring of G by Lemma 7, or we can
construct a new partial coloring ϕ′′′ that can be extended to a total L-coloring of G by Lemma 7 via recoloring u3, u1u3 and
u1 with 2, 1 and 3.

If Lav(u1u3, ϕ
′) = {3, 4} and Lav(u3, ϕ

′) = {1, 2}, then we shall assume that Lav(u1, ϕ
′) ∩ {3, 4} = ∅. (otherwise we

come back to the above case). We now color u1 with ϕ′′(u1) ∈ Lav(u1, ϕ
′), u1u3 with ϕ′′(u1u3) ∈ Lav(u1u3, ϕ

′) \ {ϕ′′(u1)},
and u3 with ϕ′′(u3) ∈ Lav(u3, ϕ

′) \ {ϕ′′(u1)}. Denote this coloring by ϕ′′. By Lemma 7 and similar arguments as before, ϕ′′

can be extended to a total L-coloring of G if {ϕ′′(u1u3), ϕ
′′(u3)} ⊈ Lav(u2u3, ϕ

′), or {ϕ′′(u1u3), ϕ
′′(u1)} ⊈ Lav(u1u2, ϕ

′),
or Lav(u2u3, ϕ

′) \ {ϕ′′(u1u3), ϕ
′′(u3)} ≠ Lav(u1u2, ϕ

′) \ {ϕ′′(u1u3), ϕ
′′(u1)}. Therefore, we assume that Lav(u2u3, ϕ

′) =

{ϕ′′(u1u3), ϕ
′′(u3), a, b} and Lav(u1u2, ϕ

′) = {ϕ′′(u1u3), ϕ
′′(u1), a, b}, where {a, b} ∩ {ϕ′′(u1u3), ϕ

′′(u1), ϕ
′′(u3)} = ∅. If

ϕ′′(u1) ∉ {1, 2}, then we can construct a new partial coloring ϕ′′′ that can be extended to a total L-coloring of G by
Lemma 7 via recoloring u3 with a color from Lav(u3, ϕ

′) \ {ϕ′′(u3)}. Thus, we assume, without loss of generality, that
ϕ′′(u1) = 1, ϕ′′(u3) = 2 and ϕ′′(u1u3) = 3. If Lav(u1, ϕ

′) ≠ {1, 2}, then recolor u1 with a color from Lav(u1, ϕ
′) \ {1, 2, 3, 4},

which is a non-empty set since Lav(u1, ϕ
′) ∩ {3, 4} = ∅. If Lav(u1, ϕ

′) = {1, 2}, then exchange the colors on u1 and u3. In
each case, the resulted coloring can be extended to a total L-coloring of G by Lemma 7. �

We are now ready to give a proof of Theorem 5.

Proof of Theorem 5. Suppose that G is a counterexample to this theorem with the smallest value of |V (G)| + |E(G)|. It is
easy to see that δ(G) ≥ 2 and every 2-vertex in G is adjacent only to ∆(G)-vertices, so by Lemma 3, G contains one of the
configurations among (b)–(g).

If G contains (b), then G′
= G − {u1, u2, u3, v2, v3} has a total L′-coloring ϕ′ so that L′(x) = L(x) for each x ∈ VE(G′). One

can see that |Lav(v1v2, ϕ
′)|, |Lav(v1v3, ϕ

′)|, |Lav(v2v4, ϕ
′)|, |Lav(v3v4, ϕ

′)| ≥ 3. If Lav(v1v3, ϕ
′)∩ Lav(v2v4, ϕ

′) ≠ ∅, then color
v1v3 and v2v4 with a same color from Lav(v1v3, ϕ

′)∩Lav(v2v4, ϕ
′). If Lav(v1v3, ϕ

′)∩Lav(v2v4, ϕ
′) = ∅, thenwe can extend ϕ′

to another partial coloring ϕ′′ of G by coloring v1v3 and v2v4 with ϕ′′(v1v3) ∈ Lav(v1v3, ϕ
′) and ϕ′′(v2v4) ∈ Lav(v2v4, ϕ

′) so
that |Lav(v1v2, ϕ

′) \ {ϕ′′(v1v3), ϕ
′′(v2v4)}| ≥ 2 and |Lav(v3v4, ϕ

′) \ {ϕ′′(v1v3), ϕ
′′(v2v4)}| ≥ 2. In either case, we can extend

ϕ′ to another partial coloring ϕ′′ of G by coloring v1v3 and v2v4 from their available lists, and moreover, ϕ′′ satisfies

|Lav(u1v1, ϕ
′′)|, |Lav(u3v4, ϕ

′′)|, |Lav(v1v2, ϕ
′′)|, |Lav(v3v4, ϕ

′′)| ≥ 2,
|Lav(v2, ϕ

′′)|, |Lav(v3, ϕ
′)| ≥ 3,

|Lav(v2v3, ϕ
′′)| ≥ 4,

and

|Lav(u1v2, ϕ
′′)|, |Lav(u2v2, ϕ

′′)|, |Lav(u2v3, ϕ
′′)|, |Lav(u3v3, ϕ

′′)| ≥ 5.

Therefore, by Lemma 6, ϕ′′ can be extended to a total L-coloring ϕ of G without altering the assigned colors.
If G contains (c), then G′

= G − {u2, u4} has a total L′-coloring ϕ′ so that L′(x) = L(x) for each x ∈ VE(G′). Since there
are at least two available colors for each edge of the cycle u1u2u3u4 and every 4-cycle is 2-edge-choosable, we can color
u1u2, u2u3, u3u4 and u4u1 from their available lists so that the extended coloring is proper. At last, we color u2 and u4 from
their available lists to obtain a total L-coloring ϕ of G. This can be easily done since u2 or u4 is incident with four colored
elements right row.

If G contains (d), then G′
= G − {u2, u4} has a total L′-coloring ϕ′ so that L′(x) = L(x) for each x ∈ VE(G′).

One can check that |Lav(u2u4, ϕ
′)| ≥ 6, |Lav(u1u2, ϕ

′)|, |Lav(u1u4, ϕ
′)| ≥ 2, |Lav(u2u3, ϕ

′)|, |Lav(u3u4, ϕ
′)| ≥ 3 and

|Lav(u2, ϕ
′)|, |Lav(u4, ϕ

′)| ≥ 4. By Lemma 7, ϕ′ can be extended to a total L-coloring ϕ of G without altering the colors
in G′.

If G contains (e), then G′
= G − {u2, u4, u3v} has a total L′-coloring ϕ′ so that L′(x) = L(x) for each x ∈ VE(G′).

We now erase the color on v and still denote the current coloring by ϕ′. It is easy to check that |Lav(u2u4, ϕ
′)| ≥

6, |Lav(u1u2, ϕ
′)|, |Lav(u1u4, ϕ

′)| ≥ 2, |Lav(u2u3, ϕ
′)|, |Lav(u3u4, ϕ

′)| ≥ 3, |Lav(u2, ϕ
′)|, |Lav(u4, ϕ

′)| ≥ 4, |Lav(u3v, ϕ′)| ≥ 2
and |Lav(v, ϕ′)| ≥ 3. We now color u3v with ϕ′′(u3v) ∈ Lav(u3v, ϕ′) and v with ϕ′′(v) ∈ Lav(v, ϕ′) \ {ϕ′′(u3v)} so that the
extended partial coloring ϕ′′ satisfies

(1) |Lav(u2u4, ϕ
′′)| ≥ 6, |Lav(u2, ϕ

′′)|, |Lav(u4, ϕ
′′)| ≥ 4, |Lav(u1u2, ϕ

′′)|, |Lav(u2u3, ϕ
′′)|, |Lav(u3u4, ϕ

′′)|, |Lav(u1u4, ϕ
′′)| ≥ 2

(2) Lav(u1u2, ϕ
′′) ≠ Lav(u2u3, ϕ

′′) if |Lav(u1u2, ϕ
′′)| = |Lav(u2u3, ϕ

′′)| = 2.

This can be done since |Lav(u3v, ϕ′)| ≥ 2. Therefore, ϕ′ can be extended to a total L-coloring ϕ of G without altering the
colors in G′ by Lemma 7.
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If G contains (f), then G′
= G − {u2, u4} has a total L′-coloring ϕ′ so that L′(x) = L(x) for each x ∈ VE(G′). We now erase

the colors on u3, u3v and v and denote the current coloring by ϕ′′. It is easy to see that

|Lav(u2u4, ϕ
′′)| ≥ 6,

|Lav(u2, ϕ
′′)|, |Lav(u4, ϕ

′′)| ≥ 5,
|Lav(u2u3, ϕ

′′)|, |Lav(u3u4, ϕ
′′)| ≥ 4,

and

|Lav(u1u2, ϕ
′′)|, |Lav(u1u4, ϕ

′′)|, |Lav(u3v, ϕ′′)|, |Lav(u3, ϕ
′′)|, |Lav(v, ϕ′′)| ≥ 2.

Since ϕ′′ is a partial coloring of ϕ′, at least two of Lav(u3v, ϕ′′), Lav(u3, ϕ
′′), Lav(v, ϕ′′) are distinct if |Lav(u3v, ϕ′′)| =

|Lav(u3, ϕ
′′)| = |Lav(v, ϕ′′)| = 2. Therefore, by Lemma 8, ϕ′′ can be extended to a total L-coloring ϕ of Gwithout altering the

colors in G′.
If G contains (g), then G′

= G − {u2, u4} has a total L′-coloring ϕ′ so that L′(x) = L(x) for each x ∈ VE(G′). We now erase
the colors on u1, u3 and u1u3 and denote the current coloring by ϕ′′. One can see that

|Lav(u2, ϕ
′′)|, |Lav(u4, ϕ

′′)|, |Lav(u2u4, ϕ
′′)| ≥ 6,

|Lav(u1u2, ϕ
′′)|, |Lav(u2u3, ϕ

′′)|, |Lav(u3u4, ϕ
′′)|, |Lav(u1u4, ϕ

′′)| ≥ 4,

and

|Lav(u1, ϕ
′′)|, |Lav(u3, ϕ

′′)|, |Lav(u1u3, ϕ
′′)| ≥ 2.

Since ϕ′′ is a partial coloring of ϕ′, at least two of Lav(u1u3, ϕ
′′), Lav(u1, ϕ

′′), Lav(u3, ϕ
′′) are distinct if |Lav(u1, ϕ

′′)| =

|Lav(u3, ϕ
′′)| = |Lav(u1u3, ϕ

′′)| = 2. Therefore, ϕ′′ can be extended to a total L-coloring ϕ of Gwithout altering the colors in
G′ by Lemma 9. �

Remark. Theorem 5 implies that every pseudo-outerplanar graphs with maximum degree at least 5 is totally (∆ + 1)-
choosable. In fact, the bound 5 for the maximum degree in this result cannot be improved to 3 since there exists a pseudo-
outerplanar graph with maximum degree 3 and total chromatic number 5 (see Fig. 1 of the Ref. [12]). In another coming
paper, we have proved that every pseudo-outerplanar graph with maximum degree 4 is totally 5-colorable. However, we
still do not know whether every pseudo-outerplanar graph with maximum degree 4 is totally 5-choosable, thus we leave it
as an open problem here.
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